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Abstract

In-situ hourly precipitation observations often underestimate actual surface precip-

itation. When integrated with model fields in spatial precipitation analyses, this un-

derestimation can significantly affect monthly or annual aggregations, crucial for

calibrating hydrological models. To address this, correction methods utilizing tem-

perature and wind speed have been developed. This study employs corrections

using 2m temperature and 10m wind speed from model outputs, assessing their

impact on observed data. Since in-situ observations are considered the most ac-

curate data source for hourly precipitation, the question of an appropriate reference

for evaluating the quality of the corrections is raised. Here, we use mean annual

precipitation from model outputs as a reference, suitable for the objectives of our

study. Our findings indicate that applying the proposed corrections more closely

aligns observed data with model predictions.
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1 Introduction

Measurements of precipitation recorded by automatic weather stations are often lower than the

actual amounts of precipitation. This underestimation is more pronounced for solid precipitation

compared to liquid precipitation and it is influenced by wind, temperature conditions and precipi-

tation intensity.

According to WMO-No.8 (2021) Sec. 6.4 “Precipitation gauge errors and corrections”:

The true amount of precipitation may be estimated by correcting for some or all of the

various error terms listed below:

(a) Error due to systematic wind field deformation above the gauge orifice: typically

2% to 10% for rain and 10% to 50% for snow;

(b) Error due to the wetting loss on the internal walls of the collector;

(c) Error due to the wetting loss in the container when it is emptied: typically 2% to

15% in summer and 1% to 8% in winter, for (b) and (c) together;

(d) Error due to evaporation from the container (most important in hot climates): 0%

to 4%;

(e) Error due to blowing and drifting snow;

(f) Error due to the in- and out-splashing of water: 1% to 2%;

(g) Systematic mechanical and sampling errors, and dynamic effects errors (i.e. sys-

tematic delay due to instrument response time): typically 5% to 15% for rainfall

intensity, or even more in high-rate events;

(h) Random observational and instrumental errors, including incorrect gauge reading

times.

The first seven error components are systematic and are listed in order of general im-

portance. The net error due to blowing and drifting snow and to in- and out-splashing

of water can be either negative or positive, while net systematic errors due to the wind

field and other factors are negative.

In the work by Pollock et al. (2018), they concluded that:

Systematic bias caused by wind is inherent within rainfall measurements and wind is

therefore the most important variable required to understand the extent of undercatch

on rainfall measurements.

The study by Pollock et al. (2018) focused on liquid precipitation employing pit gauges as refer-

ence instruments at two locations in the United Kingdom. It quantitatively assessed the undercatch,
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which was influenced by factors such as the exposure of the site, the height at which measure-

ments were taken, and the aerodynamic design of the rain gauge. At a low-land site with good

exposure and comparatively lower average wind speeds, the observed range of mean undercatch

for a standard cylindrical gauge positioned 0.5 meters above ground was between 3.4% and 9.4%.

Conversely, at a upland location experiencing higher wind speeds, the mean undercatch ranged

from 11.2% to 23%. The study noted an increase in undercatch for gauges installed at a height

of 2 meters. Pollock et al. (2018) proposes linear relationships between catch efficiency and wind

speed.

Our reference application is the combination of numerical model outputs with in-situ observa-

tions to achieve an accurate representation of hourly precipitation across Norway. Directly utilizing

hourly in-situ observations leads to an underestimation of precipitation in the merged datasets. Con-

sequently, the adjustment of in-situ observations is needed. In our case, this adjustment addresses

only point (a) from the previously mentioned list, which concerns the correction of hourly obser-

vations for wind-induced precipitation loss. The primary aim of this document is not to devise

a correction method, but rather to examine the effect of applying such corrections on the in-situ

observations used in the process of combining them with numerical model output.

For our analysis in Norway, we reference the correction methodologies outlined in two key

studies: Førland et al. (1996) and Wolff et al. (2015). The work by Førland et al. (1996) serves

as a guide for correcting Nordic precipitation data, introducing both a Dynamic Correction Model

(DCM) and a Simple Correction Model (SCM). The DCM, applicable when temperature and wind

speed data are available, was utilized by Michelson (2004) to correct 12-hour precipitation obser-

vations in Sweden, leveraging wind speed and temperature from reanalysis data, a methodology

closely aligned with our planned approach. Conversely, the SCM, suitable for situations lacking

wind speed data, employs correction factors based on the exposure classification of the station’s

location. We regard Wolff et al. (2015) as an advancement of the methods introduced by Førland

et al. (1996), specifically for solid precipitation. Our approach aims to integrate these two method-

ologies: Wolff et al. (2015) method for solid precipitation and Førland et al. (1996) for liquid

precipitation, with a significant modification: instead of relying on measurements from the precip-

itation observation sites, we utilize meteorological data derived from numerical model outputs for

correcting observed precipitation.

This methodological choice significantly changes the purpose of the correction. While the

metrological study by Wolff et al. (2015) aimed to refine the accuracy and precision of precipitation

estimates at a specific location, our goal is still to adjust precipitation data towards the (unknown)

true values but we intend to implement this correction across our entire domain, independent of the

availability of weather stations. Consequently, our expectations on the quality of our corrections are

more modest compared to those in a metrological study. A compromise inherent in our approach is

the incorporation of errors from the numerical model into our corrections, a necessary concession

to achieve widespread application of the precipitation correction. We intend to apply precipitation
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corrections across the study domain, emphasizing areas where atmospheric conditions suggest a

higher likelihood of significant observational precipitation loss. Thus, the adjusted observations

should, on average, more accurately reflect the actual precipitation patterns, albeit they may still

exhibit systematic biases.

To evaluate corrections across the entire domain, we require reference values for true precipi-

tation over this area. Unfortunately, such observed reference values are scarce, available at only a

very limited number of locations. For example, the study conducted by Wolff et al. (2015) utilized

data from a single site, Haukeliseter in Norway, selected for its frequent snow events and high wind

speeds during its lengthy winters of 6 to 7 months. In our study, we have chosen to use the annual

precipitation climatology derived from numerical model outputs as our reference. We acknowledge

the inherent uncertainties in precipitation data reconstructed by numerical models. Typically, the

accuracy of model-simulated precipitation fields is assessed using in-situ observations, essentially

the reverse of the approach we intend to adopt. However, numerical models generate precipitation

estimates through a set of equations, meaning their errors are independent of those associated with

measurement techniques. Moreover, the uncertainty related to precipitation fields predicted by nu-

merical models, including reanalyses, has been decreasing over the last decade (Simmons et al.,

2017), particularly in Europe (Bandhauer et al., 2022; Lavers et al., 2022). Consequently, we as-

sume that an aggregated climatological value of precipitation from a numerical model, which has

demonstrated reasonable accuracy at a local scale, could serve as an adequate proxy for the true,

albeit unknown, precipitation values.

The document is structured as follows: Section 2 provides an overview of the in-situ observa-

tions and the numerical model utilized in our study. Section 3 details the methodologies employed

for precipitation correction and their integration. Section 4 reports the findings from our experi-

ments. These findings are subsequently synthesized in the Conclusions section.

2 Data

2.1 In-situ Observation

We utilized hourly precipitation observations collected by automatic weather stations operated by

MET Norway. These data were accessed through the climate database via the frost.met.no API,

ensuring that the hourly observations underwent MET Norway’s standard quality assurance proto-

cols. Our selection criteria included only those stations equipped with heated rain gauges, thereby

enhancing measurement accuracy under cold temperature conditions. The study period spans from

September 2019 to September 2023, with a total of 128 rain gauges identified from the metadata

database. Corrections were applied to the hourly data, while the validation process focused on

annual precipitation totals, resulting in four annual total precipitation values per station. A station

yearly time series was excluded if the available data accounted for less than 80% of the total annual
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hours. Stations that had fewer than three out of four yearly time series available were also excluded

from the study. Consequently, the final number of stations included in our study is 74.

2.2 NORA3 and MET Nordic Long-Term Consistent

The Norwegian reanalysis NORA3 (Haakenstad et al., 2021) is provided on a regular grid with

spacing of 3 km spanning from 1970 to the present. This dataset results from dynamically down-

scaling the ERA5 reanalysis (Hersbach et al., 2020). NORA3 employs a convection-permitting,

non-hydrostatic numerical weather prediction model to reconstruct the atmospheric state over north-

ern Europe, focusing on Norway. The research presented by Haakenstad and Øyvind Breivik (2022)

shows that NORA3 better represents precipitation compared to both ERA5 and the earlier hydro-

static 10 km Norwegian Hindcast Archive (NORA10, Reistad et al., 2011).

NORA3 precipitation data have been further refined to a 1 km grid in MET Nordic Long-Term

Consistent (LTC) dataset, which is the dataset used in this study.

3 Methods

The general form of the adjustment function we will consider approximates Eq. (6.1) reported in the

guide WMO-No.8 (2021). Specifically, our focus will be on the effects of wind field deformation,

represented by the equation:

Pk = k ·Pg (1)

where: Pk is the adjusted precipitation amount; Pg is the measured amount of precipitation in the

gauge; k is the adjustment factor for the effects of wind field deformation. k is the reciprocal of the

catch ratio R.

It is important to note that the equations for computing the correction factor vary between liquid

(rain) and solid (snow) forms of precipitation. Regarding notation, we will follow the conventions

established by the CIMO Guide WMO-No.8 (2021), using the subscripts r and s to denote quantities

related to liquid and solid precipitation, respectively (e.g., ks will represent the correction factor for

solid precipitation).

3.1 Solid Precipitation

The continuous adjustment function proposed by Wolff et al. (2015) for correcting wind-induced

loss of solid precipitation operates by adjusting the observed precipitation. The corrected precipi-

tation is derived by multiplying the observed amount by the inverse of the catch ratio R defined as

(see Equation (10) of Wolff et al. (2015)):

R = [1− τ1 − (τ2 − τ1)f(T;Tτ ,sτ)]exp

[
−
(

V
θ

)β
]
+ τ1 +(τ2 − τ1)f(T;Tτ ,sτ) (2)
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where: T represents temperature and V denotes wind speed. The function f(T;Tτ ,sτ) introduces

temperature dependence:

f(T;Tτ ,sτ) =
exp [(T −Tτ)/sτ ]

1+ exp [(T −Tτ)/sτ ]
(3)

Note that Equation (11) in Wolff et al. (2015) presents a formulation for temperature-dependent

regression noise, σ(T ), which could potentially inform the uncertainty associated with precipitation

correction. Upon implementation, we observed that this often resulted in significantly high values

of k. Wolff et al. (2015) in their Section 5.3, discuss the implications of regression noise and

uncertainty analysis, highlighting that Equation (11) does not optimally characterize regression

noise. Consequently, we have decided not to incorporate this aspect into our study.

After the optimization of the parameters of Eq. (2), Wolff et al. (2015) derived their Equations

(12) and (13), depending on whether the wind speed is considered at 10 meters above the ground

or at the gauge height, respectively. We will refer to Correction A when the correction is applied

with the 10m wind speed as input and to Correction B when the correction is applied with the

wind speed at the gauge height. For both corrections, the parameter values are reported in Table 1

of Wolff et al. (2015), which is replicated here as Tab. 1.

Numerical models typically provide wind speed measurements at 10 meters above the ground.

To adjust the wind speed to gauge height, assumed to be 1.5 meters above the ground, we em-

ploy a transformation based on the “log-wind profile” assumption, similar to the approach used by

Michelson (2004). This transformation assumes a fixed roughness length of 0.25m:

Vg =

[
ln
(

1.5m
0.25m

)
/ln

(
10m

0.25m

)]
V10m (4)

With our approximation, the correction factor to transform the 10m wind speed to 1.5m wind

speed is equal to 0.49.

From the Conclusions of Wolff et al. (2015):

The under-catch has a pronounced relation to temperature and a non-linear relation to

wind speed. For solid precipitation at −2◦C or below, only 80% of the assumed true

precipitation is caught at wind speeds of 2ms−1, and only 40% at 5ms−1. The slope of

the catch ratio then levels off markedly and stabilizes at 20% at 7−8ms−1. This base

line level is confirmed with data up to 15− 20ms−1 and will most likely not change

for even higher wind speeds.

Again, from the Conclusions of Wolff et al. (2015) but about the limits of applicability of the

adjustment:

The result is one continuous equation which describes the wind-induced under-catch

for snow, mixed precipitation and rain events for wind speeds up to at least 20ms−1

and temperatures up to 3◦C. Input parameters are wind speed and air temperature, thus
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allowing for easy application at operational weather stations only equipped with basic

sensors.

In Figures 1- 5, the correction factors are shown. When the figures indicate a correction factor

of e.g. 1.1, this should be interpreted as an overall correction of 10% to the initially measured

precipitation.

The SCM described by Førland et al. (1996) was adopted in Norway by Mohr (2009) to ad-

just daily precipitation data for the seNorge observational gridded dataset, with correction factors

outlined in Tab. 2. Notably, these correction factors allow for a maximum adjustment of +80% in

cases of highly exposed sites in coastal and mountain regions, a significantly smaller correction

compared to that introduced by the DCM or by Wolff et al. (2015). It is important to note that

Førland et al. (1996) mentions these correction factors were initially created to adjust monthly val-

ues for shielded Nordic gauges, with unshielded gauges requiring an adjustement of the correction

factors of approximately 5% more for liquid precipitation and 50% more for solid precipitation.

Although the corrections on a daily or sub-daily scale may exceed +80%, the SCM correction

factors offer an estimate of the difference between raw (i.e. unadjusted) and corrected monthly

accumulated precipitation values.

3.2 Liquid Precipitation

As highlighted in the Introduction, the research conducted by Førland et al. (1996), Pollock et al.

(2018), and the guidance provided in the WMO guide WMO-No.8 (2021) reveal that observational

data tend to underestimate not just solid precipitation but liquid precipitation as well. However,

the correction method proposed by Wolff et al. (2015) does not address adjustments for liquid

precipitation, largely because it falls outside the scope of this particular correction applicability.

The DCM correction factor for liquid precipitation is:

k = exp [−0.00101 · ln(Pg)−0.012177 ·Vg · ln(Pg)+0.034331 ·Vg +0.007697−0.05] (5)

The DCM incorporates wind speed and precipitation intensity for its corrections of liquid precipita-

tion, whereas the SCM utilizes correction factors, as detailed in Tab. 2. These factors indicate that,

on a monthly aggregate basis, the discrepancy between raw and adjusted totals of liquid precipita-

tion varies between 2% and 14%, contingent upon the site exposure. These adjustments for liquid

precipitation are notably less extensive than those for solid precipitation, which exhibit corrections

ranging from 5% to 80% at the monthly scale.

3.3 Combining the adjustments for solid and liquid precipitation

Our objective is to adjust liquid and solid precipitation using a continuous function. Therefore, we

need to combine the equations used to compute k for both states of precipitation.

We assume that: for temperatures below 1◦C, k = ks, directly applying the correction for solid

precipitation in Eq. (2); for temperatures above 3◦C, k = kr, directly applying the correction for
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liquid precipitation Eq. (5), with the constraint that kr has a minimum value of 1; for temperatures

within 1◦C to 3◦C, a smooth transition function can be used to calculate k, transitioning from ks to

kr. The equation for k can be written as:

k =


ks, if T ≤ 1◦C

ks +(1−T )2/
[
(1−T )2 +(3−T )2](kr − ks), if 1◦C < T < 3◦C

kr (and if kr < 1 then set kr = 1), if T ≥ 3◦C

(6)

In Figures 6- 10, the correction factors obtained using Eq. (6) are shown. As detailed in Sec-

tion 3.1, we introduce Correction A for cases where ks is calculated using a configuration that

inputs the 10m wind speed, and Correction B when ks is derived using a configuration with the

wind speed adjusted to gauge height. It is important to note that the 10m wind speed from the

numerical model output serves as the wind speed input for both corrections. However, for Cor-
rection A, this wind speed is used directly, whereas for Correction B, the wind speed is scaled

down to 1.5m to reflect conditions closer to gauge height. For temperatures lower than 1◦C, k is

the same as reported in Figures 1- 5. For temperatures greater than 3◦C, k becomes independent of

the temperature but depends only on the precipitation intensity and wind speed.

4 Results

We analyze 74 time series of hourly precipitation amounts from in-situ observations, as outlined

in Sec. 2.1. Concurrently, we retrieve hourly precipitation data from numerical model outputs

for identical locations and their surroundings. These data are subsequently aggregated over a 1-

year period, choosing September of one year to September of the following year to represent the

hydrological year in the annual totals. We consider the 4 hydrological years from 2019 to 2023,

specifically: 2019–2020, 2020–2021, 2021–2022 and 2022–2023.

In terms of mathematical notation, hourly precipitation is denoted by P. As described in Sec. 3,

the subscripts serve specific purposes: k represents corrected precipitation, g signifies raw observed

precipitation, and m denotes precipitation derived from model fields. For corrected precipitation,

superscripts A and B are utilized to differentiate between the two correction methods outlined in

Sec. 3.3. The annual totals are denoted by A, with Am indicating the total annual precipitation

derived from model data at a specific location. The deviation between observed (either raw or cor-

rected) and modeled annual totals is represented by D. Specifically, the differences are calculated

as follows: Dg = Ag−Am for raw observed precipitation, DA
k = AA

k −Am for precipitation corrected

using method A, and DB
k = AB

k −Am for precipitation corrected using method B. The mean annual

total precipitation over the four hydrological years is symbolized by A, accompanied by the ap-

propriate subscript to indicate the specific data type being referred to. Analogously, D indicates a

mean annual deviation.

The correction of hourly precipitation for the hydrological year 2022–2023 is illustrated at three

10



locations: Oslo, Bergen, and Tromsø, shown in Figs. 11, 12, and 13, respectively. These figures

aim to provide insights into the process of the corrections throughout an entire hydrological year.

A comprehensive analysis of the impact of these corrections across 74 stations is detailed in

Tables 3 to 5. For each station, the annual total predicted by the model, denoted as Am, serves as a

reference point. The average deviations based on raw precipitation data are represented by Dg, both

as absolute figures in millimeters and as relative deviations in percentages (Dg/Am × 100). These

raw precipitation values establish a baseline for assessing the effects of the corrections, which are

quantified in the tables as DA
k and DB

k , along with their respective relative deviations (DA
k /Am×100

and DB
k /Am ×100).

Figures 14, 15, and 16 visually summarize the relative deviations mentioned in parentheses

in the aforementioned Tables 3 to 5. The annual total precipitation reported by raw observations

is on average 10% less than the modelled value. Upon applying the corrections, there is an in-

crease in precipitation amounts, as depicted in Figs. 15 to 16. Corrected observations more closely

match model predictions with Correction B, whereas Correction A tends to yield higher values

than those modeled. Specifically, Fig. 16 shows that precipitation corrected with Correction B has

a median relative deviation of -4%, with half of the stations displaying deviations between -15%

and 9%. While corrections enhance the congruence between observed data and model predictions

on average, they also expand the spread of relative deviation distributions. For raw measurements,

deviations range from -52% to 23%, with an interquartile range of -21% to 1%. Correction B,

however, extends this range to -50% to 53%, with an interquartile range of -15% to 9%. Notably,

the broader range, especially in the upper deviations, presents challenges for validation using our

current method, which is primarily designed for evaluating mean regional values.

The larger relative deviations in corrected annual precipitation totals could be a consequence of

uncertainties in the modeled 10m wind speed predictions. Systematic overestimations of modeled

wind speeds, relative to observed values, could lead to inaccurately high corrected precipitation to-

tals. In Figures 17 and 18, we examine the comparison between modeled and observed hourly 10m

wind speeds at station locations, presenting the correlation and bias, respectively. The correlation

between modeled and observed wind speeds is generally good, with a median value of 0.68 and a

relatively narrow interquartile range. Up to this point, the 10m wind speed from the model is de-

termined at station locations using a nearest neighbor approach. To enhance the temporal stability

of the modeled wind and mitigate the effects of minor inaccuracies in the placement of weather

phenomena within the model, we propose averaging the values from several grid points closest to

the station locations. Our preliminary analysis indicates that the correlation between modeled and

observed wind speeds remains largely unchanged when using aggregated values from up to the

nearest 200 grid points. However, the bias shifts significantly, as illustrated in Figures 19 and 20.

Specifically, the average modeled value, when aggregated, tends to be higher than that obtained via

the nearest neighbor method, with the degree of overestimation increasing alongside the number of

grid points considered in the aggregation.
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To mitigate the impact of model prediction uncertainties on corrected precipitation —partic-

ularly the high values in the right tail of the distribution seen in Fig. 16 which pose validation

challenges— we propose two adjustments for refining Correction B: (a) utilizing wind speed de-

rived from aggregated values, and (b) imposing an upper limit on the correction factor k in Eq. (6).

In Fig.21, we re-evaluate the results of Fig.16 under these adjustments. Here, the 10m wind speed

is calculated as the average of the four nearest grid points to each station, and the correction factor

is capped at 2, aligning closely with the maximum correction factor of 1.80 permitted in the SCM.

The outcomes in Fig.21 do not diverge significantly from those in Fig.16. Although the pro-

posed adjustments do not enhance the results, they also do not degrade the performance of Cor-

rection B. Therefore, adopting these measures to increase the robustness of the correction against

model uncertainty could still be considered a viable strategy.

5 Conclusions

The comparison between observed and modeled mean annual total precipitation reveals that ob-

servations generally underestimate the modeled precipitation by about 10% of the modeled mean

annual total. For half of the stations analyzed, relative deviations ranged from -21% to +1%, as

illustrated in Fig.14 and documented in Tables 3 to 5. These findings align with WMO indications

WMO-No.8 (2021) on the uncertainty of precipitation measurements. Furthermore, they align also

with the expectations set by SCM correction factors, detailed in Table 2, indicating that stations

with siting exposures rated between 1 and 3 should exhibit an average precipitation underestima-

tion of -20% to -2%, varying by precipitation phase.

After implementing the corrections (Sec. 3.3), precipitation totals increase, as illustrated in

Figs.15 through 16. Correction B aligns corrected observations more accurately with model fore-

casts, while Correction A often results in higher precipitation amounts compared to the model.

Fig.16 shows that Correction B adjusts precipitation to a median relative deviation of -4%, with

deviations ranging from -15% to 9% for half of the stations.

Applying corrections with model data as input, as proposed in Sec.3.3, introduces the possibility

of embedding model uncertainties and systematic errors into the corrected data. One observable

effect is the increase of the spread of the distribution in Fig.16 compared to Fig. 14, possibly due to

a systematic overestimation of the modelled wind at some locations, leading to an overestimation of

precipitation in these areas. To mitigate the influence of model uncertainties on the correction, we

could consider imposing upper limits on correction factors to prevent model errors from producing

unrealistically high precipitation values.

Modifying the approach to derive 10m wind speed from model fields —specifically, by calcu-

lating the average wind speed from multiple nearby grid points instead of solely the nearest one—

and setting a maximum threshold for the correction factor could lead to a more stable correction

process, making it less sensitive to the uncertainties inherent in model data. Nevertheless, this
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adjustment seems to have a minimal impact on the outcomes, as evidenced by the comparison

between Fig.16 and Fig.21.

Ultimately, we hope that correcting precipitation data will enhance the outcomes of using the

combined precipitation fields as input for snow and hydrological modeling, leading to improved

model performance and reliability. In this context, an indirect method of validating the corrected

precipitation fields involves assessing the performance of snow and hydrological models when these

adjusted fields are used as inputs.
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6 Figures

Figure 1: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (2). The red lines represent Correction A using direct 10m wind speed. The blue lines illustrate

Correction B with 10m wind speed adjusted to 1.5m, typical gauge height.
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Figure 2: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (2). The layout is similar to Fig. 1.
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Figure 3: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (2). The layout is similar to Fig. 1.
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Figure 4: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (2). The layout is similar to Fig. 1.
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Figure 5: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (2). The layout is similar to Fig. 1.
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Figure 6: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (6). The dashed lines show k obtained using Eq. (2). The layout is similar to Fig. 1.
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Figure 7: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (6). The layout is similar to Fig. 6.
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Figure 8: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (6). The layout is similar to Fig. 6.
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Figure 9: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (6). The layout is similar to Fig. 6.

22



Figure 10: Correction factors as a function of temperature for given 10m wind speeds, based on

Eq. (6). The layout is similar to Fig. 6.
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Figure 11: Correction of hourly precipitation for Oslo (Station Identifier=18700) from September

2022 to September 2023, utilizing the methodology outlined in Sec.3.3. The top-left panel presents

the time series of accumulated precipitation, with color definitions provided in the legend and the

model prediction for the nearest 25 grid points highlighted in gray. The top-right panel displays the

quantile-quantile plot for hourly precipitation exceeding 0.5 mm/h. The lower panels illustrate the

variation of the correction factor k, as defined in Eq.(6), in relation to wind speed and temperature

for Corrections A and B (left and right panels, respectively), as specified along the y-axis. Refer to

Fig. 6 for additional context.
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Figure 12: Correction of hourly precipitation for Bergen (Station Identifier=50540) from September

2022 to September 2023, utilizing the methodology outlined in Sec.3.3. The layout is the same as

Fig. 11.
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Figure 13: Correction of hourly precipitation for Tromsø (Station Identifier=90450) from Septem-

ber 2022 to September 2023, utilizing the methodology outlined in Sec.3.3. The layout is the same

as Fig. 11.
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Figure 14: Comparison of observed versus model-predicted mean annual total precipitation for the

years 2019–2023 across 74 stations, focusing on the relative deviation Dg/Am (where, for example,

+10% signifies that the observed deviation from the model prediction constitutes 10% of the model

mean annual total). The left panel shows the map of the relative deviations, while the right panel

displays a histogram of the deviations. In the histogram, thick vertical lines denote the median,

25th, and 75th percentiles, and a lighter vertical line marks the 0% position, indicating no deviation.
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Figure 15: Comparison of corrected (using Correction A) and model-predicted mean annual total

precipitation for the period 2019–2023 across 74 stations, with a focus on the relative deviation

DA
k /Am. The layout is similar to Fig. 14.
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Figure 16: Comparison of corrected (using Correction B) and model-predicted mean annual total

precipitation for the period 2019–2023 across 74 stations, with a focus on the relative deviation

DB
k /Am. The layout is similar to Fig. 14.
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Figure 17: Pearson’s correlation coefficient of 10m hourly wind speed between modeled and ob-

served data for the period 2019–2023 across 74 stations.
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Figure 18: Mean error (or bias) of 10m hourly wind speed between modeled and observed data

(Model minus Observations) for the period 2019–2023 across 74 stations.
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Figure 19: Mean error (or bias) of 10m hourly wind speed between modeled and observed data

(Model minus Observations) for the period 2019–2023 across 74 stations. The modeled wind speed

at each station location is calculated as the average from the nearest 4 grid points.
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Figure 20: Mean error (or bias) of 10m hourly wind speed between modeled and observed data

(Model minus Observations) for the period 2019–2023 across 74 stations. The modeled wind speed

at each station location is calculated as the average from the nearest 200 grid points.
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Figure 21: Comparison of corrected (using Correction B) and model-predicted mean annual total

precipitation for the period 2019–2023 across 74 stations, with a focus on the relative deviation

DA
k /Am. For each observation and corresponding hour, the 10m wind speed from the model, em-

ployed in the correction, is derived as the average from the 4 nearest grid points. The maximum

thresholds for the correction factor k in Eq. (6) is set to 2. The layout is similar to Fig. 14.
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Correction θ β τ1 τ2 Tτ sτ

Correction A 4.24 1.81 0.18 0.99 0.66 1.07

Correction B 3.41 1.58 0.18 0.99 0.69 1.15

Table 1: Parameters estimated for the adjustment function as proposed by Wolff et al. (2015),

referenced here as Eq. (2). This table replicates Table 1 from Wolff et al. (2015), where only the

optimal estimates are presented. Correction A pertains to parameters calculated with the 10m wind

speed as input, whereas Correction B relates to parameters calculated using wind speed at gauge

height.

Class Exposure kl ks

1 Extremely sheltered e.g. small clearing in the forest 1.02 1.05

2 Intermediate position between forest and plain 1.05 1.10

3 Relatively unsheltered location on a plain 1.08 1.20

4 Relatively unsheltered location in coastal or mountains region 1.11 1.40

5 Extremely unsheltered location in coastal or mountain region 1.14 1.80

Table 2: Exposure correction factors (kl for liquid and ks for solid precipitation) used for production

of daily seNorge precipitation maps.
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Station Name Id Am (mm) Dg (mm) DA
k (mm) DB

k (mm)

TRYSIL VEGSTASJON 180 1173 -210 (-18%) -114 (-10%) -162 (-14%)

HAKADAL JERNBANESTAS 4460 1293 -47 (-4%) 40 (+3%) -1 (-0%)

NORD-ODAL 5350 963 -163 (-17%) -127 (-13%) -142 (-15%)

FLISA II 6020 818 -174 (-21%) -106 (-13%) -137 (-17%)

RENA FLYPLASS 7950 961 -150 (-16%) -108 (-11%) -127 (-13%)

HJERKINN II 9310 604 -111 (-18%) 151 (+25%) 45 (+7%)

TYNSET - HANSMOEN 9580 556 -142 (-25%) -105 (-19%) -124 (-22%)

HAMAR - STAVSBERG 12320 760 -155 (-20%) -101 (-13%) -128 (-17%)

LILLEHAMMER - SÆTHER 12680 1005 -209 (-21%) -161 (-16%) -182 (-18%)

SKÅBU 13655 685 -44 (-6%) 127 (+19%) 38 (+6%)

DOVRE-LANNEM 16400 771 -339 (-44%) -206 (-27%) -272 (-35%)

OSLO - BLINDERN 18700 1085 -106 (-10%) -35 (-3%) -67 (-6%)

ASKER 19710 1464 -271 (-19%) -167 (-11%) -218 (-15%)

VEST-TORPA II 21680 1135 -244 (-21%) -194 (-17%) -218 (-19%)

BEITOSTØLEN II 23550 1284 -353 (-27%) -44 (-3%) -198 (-15%)

DRAMMEN - BERSKOG 26900 1215 -287 (-24%) -237 (-20%) -260 (-21%)

KONNERUD 27010 1361 -136 (-10%) -23 (-2%) -76 (-6%)

PORSGRUNN - ÅS 30255 1158 -59 (-5%) 9 (+1%) -16 (-1%)

MØSSTRAND II 31620 1061 -127 (-12%) 338 (+32%) 100 (+9%)

GVARV - NES 32060 990 -115 (-12%) -94 (-9%) -102 (-10%)

HAUKELISETER TESTFEL 33950 1892 -355 (-19%) 1102 (+58%) 537 (+28%)

GJERSTAD JERNBANESTA 35210 1520 -144 (-9%) -73 (-5%) -102 (-7%)

TVEITSUND 37230 1310 -159 (-12%) -126 (-10%) -139 (-11%)

HYNNEKLEIV 38730 1531 -164 (-11%) -62 (-4%) -108 (-7%)

BYGLANDSFJORD - NESE 39750 1571 -308 (-20%) -257 (-16%) -274 (-17%)

VALLE 40250 1218 1 (+0%) 29 (+2%) 21 (+2%)

ÅSERAL 41480 2129 -65 (-3%) 24 (+1%) -11 (-1%)

EIK - HOVE 43010 2750 152 (+6%) 237 (+9%) 220 (+8%)

GULLINGEN SKISENTER 46220 3228 -314 (-10%) 621 (+19%) 219 (+7%)

SAUDA 46610 2711 -149 (-5%) -132 (-5%) -134 (-5%)

Table 3: Comparison of mean annual total precipitation across 74 stations. Here, Am is the model

prediction. Dg is the average difference between raw observations and model estimates. DA
k and

DB
k are the average deviations between the model and observations corrected using Correction A

and Correction B, respectively.
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Station Name Id Am (mm) Dg (mm) DA
k (mm) DB

k (mm)

VATS I VINDAFJORD 46930 2421 200 (+8%) 255 (+11%) 245 (+10%)

KVAMSKOGEN - JONSHØG 50310 3474 -254 (-7%) 136 (+4%) -34 (-1%)

BERGEN - FLORIDA 50540 2580 187 (+7%) 261 (+10%) 251 (+10%)

EVANGER 51440 2219 -111 (-5%) -66 (-3%) -80 (-4%)

BULKEN 51470 1954 32 (+2%) 167 (+9%) 109 (+6%)

MJØLFJELL UH 51800 2587 -793 (-31%) 254 (+10%) -180 (-7%)

FILEFJELL - KYRKJEST 54710 1285 -575 (-45%) -195 (-15%) -363 (-28%)

STRYN - KROKEN 58900 1681 150 (+9%) 201 (+12%) 179 (+11%)

ØRSTA - EITREFJELL 59695 2121 351 (+17%) 1456 (+69%) 908 (+43%)

TAFJORD 60500 2223 -1166 (-52%) -1082 (-49%) -1121 (-50%)

MARSTEIN 61420 2292 -929 (-41%) -811 (-35%) -863 (-38%)

BJORLI 61630 783 27 (+3%) 624 (+80%) 320 (+41%)

OPPDAL - SÆTER 63705 793 -150 (-19%) 85 (+11%) -38 (-5%)

DRIVDALEN 63820 992 -374 (-38%) 71 (+7%) -130 (-13%)

SOKNEDAL 67280 1031 53 (+5%) 268 (+26%) 158 (+15%)

KOTSØY 67560 1340 -304 (-23%) -157 (-12%) -229 (-17%)

VÆRNES 69100 1181 -324 (-27%) -275 (-23%) -290 (-25%)

SNÅSA - KJEVLIA 70850 1543 -399 (-26%) -101 (-7%) -239 (-15%)

STEINKJER - SØNDRE E 71000 1074 -84 (-8%) 25 (+2%) -23 (-2%)

NORDLI - SANDVIKA 73466 908 135 (+15%) 816 (+90%) 466 (+51%)

GARTLAND 73550 1695 -167 (-10%) -15 (-1%) -79 (-5%)

NAMSSKOGAN 74350 1474 46 (+3%) 200 (+14%) 130 (+9%)

VEGA - VALLSJØ 76450 1285 -34 (-3%) 162 (+13%) 122 (+9%)

MOSJØEN LUFTHAVN 77230 1449 104 (+7%) 216 (+15%) 171 (+12%)

MAJAVATN V 77425 1364 100 (+7%) 685 (+50%) 409 (+30%)

SELJELIA 78360 1655 153 (+9%) 579 (+35%) 387 (+23%)

VARNTRESK 78800 1325 -345 (-26%) 11 (+1%) -161 (-12%)

SKAMDAL 79220 1679 70 (+4%) 324 (+19%) 225 (+13%)

HJARTÅSEN 79764 1717 -144 (-8%) 94 (+5%) -19 (-1%)

LURØY 80200 2911 678 (+23%) 1182 (+41%) 1016 (+35%)

Table 4: Continuation of Table 3
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Station Name Id Am (mm) Dg (mm) DA
k (mm) DB

k (mm)

REIPÅ 80740 1636 46 (+3%) 223 (+14%) 165 (+10%)

SALTDAL - NORDNES 81650 865 -70 (-8%) 37 (+4%) -11 (-1%)

LØNSDAL STASJON 81775 794 -55 (-7%) 577 (+73%) 310 (+39%)

SETSÅ 82000 1328 -352 (-27%) -225 (-17%) -265 (-20%)

STRAUMSNES 84500 1494 -337 (-23%) -48 (-3%) -174 (-12%)

KATTERAT 84880 1861 -755 (-41%) 8 (+0%) -376 (-20%)

KANSTADBOTN 85080 1829 408 (+22%) 795 (+43%) 624 (+34%)

HARSTAD STADION 87640 894 72 (+8%) 448 (+50%) 284 (+32%)

BARDUFOSS 89350 779 -23 (-3%) 133 (+17%) 59 (+8%)

TAMOKDALEN 89980 1547 -353 (-23%) 190 (+12%) -91 (-6%)

TROMSØ 90450 1084 254 (+23%) 839 (+77%) 571 (+53%)

ALTA LUFTHAVN 93140 592 -97 (-16%) 57 (+10%) -18 (-3%)

TANA BRU 96850 610 -155 (-25%) 46 (+8%) -59 (-10%)

NYRUD 99540 578 -96 (-17%) 48 (+8%) -26 (-4%)

Table 5: Continuation of Table 3
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