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Abstract

A spatial interpolation method based on Optimal Interpolation (Ol) has been devel-
oped for the daily (i.e. 06-06 UTC): minimum (TANRR), maximum (TAXRR) and
mean (TAMRR) two-meter temperature on Norwegian mainland. The Ol combines
a model-derived background field with in-situ observations from the climate station
network. The model considered is the NORA10 high-resolution hindcast dataset.
For each day and variable, the Ol scheme runs simultaneously with several differ-
ent configurations, such that an ensemble of analysis is obtained. The two main
products of the interpolation are the analysis ensemble mean and spread. The Ol
scheme has been used to establish three gridded datasets within the Norwegian
gridded climate dataset (KliNoGrid): TANRR-Nor, TAXRR-Nor and TAMRR-Nor.
The time interval covers 33 years: from 1980 to 2012. The evaluation has been
carried out by means of summary statistics and case studies. In general, TANRR-
Nor, TAXRR-Nor and TAMRR-Nor are unbiased estimates of the actual temperature
and their precision is on average between 1°C and 2°C.
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Introduction

The Norwegian gridded climate dataset (KliNoGrid) is an ongoing project based on the
combination of remote sensing and/or numerical model output fields with in-situ obser-
vations. KIliNoGrid aims at supporting hydrology, meteorology, climate research and
operational applications. The combination of information relies on statistical methods
to post-process model, or remote sensing, fields in order to to improve the accuracy and
precision of the final predictions by including the small-scale processes measured by the
point observations. Because of our interest in climate and hydrology, the gridded datasets
should extend as far back in time as possible. In addition, the predicted fields are avail-
able on a regular grid with 1 Km of spacing in both Northing and Easting directions. The
grid covers the relevant catchments for the Norwegian hydrology. The KliNoGrid dataset
might be seen as complementary to the conventional climatological datasets, in the sense
discussed in Simmons et al. (2016), such as the seNorge datasets (7Tveito et al., 2000;
Lussana et al., 2016b) which are based on in situ (i.e. point) observations only.

Currently, the KIiNoGrid dataset includes daily and hourly precipitation fields based
on the combination of radar-derived precipitation estimates with rain gauge observations
(Lussana et al., 2016a). Furthermore, we are working on the production of high-resolution
gridded datasets of hourly wind covering a time interval of about 60 years.

In this report, the KIiNoGrid products for two-meter daily minimum, maximum and
mean temperature are introduced. For consistency with the aggregation time currently
used for precipitation and temperature in hydrology, the daily aggregation is defined be-
tween 06 UTC of the previous day and 06 UTC of the day considered. As a consequence,
given the standard for the parameter labels in the climate database of the Norwegian Me-
teorological Institute (MET Norway) the labels of the daily variables are: TANRR for the
minimum temperature; TAXRR for the maximum temperature and TAMRR for the mean
temperature. Note that TANRR and TAXRR have been defined specifically within this
work, for they were not present in the climate database.

We have decided to combine the point observations for TANRR, TAXRR and TAMRR
with the information derived from the NORA10 high-resolution hindcast dataset available
at MET-Norway, which goes back in time to 1957. In particular, the two-meter temper-
ature fields have been downscaled from their original grid spacing (around 10Km) to
the 1 Km grid and aggregated at the daily timescale as required by the three variables
of interest. The final daily gridded datasets are named: TANRR-Nor for the minimum
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temperature; TAXRR-Nor for the maximum temperature and TAMRR-Nor for the mean
temperature, such that both the observation labels and the NORA10 model background
are reported in the names.

The spatial interpolation is based on Optimal Interpolation (OI: Gandin and Hardin,
1965; Daley, 1991), which is a well-established statistical interpolation method in atmo-
spheric sciences (Lorenc, 1986), where it is used in data assimilation to provide the initial
condition for numerical simulations. In our case, the Ol scheme has been adapted to ad-
just NORA10 model output fields given actual atmospheric in-situ observations, which
are assumed to be a more accurate and precise representation of the true atmospheric
state. The NORA10 two-meter temperature fields provide the background fields (prior),
which are combined with the TANRR, TAXRR and TAMRR observations. Because of
the mismatch between the full range of atmospheric scales influencing the point observa-
tions and the areal averages simulated by the numerical models, the issue of observation
representativeness must be taken into account. A discussion of the OI observation rep-
resentativeness error can be found in Lussana et al. (2010), here we simply mention that
even in the fortuitous case that an observation and a grid point share the same location one
should not expect an exact correspondence between the analyses and the observed values.
Rather, the spatial interpolation scheme should be able to filter out the effects of small-
scale processes influencing the point observations but which are not properly resolved by
the numerical model.

The OI is based on the assumption of Gaussian probability density functions for the
observation and background errors (i.e. deviations from the unknown truth), which is
an approximation that we have considered valid in our work, nonetheless it might be
worth mentioning that for daily extremes, such as TANRR-Nor and TAXRR-Nor, this is
a less satisfactory approximation than for TAMRR-Nor. As a consequence, we might be
justified in expecting a better quality (i.e. less uncertainty) for TAMRR-Nor fields than
for TAXRR-Nor and TANRR-Nor.

The OI scheme includes a spatial consistency test, as described in Lussana et al. (2010,
2016b).

The original parts of our OI scheme are the parameter estimation procedure and the
idea to consider an ensemble of analysis instead of a single best (i.e. minimum analysis er-
ror variance), linear, unbiased analysis. Our parameter estimation procedure selects those
OI configurations which are expected to provide the best analysis fields, as measured by

a likelihood function based on leave-one-out cross-validation. In general, the selection



2.1

includes around 25 possible OI configurations, which we have considered enough to sam-
ple the distribution of OI parameter values or at least to give us an idea of their optimal
values. Consequently, several OI are performed for the same case, with the different con-
figurations. As a result, an ensemble of analysis fields is obtained, which is intended to
represent the sensitivity of the OI scheme to the selection of parameter values. For each
day and variable, the main final products of our OI scheme are the analysis ensemble mean
and spread, which is conveyed by the the standard deviation of the analysis ensemble.

The OI scheme has been used to establish the gridded datasets of TANRR-Nor, TAXRR-
Nor and TAMRR-Nor, which covers the time period from 1980 to 2012.

The report is organized as follow. The observations and the NORA1O characteris-
tics are reported in section 2. The spatial interpolation scheme is described in detail in
section 3.2 and its evaluation over a recent period of more than 30 years is presented in

section 4, together with two case studies.

Data

Observations

The Climate Database of the Norwegian Meteorological Institute (i.e. KDVH, Klima Data
Vare Huset) has been used as our source of observations. The daily total precipitation for
the generic day D is a key parameter for hydrology and it is defined as the accumulated
precipitation between 06 UTC of day D — 1 to 06 UTC of day D (i.e. parameter RR in
KDVH). Our choice has been to define the minimum, maximum and average two-meter
air temperature for the generic day D in a consistent way to RR. As a consequence, we

have:
e TANRR: daily minimum temperature (06-06 UTC);
e TAXRR: daily maximum temperature (06-06 UTC);

e TAMRR: daily mean temperature (06-06 UTC), arithmetic mean of 24 hourly val-

ues or a formula based mean value computed from fewer observations;

TAMRR is available in KDVH. Unfortunately, TANRR and TAXRR are not directly avail-
able, they must be obtained by post-processing the available temperature observations. In

particular, the two parameters we have used are:
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3.1

e TAN_12: lowest observed temperature in the last 12 hours;

e TAX_12: highest observed temperature in the last 12 hours;

the TAN_12 and TAX_12 observations are available twice a day: at 06 UTC and 18 UTC.
TANRR and TAXRR for day D are defined as:

TANRR = min (TAN_124,y—(p—1) time=1807C> TAN_124ay=p time=0svrc) (1)
TAXRR = max (TAX— 1 2day: (D—1),time=18UTC> TAX_1 2day:D,time:OGUTC) ()

In Figure 1 the time series of available observations for TANRR, TAXRR and TAMRR
in the time period from 1980 to 2012 are shown. At the beginning of the time period,
the number of daily observations is around 200 for each variable, then they gradually
decrease to: around 100 for both TAXRR and TANRR; around 150 for TAMRR. From
2007 onward, a sharp increase in the data availability is clearly evident and in 2012 the
maximum values of around 270 daily observations for each variable are reached.

The Figure 2 gives a broad overview of the (spatially averaged) temperature trends
in the period under study as the 365-day centered moving anomaly respect to the mean

TAMRR value. The Figure might be useful in the interpretation of our results.

Model data

The NORA10 high-resolution hindcast dataset is described in Reistad et al. (2011). The
dataset has been obtained as a dynamical downscaling based on ERA40 from 1957 to
2002 and on ECMWF operational analyses from 2002 onwards. The NORA10 two-meter
temperature fields are available on a regular grid covering part of Northern Europe and
having around 10Km of grid spacing in both Easting and Northing directions. The fields
are available at hourly time resolution, then the definitions for TANRR, TAXRR and
TAMRR reported in section 2.1 have been used to aggregated the NORA10 hourly fields

into the corresponding daily values.

Methods

NORA10 downscaling to the seNorge2 grid

The NORA10 two-meter temperature fields described in section 2.2 are available on a
10Km- grid but our final grid has 1 Km of grid spacing, then we had to downscale the
NORAI10 fields to the finer 1 Km-grid.



The 1Km-grid is the same grid used for the seNorge version 2 products (Lussana

et al., 2016b) and it is characterized by the parameters:

e Coordinate Reference system. proj4 string="+proj=utm +zone=33 +datum=WGS84
+units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"

e dimensions (number of grid points): easting = 1195 ; northing = 1550 ;
e grid spacing: easting = 1000 meter ; northing = 1000 meter.

The downscaling of the hourly temperature has been realized by means of a two-step

process:

1. a nearest-neighbor interpolation algorithm has been applied from the 10 Km- to
the 1 Km-grid. The so-obtained temperature values have been adjusted based on
the elevation difference to the 1 Km-grid and a fixed gradient of —0.0065 °C/m has

been used:
T =T (nearest-neighbor) — 0.0065 - [z (1 Km_grid) —z (10Km_grid)]  (3)

where z(...) indicates the point elevation on the specified grid and 7 stands for

temperature.

2. for each grid point, compute the vertical gradient by considering the temperature
values in a neighborhood box of 20 Km in both east-west and north-south direc-
tions, then apply the gradient correction taking into account the average temperature

value and elevation within the 420 Km box:
T =T (box_average) + box_gradient - [z (1 Km_grid) — z (box_average)]  (4)

If the gradient is not computable (too unstable), use —0.0065 °C/m as default gra-

dient.

As a downscaling tool, we have used the Gridded Post-Processor (gridpp, available at

https://github.com/metno/gridpp). Command lines:

1. gridpp input_file output_file -v T -d gradient constantGradient=-0.0065 minElevDiff=-
999

2. gridpp input_file output_file -v T -d gradient minElevDiff=-999 searchRadius=20
defaultGradient=-0.0065 averageNeighbourhood=1
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3.2

3.2.1

The NORA10 downscaled hourly temperature fields are then aggregated to the daily
timescale as specified in section 2 for each of the three variables of interest: TANRR,
TAXRR and TAMRR.

Statistical Interpolation

The Optimal Interpolation (OI) scheme combines the observed values stored in the KDVH
with the background field derived from NORA10. The OI scheme generates an ensem-
ble of possible analyses. For each of daily minimum, maximum and daily temperature,
respectively: TANRR-Nor, TAXRR-Nor and TAMRR-Nor, the OI scheme generates an
ensemble of possible analyses and the outputs are the ensemble mean and standard devi-

ation fields derived from such an ensemble of two-meter temperature analyses.

Optimal Interpolation

The Optimal Interpolation (OI: Gandin and Hardin, 1965; Kalnay, 2003) scheme has
been used to obtain the analysis vector. The same OI method has been applied to the
three variables: TANRR, TAMRR and TAXRR, though with different parameters. The
OI method implemented here is similar to the ones described in Uboldi et al. (2008);
Lussana et al. (2016b).

The notation introduced in Ide et al. (1997) is adopted. The vectors denoted by x
indicate quantities at grid points, while the vectors denoted by y indicate quantities at
station locations.

The linear observation operator H transforms quantities from the grid-space onto the

observation-space. For example, the background at station locations y® is obtained as:
y* =Hx’ 5)

The observation operator we have used is similar to the second step of section 3.1. A box
of £10Km around each station location is considered and the gradient is computed by
using a linear regression on the temperature values (at grid points) within the box as a
function of their elevations. Then, the m-th component of the background vector (i.e. at

the m-th station location) is:
y° = x" (box_average) + box_gradient - [z,, — z (box_average)] (6)

where: z,, is the elevation at the m-th station location; x° (box_average) is the average

value of temperature within the box; z (box_average) is the average elevation within the
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box. Both x (box_average) and z (box_average) are computed by considering quantities
at grid points only.

The OI analysis x* on grid points is:
x*=x"+G (S+821)_] (yo—yb> 7

Where the subscripts a, b and o denote: analysis, background (i.e. NORAT1O0 field)
and observation, respectively. The scalar €2 = Gg / Gg is the ratio between the background
and the observation error variances: €2 = 0 implies assuming perfect observations, hence
exact interpolation; €2 > 1 implies a greater confidence in the background field rather
than in the observations.

The OI gain matrix K =G (S + 821)71 is expressed by means of: the background
error correlation matrix at station locations S (the covariance matrix is S = G&S); the G
correlation matrix having as elements the correlations between the background error at
grid points and the background error at station locations. Note that the observation error
covariance matrix, usually indicated as R, is set to Ggl, with all the observations having
the same error variance.

The correlation between two generic points r; = (x;,y;,z;) and r; = (x Vi Z j) is spec-

ified by means of the correlation function y:

1| [d(rir)) > /A (ri,r;) ?
Hlj Z\I, I
v(ri,r;j) =exp > (T]> + <T]) @)

Where d (ri,r j) is the horizontal distance between the two points, and Az (ri,r j) is the
difference between their elevations. D" and D? are the de-correlation distances in the hor-
izontal and vertical directions, respectively. The sum between square brackets in Eq. (8)
defines a new three-dimensional distance, where distances in the vertical and in the hori-
zontal directions have different weights. The function 7y has been used for the specification
of S and G.

In addition, a Spatial Consistency Test (SCT) has been implemented within the OI
scheme as described in Lussana et al. (2010, 2016b). In the current work, the i-th obser-
vation is flagged as suspect by the SCT and consequently not used in the OI if:

OF =¥ O0F —»§)

> > 40 )
60

Where y{ is the leave-one-out cross-validated analysis at the i-th location.
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3.2.2

The setting of OI parameter values is discussed in section (3.2.2). The gain matrix
in Eq. (7) is completely defined by the values of the three parameters: D", D?, and €2,

moreover the value of 67 is needed for the SCT.

Ol Parameters

The OI parameter values are estimated for each day. Instead of a single best combination
of values, we have decided to take into account a set of OI parameter values for each day.
The analyses obtained by the OI scheme with the different configurations constitute our
ensemble.

In order to limit the computational time, the selection of the best Ol parameter values

for (Dh, D*, 82) is constrained among all the possible combinations of the following sets:
e D" =(10,25,50,75,100, 125,150, 175,200,300) [Km]
e D*=(100,250,500,750,1000, 1250, 1500,2000) [m]
e £2=(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1) [-]

Consider the generic day d. In the OI parameter estimation, a time interval of 31 days
centered on d has been taken into account. Then, for each combination of parameters
(D", D%, €?) the value of 62 has been computed as (Lussana et al., 2010):

T
=y (-,

2
o = 10
? Yol M, (10

where: the time index ¢ assumes the values of the 31 days in the interval centered on d;
M; indicates the number of observations available at time 7.

The selection of the best set of OI parameter values are based on:

e the Cross-Validation score (Uboldi et al., 2008; Lussana et al., 2016b):

1 31 1 M, 5
CVscore = — ZY (yo,—ya 1
score = = L M mz_:l (v, —y4) (11)

e a likelihood function relating the empirical estimate of 03 + Gg to the theoretical

one.
The empirical estimate is (Desroziers et al., 2005):
1 31

1 & 2
(95 + %) enp = 37 1{]\7,2 (v, %) } (12)
t=

m=1
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The theoretical one is based on Eq. (10) and on the definition of €2, then it can be
written as:

2 2 2, O
(GU + Gb)the() =0, + 8_(2) (13)

Note that Eq. (12) is based on observations and model data, while Eq. (13) depends
on the analysis, thus on the values of (Dh,DZ,ez). As a consequence, these two
Equations provides a further relation between the observed and model data and the

OI parameters.

In practice, to implement the relation we have defined the two vectors L, and

Lineo:
L¢"’ = pnorm (innovation, mean = 0,sd = (602 + Gf)emp> (14)
L = pnorm (innovation,mean = 0,sd = (o2 + %) iheo) (15)
The set innovation includes all the I innovation values y? — y}?i =1,...,I for all the

station locations and for the 31 days considered. The "pnorm" symbol indicates the
Gaussian distribution function values returned for each element of the innovation
set, given the parameters: mean value (mean) and standard deviation (sd). The
two vectors L, and Ly, have the same number of elements I as the innovation
set. The value of a generic element of L., quantifies the likelihood of having
the corresponding innovation value given our estimate for the standard deviation as
(602 + Gg)emp' A similar statement holds true for L;,, and (Gg + Glf) theo"
The likelihood function J which quantifies the goodness-of-fit of the theoretical

estimate (Gg + 613) to the empirical one (602 + 613) is then defined as:

theo emp

2
7= Y (L — i) (16)

where L™ and L!*° are the i-th elements of the vectors defined in Eq. (15). In our
definition of J, we have considered the entire distribution of the innovation values

instead of considering only the agreement between two values, such as the mean
values defined in Egs. (12)-(13).

Let us go back to the selection of values for the Ol parameters (Dh,DZ, 82). Once set
a value for the triplet (D", D%, €?), the 67 value is automatically obtained by Eq. (10).
Consider the possible combinations of (Dh, D, 82) listed above, then for each of them

the CVscore and J values are computed as in Egs. (11)-(16), respectively. Our selection

12



3.2.3

of best values for (Dh,DZ, 82) includes those triplets for which: CVscore is within the
smallest 10% of values and at the same time J is within the smallest 25% of values.

The number of elements within a selection of best values of (Dh,Dz7 e2 o2

, 0) is usually

around 25.

In the Figures 3-5 the time series for the median of D", D* and & distribution of
daily "best" values are shown. To facilitate the intercomparison between TAMRR-Nor,
TANRR-Nor and TAXRR-Nor, each Figure is composed by three panels (one for each
variable).

In Figure 3, the median of D" is roughly around 100 Km for the three variables.

The Figure 4 shows D*. For TAMRR-Nor and TANRR-Nor, the median of D varies
mostly between 500 m and 1000 m, while for TAXRR-Nor it varies more around 500 m.

With respect to €2, in Figure 5 both TAMRR-Nor and TANRR-Nor show a gradual
increase of the median of their distributions, which means that the OI parameter optimiza-
tion procedure tends to give more weight to the NORA10-derived background over time.
In particular, the improvements in the model background due to the introduction of the
ECMWEF operational analyses from 2002 onward are evident. The situation seems to be
different for TAXRR-Nor, which presents a €2 rather stable in time.

In the Figures 6-8 the typical year for the empirical distribution of D", D? and €
best values are shown. In general, the seasonal cycle is more important for D,, which
has higher values during summer. In the case of TAXRR-Nor, £ in Figure 8 shows a
pronounced seasonal cycle too, which results in the attribution of more weight to the
observations in the summer.

The combined effects of the station distribution and of the OI parameter choices are
summarized in Figure 9 by means of the CVIDI-score (Lussana et al., 2016b) for the three
variables. The (dimensionless) CVIDI-score can assume values between O and 1 and as
reference values one may consider: < 0.45 for isolated grid points; > 0.85 for grid points
located in dense station areas. In general, the CVIDI-score is greater than 0.8: most of
the grid point are located in dense station areas and, as a consequence, the adjustment to
the background due to the observations can influence a large portion of the domain.

It might be worth noticing that for TAXRR-Nor in 2007 there is a period presenting a

sharp discontinuity in the CVIDI-score, which deserves further investigations.

Implementation choices
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Consider the selection of best values for (Dh, D%, €2, 602> , then the best analyses of TANRR-
Nor, TAXRR-Nor and TAMRR-Nor are the mean of the corresponding ensemble of anal-
yses, X

X* = mean (xa (Dh,DZ,82,63>> 17)
As an estimate of the ensemble spread, the standard deviations of the TANRR-Nor, TAXRR-
Nor and TAMRR-Nor analysis fields have been computed:

sd® = standard_deviation (xa (Dh,DZ, e, Gf)) (18)

sd? is related to the uncertainty due both to the station distribution and to our selection of
the OI parameters.
As diagnostic tools, the average Integral Data Influence (IDI: Uboldi et al., 2008;

Lussana et al., 2016b) and its standard deviation have been computed:
Pl = mean <XIDI (Dh,DZ, €2, 63)) (19)

In our OI scheme, a SCT is performed for each element of the selection of best values
(Dh,DZ,ez, 602). We have decided to flag an observation as suspect and discard it from

the OI if the observation fails just one of those SCT.

Results

In Figures 10-12 the time series for the daily biases for TAMRR-Nor, TANRR-Nor and
TAXRR-Nor, respectively, are shown. Each Figure is composed by three panels: the daily
averaged (over all the station locations) value of the innovation (i.e. observation minus
background) is shown on the top panel; the middle panel refers to the daily averaged ob-
servation minus CV-analysis and it can be interpreted as a result valid for the analysis at
grid points; the observation minus analysis daily average is shown in the bottom panel.
Ideally, the average of all these quantities should be close to 0°C. However, the time se-
ries for the innovation shows the presence of a bias for all the variables: for TAMRR-Nor,
a negative bias is present and its magnitude is reduced over time; for TANRR-Nor a nega-
tive bias is present too and it remains stable in time; for TAXRR-Nor a positive, stable in
time bias is present. The innovation biases show a seasonal cycle, with the higher values

in winter. Our spatial interpolation scheme is able to effectively reduce the bias for all
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variables and throughout the whole year, as can be easily seen by comparing the ordinate

scales of the top panels with the other panels in the Figures.

The time series for the daily root-mean-square (RMS) for the innovation, CV-analysis
and analysis residuals are shown in Figures 13-15 for TAMRR-Nor, TANRR-Nor and
TAXRR-Nor, respectively. The daily root-mean-square of the CV-analysis residuals is
also called CVscore (Lussana et al., 2016b). As for the bias, also in the case of the RMS
of the different diagnostics our OI scheme is able to improve the precision of the predicted
temperature. Most noticeably, in the case of TANRR-Nor the RMS of the innovation is
on average around 3°C, and up to 8°C in the worst cases, while the CVscore is a bit less

than 2°C on average and 4°C for the worst cases.

The improved precision of the analyses compared to the model background is clearly
evident also in Figure 16, where the RMS are shown for a typical year, and in Figure-17
by considering the Northern and the Southern parts of the domain separately. The dif-
ferences between the analysis at station locations and at grid points are on average less
than 0.5°C. Despite the difference in station densities between the sparser distribution of
stations in the North of Norway and the denser station network of the South, the precision
of the analysis is comparable. Note that both Figures 16- 17 show the seasonal cycle of
the RMS deviations. For TAMRR-Nor and TANRR-Nor, there is a clear signal of higher
uncertainties in the winter and a better precision in the summer. On the other hand, for
TAXRR-Nor the situation is different: the analyses are on average more precise in spring
and autumn, while during winter and summer they are characterized by similar uncertain-

ties.

The evaluation based on the (empirical) joint probability distributions for: background
and observation; CV-analysis and observation; analysis and observation are shown in
Figures 18- 23. In particular, the Figures 18, 20 and 22 show the density plots with the
empirical joint probability distributions; the Figures 19, 21 and 23 show the empirical
conditional probability density functions given a selection of the observed values and
the corresponding parameters (N(u, o), where u is the mean and o the standard devia-
tion) for the best-fitting Gaussian probability density function. The Figures 18, 20 and
22 are quite similar to each other and they show the impact of the OI scheme on the bias

adjustment and in the reduction of the uncertainty, especially for extreme values. The Fig-
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ures 19, 21 and 23 quantify the accuracy and precision of the background, CV-analysis
and analysis across the range of observed values. For negative temperatures, the analysis
is a less precise estimate of the true temperature than for positive values. For the most part
of the observed range of temperatures, our analysis does not show a significant bias and its
standard deviation is around 1°C. In the case of TANRR-Nor, the most challenging cases
correspond to the occurrence of extremely low temperatures: for observed values around

—25°C, our CV-analysis still has on average a bias of 4°C and a standard deviation of 3°C.

In the final part of our evaluation, two case studies are presented. We will focus on
the coldest and the warmest days within the time interval 1980-2012, which are: 11 Jan-
uary 1987 (coldest) and 2 August 1994 (warmest). In Figures 24-29 the maps for the two
case studies are displayed for TAMRR-Nor, TANRR-Nor and TAXRR-Nor. The analysis
fields are shown on the left panel, while the model background fields based on NORA10
are shown on the right. The dots both mark the station locations and show the observed
values. The overall adjustment of the background field towards the observations is evi-
dent and its effect is quantified by the significant improvements in the bias correction and
in the CVscore reduction (see the main title of each Figure). For example, in the case of
TANRR-Nor for 11 January 1987, the 192 observations available allow us to reduce the
bias of the predicted two-meter minimum field and to improve the precision of almost 2°C
on average. Besides, it is clear that the OI scheme would strongly benefit from a denser

station network in Sweden and Finland.

As an example of the other available analysis products (see section 3.2.3), Figures 30
and 31 show the IDI fields and the ensemble spread (i.e. standard deviation). The IDI
fields in Figure 30 are the mean (on the left) and the standard deviation (on the right) of
the IDI ensemble. The standard deviations of the analysis ensemble, which represents the
ensemble spread, in the two case studies for TANRR-Nor (left panel, 11 January 1987)
and TAMRR-Nor (right panel, 2 August 1994) are shown in Figure 31. Both these prod-
ucts are expected to provide the users an estimate of the uncertainties related to our OI
scheme. In particular, the IDI-related products focuses on the impact of the station distri-
bution on the analysis, while the ensemble spread is related to the uncertainties introduced

by our selection of the OI parameters.
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Conclusions

A spatial interpolation scheme for daily minimum, average and maximum two-meter tem-
perature (TANRR-Nor, TAXRR-Nor and TAMRR-Nor, respectively) based on statisti-
cal interpolation has been developed and implemented at MET Norway. The statistical
method is an implementation of Optimal Interpolation (OI), which combines a model
derived background with in-situ observations from the climate database.

The model considered is the NORA10 high-resolution hindcast dataset, which has
been downscaled on the 1-Km grid often used for hydrology and climatology in Nor-
way. Two original procedures to obtain the daily (06-06 UTC) minimum and maximum
two-meter temperature observations from the standard parameters available in the climate
database have been implemented.

The standard OI scheme relies on an optimization procedure to set the OI parameters,
which are: the background and observation error variances and the error correlation func-
tions. The OI configuration plays a crucial part in the determination of the final analysis
quality. In this work, a selection of around 25 different OI configurations has been used
for each day and variable to obtain an ensemble of analysis fields. The OI configura-
tions have been selected among the ones which guarantees the best-possible results. The
OI products available to the users are: the analysis ensemble mean, the ensemble spread
and a diagnostic product based on the Integral Data Influence (IDI). The ensemble spread
reflects the sensitivity of our OI scheme to the choice of the Ol parameters.

The evaluation shows that the NORA10 background fields present systematic differ-
ences if compared with the observed values. The OI scheme is able to adjust the analysis
for the presence of bias in NORA10 temperature fields and to improve the precision of
the predicted values. It has been verified that such improvements occur for the daily
minimum, maximum and average temperatures and throughout the whole year. Only for
extremely low temperature (below —25°C), a significant bias is still present in the analy-
sis. For the most part of the observed range of temperatures, our analysis does not show a
significant bias and its standard deviation is around 1°C.

Future developments might include: a refined downscaling of NORA10 onto the high-
resolution grid based on geographical elements; the inclusion of more data in the climate
database, especially from the neighboring countries of Sweden and Finland; the evalua-

tion of the ensemble spread as a descriptor of the actual analysis uncertainty.

17



Acknowledgements

The presented activity was partly funded within the framework of the Felles aktiviteter

NVE-MET tilknyttet nasjonal flom- og skredvarslingstjeneste.

18



6 Figures

19



number of observations
—— number of observations, annual avg

300

250

150

100

number of observz%tulons

(=
[Tol
o
1980 1990 . 2000 2010
Time
(=]
87 number of observations
—— number of observations, annual avg
34
[aY]
[7]
c
§.| /
B =
g \
[
7]
_8'3 | \
B
88
=
=]
c
(=
wn
o
1980 1990 . 2000 2010
Time
(=]
21 number of observations
—— number of observations, annual avg
[=] /
34
o™
(7]
c
5. /
BE TN
g \
[
7]
_8‘3 | \
©
&8
e
=]
c
(=
w
o
1980 1990 . 2000 2010
Time
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Figure 9: Time series of the CVIDI-score (1 point=1 day) for: TAMRR-Nor (top panel);
TANRR-Nor (middle); TAXRR-Nor (bottom). Time interval: 1980-2012.
28



OB
—— O-Bannual avg
<
o™
$)
2.
8" U
o st s
L
o
i
1980 1990 . 2000 2010
Time
«© | O-CVA
o —— O-CVA annual avg
= |
o
o~
o
&)
o
ae R,
o
a
S
=
S
et
S
1980 1990 , 2000 2010
Time
@ | 0-A
o = 0O-A annual avg
= |
o
o~
o
&)
=]
w o el e P S
g
o
N
S
=
S
©
=
1980 1990 . 2000 2010
Time

Figure 10: TAMRR-Nor. Times series of the bias for: innovation O-B (top panel); CV-
analysis O-CVA (middle); residual O-A (bottom)

29



— 0B
—— O-Bannual avg
=
o
= PO T OV E Wl OG- Tt I DA L (T Y
n < o ¥ 0g o ¥ g T v S 0
@ Q. L% iH 9 Sovells
o
o | N
i %
- s X o - £
o 3 o H -pl‘rn i¥ L
B, S RUNEFETRLS ¥1 7HE4 ) KRR
L LR LS RN E LS Y
Tt tes? I LN R
P Lt . - - -
1980 1990 Ti 2000 2010
Ime
o | ~—— O-CVA
o —— O-CVA annual avg
=
o
™
o
&)
o
—c
wn o
o
o

-0.2

0.4

et
S
1980 1990 , 2000 2010
Time
© | — O-A
o = 0-A annual avg
= |
o
o~
o
&)
o
=0
n o
g
o

-0.2

-0.4

-0.6

1980 1990 ] 2000 2010
Time

Figure 11: TANRR-Nor. Times series of the bias for: innovation O-B (top panel); CV-
analysis O-CVA (middle); residual O-A (bottom)

30



— 0B
—— O-Bannual avg
= [
v PR
(U S CH PSS LS {3
ot i '.i.,;.':i NIFH LB VIR L sy EaRigt
$)
o
PRl
© o A < 82
el b 3 'y o8, b4 1 3ot
2 f‘_ 35 BEKR AL FRN I RE RAB GRS
ol tedledibl S48 2o s 3!
. .
+
1980 1990 ) 2000 2010
Time
@ ~ O-CVA
o —— O-CVA annual avg
=
o

0.0 0.2

bias [°C]

-0.2

<
S
et
S
1980 1990 , 2000 2010
Time
© | — O-A
o = 0-A annual avg
< | .
o

0.2

bias [°C]
0.0

-0.2

-0.4

-0.6

1980 1990 ] 2000 2010
Time

Figure 12: TAXRR-Nor. Times series of the bias for: innovation O-B (top panel); CV-
analysis O-CVA (middle); residual O-A (bottom)

31



— OB
—— O-Bannualavg
w
w
L]
o H i . . B
et (] : . t- . . .
® Breggpddeds oo ’
Ev 3 ! 7|,;| .‘.' i!?;l iss N
FRS g' N z %] ‘iv\-“lg- ]
,,,,,,,, 2 8
o~ e
o
1980 1990 ) 2000 2010
Time
~——— CVscore
—— CVscore annual avg
o |
w0
(@]
o
]
e
=}
(S
w
=> i s
&} B L
TR . = . - 3
- . N [
o . - [ 2 el {
e '
1980 1990 2000 2010
Time
— O-A
= O-Aannual avg
@
w
&)
o
w
Ev
o
'
™ i o3-5 -
PH £+v.abB sl
e ' i i '
T T T T
1980 1990 . 2000 2010

Time

Figure 13: TAMRR-Nor. Times series of the root mean square for: innovation O-B (top
panel); CV-analysis O-CVA or CVscore (middle); residual O-A (bottom)

32



~—— OB
—— O-Bannualavg
©
H LI
B e
‘.=l .\' - & ]
ol thbo 42 80 . LN RAEY LI
stgf. 1t h-FRl HER S Y e
— sy . | K L) 1K
(&} .3 L g 3 [} 4. 3 &0 3 .
B! R ottt
® 3813 ' : £ .
D e b et
o ]
o~
o
1980 1990 . 2000 2010
Time
~—— CVscore
—— CVscore annual avg
©
w0
(@]
o
o
S
o]
5]
2]
>
(@]
o
1980 1990 , 2000 2010
Time
— OA
= O-Aannual avg
w
w
&)
ol
2.
T S ; .
HE S ;38 b S §
IR I T T A titdki
o : 13280284
- 1
T
1980 1990 . 2000 2010
Time

Figure 14: TANRR-Nor. Times series of the root mean square for: innovation O-B (top
panel); CV-analysis O-CVA or CVscore (middle); residual O-A (bottom)

33



~—— OB
—— O-Bannualavg
©
w
5y [
) ne i i o N
= 24 N « 1] = i H
2 e¥a.e 48, 2o e, 0%e 3 feyiteg
o r‘a': Sjesees j_h ool EN | e LT 1
N S L3 . 1] ) -
2 §
o~
o
1980 1990 Ti 2000 2010
ime
~—— CVscore
—— CVscore annual avg
©
w0
(@]
o
o
S
o
(S
;’ . P . ..
@) .4 | : H .
iy il N 1y b, o TN
. X 18 % TR LR i
o
1980 1990 Ti 2000 2010
ime
— OA
= O-Aannual avg
w
w
&)
ol
[92]
S
o
i N R
] L3 't g....0 s b .2
o~ ¥ "5 T:Y1 i3 N .'l
< ' ! ! '
T T T T
1980 1990 Time 2000 2010

Figure 15: TAXRR-Nor. Times series of the root mean square for: innovation O-B (top
panel); CV-analysis O-CVA or CVscore (middle); residual O-A (bottom)

34



‘(pa1) uoneAouul {(AN[q) [eNPISAI SISATRUR (JOR[q) [ENPISAI

AD :JO IedA ay} Jo Aep yoea 10j arenbs ueow j001 93eI1oAe (WYSW) LON-YYX VI ‘([eIUD) LON-YYNVL ‘(0J31) AON-YYWVIL 91 2In31g

[(1ez1LZ10z-10100861)obuel awn] seak jo Aeq [(LeZ1LZ102-101L0086 | )ebuel swn] seak jo Aeq [(1ez1LZ10z-10100861)obuel awn] seak jo Aeq
030 AON 100 d3s Bny Iar NNr  AYIW HdY Y¥W 834 Nvr 293 AON 100 d3s Bnv Inr NAr AYW YdY H¥YW 834  Nvr 030 AON 100 d3s Bny Iar NNr  AYIW HdY Y¥W 834 Nvr
}{ZE R R W 1» R
I e w Sass
N A AN A A,
T A . . o Mpl .

i RATVTY

[0:]
[0d]
[0:]

(g-o)sind — - o o
(v-0)sSNd — (v-0)sSNd —
(VAD-O)SNY — (VAD-O)SNY —

35



‘A[91eIedas paIapISUOD Udq dARY ABMION WIdYINOS
pUB WIQUMION ‘JO JBaA 9U) JO ABP [OBQ 10J QI0ISA D) 93eIoA® “(WSU) LON-YYX VI ‘(Tenudd) LON-YINV.L ‘0J3]) AON-NYWVL L1 231
[(Leg1e10z-10L0086 L )abuEs swi] Jesk jo Aeg [(Lez1210z-1010086 )ebuel aun] teak jo feq [(Leg1e10z-10L0086 L )abuEs swi] Jesk jo Aeg

030 AON 100 d3s HBnY Inr  NAr AYW  HdY  dU¥YW 834  Nvr 03 AON 100 d3S bBn¥ 1INt NN AYW  ddY  HYIN 834 Nvr 030 AON 100 d3s HBnY Inr  NAr AYW  HdY  dU¥YW 834  Nvr
1 I I 1 I I I I 1 I 1 I 1 I I 1 I I I I 1 I 1 I 1 I I 1 I I I I 1 I 1 I

[1.] 8100SAD
[7,] 8100SAN
[1.] 8100SAD

UIN0S e YINoS  emmmm UINoS  emmmm
UYUON — YUON — UYUON —

36



“puaSor oy ur pajIodar ST SUOTEIO[[0d JO JqUINU [8)0}
oY} pue 1[99 D1 £q DT Yora Urim (Suonedo[[od 10) sired Jo Ioquunu Y SJeIIpUI JUIpeys YL, “eIep Z107-0861 U0 paseq ‘(3ysSu) suorn

-BAJISQO S SISATRUR {([BNUID) SUONBAIISQO SA SISATRUB-A D) {(3J9]) SUONIBAIISQO sS4 punoi3yoeq :Jo syord Aysuaq ION-YYNVL 81 23]

(04 0g 02

0l

[D.] enjea panissqo

0 0 0z

leavis ‘Legy)
loset ‘1652)
lossz ‘esel)
[gse1 ‘g89)
[¥69 ‘s2€)
[ree ‘see)
[rzz‘sp1)
[vr1‘88)
[£898)
[55*2¢)
log ‘se)
[vz ‘91)
lser)
[zt ‘6)
[8°9)
[5's)

202 10%eg =sied(A'x)#

CEEEEENEEODODEONEOOOOCEN

0g- ot

ol

0z ol 0
[00] enfea sisAjeuy

0g

or

oy 0g 02

(o)

[0d] anjea
0

penasqo
0} 0g-

[L2019'620¥)
[820% ‘6v51H)

22l
2291072 =sired(A'x)#

CEEEEENEEODODENEODOOOEN

0z ol oL 0z 08 O 06
[D.] anjea sisAleuy-p0

0€

(04 0g 02

0l

[D.] enjea panissqo

0 0 0z

[120vy ‘8g€)
leLee ‘2l

9602012 =sied(A'x)#

CEEEEENEEODODEONEOOOOCEN

0g- ot

ol

ol

0z

0¥

or

[04] @nfeA punoibyoeg

37



"BIBP T10T-0861 UO paseq "(y311) sisATeue {([enuad) sisA[eue
-AD ‘(J9]) punoiI3doeq :10J () AN[BA PIAIISQO Y} UAIZ uonouny Aysuap Ajrqeqoid [euonipuod [eoudwyg ION-YYNVL 6] 23]

[90] @unjesadwa [D0] aamesadwa [90] @unjesadwa
e 05 62 02 6 06 0 § S & & e 08 62 02 G 006G 0 & & & o e 05 62 02 6 06 0 § S & &
o o 1o
| 0 YO 0 WL
/ L2 / ,< L e | (\,\/ L e
L 2 | © =)
LS. N L < N
g 3 g
o o o
o jotl o
=2 = =2
oS o3 o5
o o o
@© o @©
@ 2, @
L o= | .O.M | .O,M
> N m|® m | *
02=0 /! (8'0'0IN = N = ]
GL=0J (L0SUN m N = =
= o N = o = o
[ ‘ON = - [
m|Y NmE |7 m|
[=] N @ [=]
= N @ mAN ) =]
- =] N O 02=0 4 (E'V1- )N =
0z=0 MO IeIIN o F 5 N = & Sz=0 ) (E9IN m [ 5

38



“puaSer oy ur pajIodar ST SUOTEIO[[0d JO JqUINU [8)0}
Y pue 1109 D1 £q DT Yor Urm (Suonedo[[od 10) sired Jo Ioquunu ) SAJeIIpUl JUIpeys YL, “eIep Z107-0861 U0 paseq ‘(3ysSu) suorn

-BAJISQO sS4 SISATeue {(JeIUQD) SUONBAIISQO Sa SISA[BUB-A D (1J9]) SUONIBAIISQO sS4 punoidyoeq :Jo sjoid Asuo@ ION-WINVL 07 23]

(04 0g 02

0l

[D.] enjea panissqo

0 0 0z

looazss ‘229¢)
lozge ‘251
[Lsz1 ‘ev6)
[zv6 ‘295)
[195 ‘gse)
[rse ‘1ie)
lorz‘orh)
lee ‘e6)
[2619)
[09*0f)
l6€ ‘s2)
[vz ‘81)
[z1y)
[0t ‘6)
[8°9)
[5 %)

aswerle =sied(A'x)g

CEEEEENEEODODEONEOOOOCEN

0g- ot

ol

0z ol 0
[00] enfea sisAjeuy

0g

or

oy 0g 02

(o)

[0d] anjea
0

penasqo
0} 0g-

le*el
2Llep1Z =sed(Ax)y

CEEEEENEEODODENEODOOOEN

0z ol oL 0z 08 O 06
[D.] anjea sisAleuy-p0

0€

(04 0g 02

0l

[D.] enjea panissqo

0 0 0z

lovzoe ‘vese)
lessz ‘68el)
lege ‘pes)
lezs ‘Ley)

6lLecrLe =sued(A'x)#

CEEEEENEEODODEONEOOOOCEN

v

0g- ot

ol

ol

0z

0¥

or

[04] @nfeA punoibyoeg

39



"BIBP T10T-0861 UO paseq "(y311) sisATeue {([enuad) sisA[eue
-AD {(3J9]) punoiIdYorq :I0J () AN[BA PIAIISQO dY) UAAIS uonouny Aysuap Arqeqoid euonipuod eourdwyg JION-WINVL (17 2InSL]

[D. g m_EEmQEm 1N GL EEEmQEm 1N [D. g m_EEmQEm 1N
S6 08 G2 02 G 0L § O m_. G- g G Ge 08 G2 0z Gl 0L G 5 s &z - S6 0 G2 02 §L 0L § 0 §& - -G
o ) e - °
ONT | \ / MA 0 % N 0
\ \ /, =) /\ = / )
Lo Lo Lo
v N <_ no N
el nel el
g 3 g
o o o
o jotl o
=2 = =2
52 82 52
o o o
@© o @©
3 2 2
| o= | .O.M | .O,M
GL=OJ (80PN m | ™ SL=ON (L'YUN m | & gL=0 4 .| >
L] [ ol= L]
[ ] ] [ ]
a o - o a o
=1 [ [
m | m| Y 01-=0 m|“
=] = Gl-= =]
o ] 02-=0 4! Mm ) o
- = = §2=0 4 (E'V1- N =
08=0 N (ST LIN m [ 5 mro 0£=O ) (€21N m [ 5

40



“puaSer oy ur pajIodar ST SUOTEIO[[0d JO JqUINU [8)0}
Y pue 1109 D1 £q DT Yor Urm (Suonedo[[od 10) sired Jo Ioquunu ) SAJeIIpUl JUIpeys YL, “eIep Z107-0861 U0 paseq ‘(3ysSu) suorn

-BAJOSQO sS4 SISATeuR {(JeIUQD) SUONIBAIISQO Sa SISA[BUB-A D (1J9]) SUONIBAIISQO sS4 punoidyoeq :Jo sjopd Asuo@ ION-VUXVL (T 23]

(04 0g 02

0l

[0.] anjea paniasqo

0 0 0z

lveves ‘2956)
logge ‘vsL1)
leszt ‘099)
ls59 ‘0ep)
lezt ‘see)
lzzz‘zen)
log ‘o8)

gleerle =sued(A'x)

CEEEEENEEODODEONEOOOOCEN

0g- ot

ol

0

ol

0z

0g

or

[0.] anfea sisApeuy

[0o] anjea
0

panasao
o,_.. o,N.

2e9EVIT =

lz'el
sied(Ax)#

CEEEEENEEODODENEODOOOEN

0z ol oL 0z 08 O 06
[D.] anjea sisAleuy-p0

0€

(04 0g 02

0l

[0.] anjea paniasqo

0 0 0z

loosre ‘gL62)
lz162 ‘s221)
[vL2) ‘ee9)

Le6er1e =sued(A'x)#

CEEEEENEEODODEONEOOOOCEN

0g- ot

ol

ol

0z

0¥

or

[0.] @nfea punoibyoeg

41



"BIBP T10T-0861 UO paseq "(y311) sisATeue {([enuad) sisA[eue
-AD {(3J9]) punoiIdNorq :I0J () AN[BA PIAIISQO dY) UAAIS uonouny Aysuap Ajrqeqoid euonipuod eourdwyg JON-YYXVL (€7 23]

[90] @unjesadwa [D0] aamesadwa [D. g m_EEmQEm 1N
€ 06 G2 Oc G+ OL § 0 & Gl ge- G- g€ 0 G2 02 G OL G 0 & G- Ge- ge- € 06 G2 Oc G+ OL § 0 & - - G-
o o o
N\ < o —~ ./4‘\\ o o
/ = / LS < =
o o o
e F o /\/ I o
el nel el
< = 3 =
o o o
o jotl o
=2 = =2
82 82 82
o o o
@ [ @
@ a @
|| .O,M N m 10.M .| .O,M
m|* NE | =S
L N = L
. N m .
= o N o= o = o
[ ‘GIN m | f m |
m|“ ‘oN = | 7 al®@
(=] N @ (=]
(=] N = f i (=]
- o N & Sh-=0N(BZZIN @
0z=0 N (g8l IN o [ 5 Nors 0z=0 4 (E7IIN @ F 5

42



"(YS11) OTVION UO paseq punoi3
-yoeq [opowr {(3J9]) SIsAJeue :ploy ainjeradwa) 19jow-om) Ay} Jo da3eraae (OLN 90-90) Alred 661 ISn3ny 7 ION-UHINVL :+¢ 23]

ao+al S0+eg §0+89 S0+8f S0+az 00+80

T
0000099
T
0000099

T T T T T

0000094 00000%L 000002L 0000004 0000099
T T T T

000007 0000022 0000002 0000089

T
0000092

T
000008L
T
0000082

0bap 1£z=(g-0)SNY ‘0Bep zg 0-=(g-0)svIa ‘ 8L1=sq0# ‘[0 VHONIHHINV L ‘20'80°¥661 0b8p g'1=3100sAD ‘DB8p z0'0-=(V-0)SVIg ‘ 8L1=Sq0# ‘[sIsAjeue]dHINV L ‘20'80'+661

43



"(Y311) OTVION Uo paseq
punoagyoeq [opou {(3J9]) sisA[eue :proy aunjerodwa) I9jow-om) wnwriurw (DL, 90-90) At “+661 I1Sn3ny 7 ION-WINVL ST 2In31g

ao+al S0+eg §0+89 S0+8f S0+az 00+80

T
0000099
T
0000099

T T T T T

0000094 00000%L 000002L 0000004 0000099
T T T T

000007 0000022 0000002 0000089

T
0000092

T
000008L
T
0000082

0bap g2°¢=(g-0)SNY ‘0Bap Lz°z-=(8-0)svIg ‘ #S1=sqo# ‘(01 VHONIHHNY L ‘2080 +661 0bap 91°z=8109sAD ‘0Bap 50"0-=(V-0)SVIg ‘ ¥SL=sqo# ‘[sishleue]duNV L ‘20"80"v661

44



"(YS1D) 0T VION Uo paseq
punoigyoeq [epour ((3Ja) sisA[eur :proy armeraduwa) 19jow-om) wnwirxew (DI, 90-90) Alred $661 ISNSNY 7 ION-VIYXVL 97 2In31q

ao+al S0+eg §0+89 S0+8f S0+az 00+80

T
0000099
T
0000099

T T T T T

0000094 00000%L 000002L 0000004 0000099
T T T T

000007 0000022 0000002 0000089

T
0000092

T
000008L
T
0000082

0bap g'e=(a-0)SINY “DB3p 9z°2=(3-0)SVIg ‘ £61=590# [0L VHONIHHXV L ‘2080 ¥661 0bap y8°1=8109sAD ‘0bap g1 0=(v-0)SVIg ‘ £51=sq0# ‘[sISAleue]yyX VL ‘2080 +661

45



"(YS1) 0T VION UO paseq punoisyoeq
[epowr {(3J9]) SIsAJeue :pey drmeradurd) 19jow-om) Ay Jo aseraar (OLN 90-90) Alled “L86T Atenuel [T ION-YAINVL LT 2In31g

T
0000099
T
0000099

T T T T T

0000094 00000%L 000002L 0000004 0000099
T T T T

000007 0000022 0000002 0000089

T
0000092

T
000008L
T
0000082

0bap z6'¢=(g-0)SNY ‘0Bep $9°L-=(g-0)sVIa ‘ 661=5q0# ‘(0L VHONIHHINVL ‘L1 102861 0bap 95°z=2100sAD ‘0OBap z'0-=(V-0)SVIg ‘ 661=Sq0# ‘[sISAjeue]ddINVL ‘L1'10°2861

46



"(Y311) OTVION Uo paseq
punoIgyorq [opout {(3J9]) sisA[eur :p[oy armeradurd) 19jow-om) wnwrur (O 1,N 90-90) A[req "L861 Arenuel 11 JON-WYNVL 8¢ 2In31

a0+81 §0+8Q 50+89 So+ay §0+8g 00+80 ao+al S0+eg §0+89 S0+8f S0+az 00+80

T
0000099
T
0000099

T T T T T

0000094 00000%L 000002L 0000004 0000099
T T T T

000007 0000022 0000002 0000089

T
0000092

T
000008L
T
0000082

0bap 59°5=(g-0)SINY ‘DBap 8p"e-=(8-0)svIa ‘ 261=sq0# ‘(01 VHONIHENYL ‘LL" 102861 0bap 96°£=8109sAD ‘0Bap 61°0-=(V-0)SVIg ‘ Z61=Sqo# ‘[SisAleue]duNV.L ‘L1 10" 2861

47



"(Y311) OTVION Uo paseq
punoIgyoRq [Spoul {(3Ja) SIsA[eue :ploy ainjeradwa) 19jow-om) wnwirxew (D10 90-90) Alreq L8611 Axenue[ [ ION-VAXVL 6 2In31

ao+al S0+eg §0+89 S0+8f S0+az 00+80

T
0000099
T
0000099

T T T T T

0000094 00000%L 000002L 0000004 0000099
T T T T

000007 0000022 0000002 0000089

T
0000092

T
000008L
T
0000082

2b8p z1'#=(a-0)SNY ‘DBap z60-=(8-0)SVI8 ‘ 161=sq0# [0LVHONIHHXVL ‘L1'L0°2861 0bap 9z°£=8109sAD ‘0bap L0"0-=(V-0)SVIg ‘ 161=Sqo# ‘[sishleue]duXvL ‘L1'10°2861

48



*(JyS1 ‘uoT)RIAP pIEpuUER)S "'T) pealds S[quasud (] (3JO) UBSW 9[qQUIASUL [(Q[ "L86T Arenuel 11 JON-YUNVL :0¢ 2In3r]

a0+81 §0+8Q 50+89 So+ay §0+8g 00+80 ao+al S0+eg §0+89 S0+8f S0+az 00+80

T T T T T T
0000094 00000%L 000002L 0000004 0000099 0000099

T
000008L

0bap 59°5=(g-0)SINY ‘DBap 8p"e-=(8-0)svIa ‘ 261=sq0# ‘(01 VHONIHENYL ‘LL" 102861 0bap 96°£=8109sAD ‘0Bap 61°0-=(V-0)SVIg ‘ Z61=Sqo# ‘[SisAleue]duNV.L ‘L1 10" 2861

0000092 000007 0000022 0000002 0000089 0000099

0000082

49



"(y31)
661 ISN3NY 7 ION-AINVL 0J3D) L8611 Arenuef [T JION-YANVL :10J (UONBIASD piepuels -9°T) peaids o[quasud sisA[eue :[¢ oIn31q

ao+al S0+eg §0+89 S0+8f S0+az 00+80

b

T
0000099
T
0000099

T T T T T

0000094 00000%L 000002L 0000004 0000099
T T T T

000007 0000022 0000002 0000089

T
0000092

T
000008L
T
0000082

Obap g"1=2109sAD ‘“DBap z0'0-=(V-0)SVIg ‘ 8L1=sqo# ‘[sisAjeue]yHINV L ‘20'80"V661 obap 96°¢=2109sAD ‘06ap 61°0-=(v-0)SVIg ‘ Z61=5q0# ‘[sisAjeue]duNVL ‘L1'10°2861

50



References

Daley, R. (1991), Atmospheric Data Analysis, 457 pp., Cambridge University Press.

Desroziers, G., L. Berre, B. Chapnik, and P. Poli (2005), Diagnosis of observation, back-
ground and analysis-error statistics in observation space, Quarterly Journal of the Royal
Meteorological Society, 131(613), 3385-3396.

Gandin, L. S., and R. Hardin (1965), Objective analysis of meteorological fields, vol. 242,

Israel program for scientific translations Jerusalem.

Ide, K., P. Courtier, M. Ghil, and A. Lorenc (1997), Unified notation for data assimilation:

operational, sequential and variational, Practice, 75(1B), 181-189.

Kalnay, E. (2003), Atmospheric Modeling, Data Assimilation and Predictability, 341 pp.,

Cambridge University Press.

Lorenc, A. (1986), Analysis methods for numerical weather prediction, Quart. J. Roy.
Meteorol. Soc., 112, 1177-1194.

Lussana, C., F. Uboldi, and M. R. Salvati (2010), A spatial consistency test for surface
observations from mesoscale meteorological networks, Quarterly Journal of the Royal
Meteorological Society, 136(649), 1075-1088.

Lussana, C., C. A. Elo, and S. S. Rgnning (2016a), Klinogrid rr-rad: combination of

radar-derived precipitation fields and raingauge observations.

Lussana, C., O. E. Tveito, and F. Uboldi (2016b), senorge v2.0: an observational gridded

dataset of temperature for norway.

Reistad, M., @. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J.-R. Bidlot
(2011), A high-resolution hindcast of wind and waves for the north sea, the norwegian

sea, and the barents sea, Journal of Geophysical Research: Oceans, 116(C5).

Simmons, A., P. Berrisford, D. Dee, H. Hersbach, S. Hirahara, and J.-N. Thépaut
(2016), A reassessment of temperature variations and trends from global reanalyses
and monthly surface climatological datasets, Quarterly Journal of the Royal Meteoro-

logical Society.

51



Tveito, O., E. Fgrland, R. Heino, I. Hanssen-Bauer, H. Alexandersson, B. Dahlstrom,
A. Drebs, C. Kern-Hansen, T. Jonsson, E. Vaarby Laursen, et al. (2000), Nordic tem-
perature maps, DNMI report, 9(00).

Uboldi, E., C. Lussana, and M. Salvati (2008), Three-dimensional spatial interpolation of
surface meteorological observations from high-resolution local networks, Meteorolog-
ical Applications, 15(3), 331-345.

52



