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The equation of state for the ocean. Dotted curves showesobf density
as a function of salinity (horizontal axis) and potentiahperature (vertical
axis) for a fixed reference pressure (here = 0 dbars). Nundrecsirves in-
dicate density ino; units whereg; = p — 1000 kg/n?. Dashed line denotes
the freezing point of sea water. Note that for low tempeesgiftemperatures
close to the freezing point of sea water) the density is do$®eing a function
of salinity alone, while the importance of temperature &ases with increas-
ing temperature. Due to the non-linear nature of the equatictate for sea
water two parcels of water having different temperatures salinities may
still have the same density as for instance the two squarggmiarked and
Balongoy =206 kg/M®. . . . . . ...
Sketch of a one layer, barotropic model conveniently shgveome of the
notation. Note thalh = h(x,y,t) = n(x,y,t) + H(X,y). . . . . . .. ... ...
Sketch of a two-layer ocean model of thickneskes h(x,y,t) and h, =
ho(x,y,t) and densitiep — Ap andpy, respectively. We note that=H +n
whileho=Ho+. . . . . . .
As Figure 3. The figure illustrates the difference betwepnraly barotropic
response (upper panel) and a purely baroclinic responaei(lpanel) for a
two-layermodel. . . . .. ...
Displayed is the spatial grid and grid cells we use to sob® ¢ (66) by
numerical means. The grid increments AseAy, respectively in thes,y di-
rections. There is a total &+ 1 x K+ 1 grid cells along the- andy-axes,
counted by using the dummy indicgésk. Circles, (O), correspond to-, H-
andn-points, horizontal dashess |, toU-points, and vertical lines|) toV-
points. The point marked with-ais the position of the point;j, yi in grid cell
j,k. The coordinates of thie-, H- andn-points in the grid are thus; — 5
andyy — —Ay as defined in (72). The coordinates of theyoints and/-points
are as specified in (73)-(74), resepctively.

Displayed are the cells necessary to account for the pdaslundary condl-
tions at closed walls. In the sample shown we consider a calesalid walls
in the upper right-hand corner of the grid. The walls are dra® heavy solid
blue lines. The notation is as in Figure 5, and the nine cedstllus num-
bered accordingly. Note that the celBJKK — 2), JJKK —1), (JJ,KK),

15

(JJ—1KK) and gJ— 2 KK) are outside of the land-sea boundary. As ex-

plained in the text their presence is, however, necessaagcctount for the
no-slip boundary condition of no velocity atthewalls. . . . . . .. .. ..



1 INTRODUCTION

1 Introduction

We describe three simple ocean models for use in ensemldeoa systems. The first of
the three ocean models is a one-layer model featuring aeslagér of uniform density as
visualized on the front page. The second is a two-layer oogzatel featuring two layers of
different, but uniform densities. Finally, we consider Htecalled %-Iayer ocean model. All

three models belong to the class of models commonly reféoes shallow water models.
The models we consider neglect the effect of changes in thEainth’s rotation with latitude.
The Coriolis parameter is thus considered a constant ($sdcalplane models).

The one-layer models were commonly used in the 1970s togirstlirm surges, that is,
the sea surface elevation due to atmospheric forditartinsen et al. 1979, and references
therein). The %-Iayer and the two-layer models became quite popular earlpstudy the
upwelling and El Nifio phenomena in the ocean (eurlburt et al,, 1976;Hurlburt and
J. Dana Thompsqgnl976;Busallacchi and O’Brien1980; Hurlburt and J. Dana Thomp-
son 1980;Busallacchi and O’'Brien1981, and references therein), and later in the 1980s
and 1990s to study instabilities, eddies and jet currentsdrocean (e.gL,uther and O’Brien
1985;Preller, 1986;Heburn 1988;McCreary and Kundu1988;Kindle and Thompsqri989;
Heburn and LaViolette1990; Potemra et al. 1991; Rged 1995, 1996, 1997Hackett and
Roed 1998;Rged 1999;Rged and Shil999;Shi and Rged1999, and references therein).
The two-layer models were also favored by meteorologistsenl950s and 1960s to investi-
gate various instability mechanism responsible for theegeion of low pressure systems in
the atmospherdPhillips, 1957;Charney and Sterril962).

We note that the%—layer model is a variant of the two-layer model in which thiekness of
the lower layer is considered to be much larger than the upger thickness. This effectively
filters out the barotropic mode and leaves a purely baractinean model.

Why do we consider these simple models? Although they ardlyn@placed by much
more complex and sophisticated models today that give gealestic flow patterns, it turns out
that their forecast skill is still rather poor. As in metelogy, one way to remedy this situation
is to employ data-assimilation. However, in contrast toenatlogy, the availability of near
real time observations, except for satellite informatienalmost nil. Thus we have to look
elsewhere. One approach that we consider viable is to maeamsemble predictions. In an
ensemble prediction system (EPS) each member in the ensenalnl equally valid realization
of the forecast. Since there are uncertainties in the Irdtaditions, model parameters, and
the forcing, we cannot determine which member that givesrtbst accurate forecast, but at
least we get some information on the uncertainty in the fmsewhich may be later used to
our advantage.

Running todays complex, three-dimensional ocean models EBPS is a burdensome task
even for todays supercomputers. Running more than, say &@thers, is almost unthinkable.
Here is where the simpler models comes in. Although the medek increases (simpler
models inherently incorporate larger model errors), theyfast and efficient on the computer.
Thus we may increase the number of members in our ensembietically. To this end we
may in addition investigate the use of Graphical Proceskings (GPUs) rather than the
conventional CPUs. GPUs are much faster and require lesgyetterun. If we are able to
produce the ensemble members utilizing the much faster @rRWsay run literally thousands,
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and even ten thousands of ensemble members. We may alsxtilereavhether producing a
forecast based on thousands of ensemble members usingla snogbel, that is, introducing
a large model error, gives us better forecasts than runmegoa few ensembles with a more
complex model (smaller model errors).

To obtain some overview of the uncertainty inherent in threpdeé models, we start the
presentation by including how we derive the simple modemfthe full three-dimensional,
Reynolds Averaged Navier Stokes (RANS) equations (Se@jokVe also include their asso-
ciated boundary and initial condition necessary to detegrtiie integration constants. Tradi-
tionally we solve the resulting mathematical, continuoiffeential equations by first replac-
ing them by a set of finite difference equations (FDES) usimi¢efidifference approximations.
This is presented in Section 3, and followed by the formatatf the finite difference equa-
tions (FDEs) themselves (Section 4). Finally, we end withrmamary and some final remarks
(Section 5).

We have also implemented the one-layer model on the compsiteg the FDEs developed
here, and run several benchmark cases. In this we make ube pfagramming language
FORTRAN and the computers CPUs. The benchmarks casesstieiions, and the FOR-
TRAN program are presented in PartRged 2012).

2 Mathematical formulation

2.1 The RANS equations

In the ocean the most prominent dependent variables arérnde tomponents, v, andw of
the three-dimensional velocity pressurep, densityp, salinity s, and (potential) temperature
8. To determine these unknowns we need an equal number ofi@gsiai hese equations
are normally referred to as the governing equations sineg glovern the motion of the two
spheres atmosphere and ocean. In a geophysical fluid dyr{@RI2) contest they are also
often referred to as the Reynolds Average Navier Stokes (RAdquation in that they average
over the turbulence scal&f(iffies 2004).

Of the variables above only the velocity is a vector. The lieg variables, commonly
referred to as state variables, are all scalars. Note thiaitgaand temperature influence
the motion via the pressure forcing through the equatiortaies The RANS equations are
developed based on conservation principles, in our casstiservation of mass, momentum,
internal energy and salt content. The RANS equations im tiegi-Boussinesq form governing
oceanic motion areQill, 1982;Griffies 2004)

ap+0-(pv) = 0, (1)
a(pv)+0-(pw) = —2pQxv-0Op+pg—0-(pFwm), (2)
a(pB)+0-(pbv) = —0-(pFg)+pSe, 3)
a(ps)+0-(psv) = —0-(pFs)+pS;, (4)

p = p(ps6). ()

LIn the following bold upright fonts, e.gu, v, are used to denote a vector, while bold special italic foats.,
 ,V,are used to denote tensors
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Figure 1: The equation of state for the ocean. Dotted curkies/ssolines of density as a
function of salinity (horizontal axis) and potential temgkire (vertical axis) for
a fixed reference pressure (here = 0 dbars). Numbers on cundieate density
in or units whereo; = p — 1000 kg/nf. Dashed line denotes the freezing point
of sea water. Note that for low temperatures (temperatumese do the freezing
point of sea water) the density is close to being a functiosatihity alone, while
the importance of temperature increases with increasimgpéeature. Due to the
non-linear nature of the equation of state for sea water @vogss of water having
different temperatures and salinities may still have theesdensity as for instance
the two square points markédandB alongo; = 20.6 kg/n?.

Here we usel, dx, dy, andd, to denote partial differential with respect to the respecti
subscript. Thugp is the time derivative (or time rate of change) of the densitye tensor
Zm and vectords andFg represent fluxes due to turbulent mixing of momentum, dglini
and temperature, respectivefy.is the Earth’s rotation rate is the gravitational acceleration
andS; andSg are sources of salinity and heat, if any. Finally, we Ust® denote the three-
dimensional del-operator defined by

0= i+]dy+ ks (6)

We note that (1) and (2) constitute mass and momentum catgary respectively, while
conservation of internal energy and salt content givestag8) and (4). Equation (5) is the
equation of state which relates density to pressure, sahnid potential temperature.

It should be noted that the equation of state in the oceangisijnnon-linear and hence
cannot be expressed in a formal, closed mathematical forem¥@y visualize the equation of
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state for the ocean in a so calléd- s (temperature-salinity) diagram where the salirgig
drawn along the horizontal axis and the (potential) termpeea® is drawn along the vertical
axis. Since also pressure enter the equation of stdte; adiagram can only be constructed
using a reference pressure. A typical example using thasaipressure as the reference
pressureff = 0) is displayed in Figure 1.

2.2 Boundary and initial conditions

To solve (1) - (5) we need to specify conditions at the spdatmindaries of the domain, or
theboundary conditionsand we need to know the state of the ocean at a particular ailse
known asinitial conditions

As an example lef) = n(x,y,t) denote the deviation of the sea surface away from its equi-
librium level atz= 0, and letH = H(x,y) be the equilibrium depth of the oc€ariThen the
kinematicboundary condition at the surface is

wW=an+u-Oyn at z=n (7)

whereu,w are, respectively, the horizontal and vertical componéhe three-dimensional
velocity v, and whereldy = idy +jdy is the horizontal component of the three-dimensional
del-operator (6). Thdynamicboundary condition at the surface is

pa=Ppo, at z=n (8)

where pa denotes the atmospheric pressure, aadthe oceanic pressure. The kinematic
boundary condition at the bottom of the ocean is similar jptf¥at is,

w=—-u-OyH at z=-H. (9)

Note that (7) and (9) assumes that the surface and bottonrammpermeable surfaces, that
is, there is no trough-flow across the surface or bottom. \We abte that the surface is a
Lagrangian surface, that is, it is allowed to change itstpwsas time progresses.

2.3 The hydrostatic and Boussinesq approximations
2.3.1 The hydrostatic approximation

In the ocean the horizontal scales of the dominant motioasrenstly large compared to the
vertical scale. As a consequence the vertical accelerdbaridt?, is small in comparison to
for instance the gravitational acceleratiog. Thus in the vertical component of the momen-
tum equation (2), which reads

é(pw) +0- (pvw) = —d,p— pg—O- (pFY), (10)

2We assume that the bottom is stationary, that is, does nageha time.
3The operator% is the material derivative, or individual derivative, de'mby% =0 +v-0O.
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whereFY, is the vertical vector component of the mixing tensdy 4, we may safely neglect
all terms except the gravitational acceleration and thegune forcing. Thus (10) reduces to a
balance between the latter two, that is,

0.p= —pg, (11)

which is thehydrostatic equation

When we make use of the hydrostatic equation as our vertstaponent of the momentum
equation, the model is said to iwdrostaticand the motion said to satisfy theydrostatic
approximation As alluded to the latter approximation relies on the faett iin most cases
the dominant part of the motion, that is, the energetic gadaminated by long waves in
shallow water. Hence the horizontal scales of the motiomgisificantly longer than the ver-
tical scale. Consequently, both the vertical velocity asdcceleration is small compared to
the gravitational acceleration. The exceptions are cémsgsriclude steep topography and/or
strong convection, in which cases one has to revert to nainelsyatic equations. Assuming
that the vertical motion is small compared to the horizontation also implies that friction
term becomes small as well.

2.3.2 The Boussinesq approximation

Another common approximation employed, and needed to dpueke one-layer barotropic
model is theBoussinesq approximatiohe fundamental basis for this approximation is the
fact the ocean water is incompressible. This implies thgt@arcel of fluid conserves its
volume, and that this is true even if the parcel is heated sThe Boussinesq approximation
is only true as long as the change in density for any parcelaf i small with respect to the
density itself, that is,

1Dp _ Dinp
pdt  dt

~0, (12)

Under the Boussinesq approximation the approximationiglizken as an equality. The mass
conservation (1) then reduces to

O-v=0. (13)

In practice it turns out that the Boussinesq approximatroplies that the density may be

treated as a constant except when it appears together witiréiwitational acceleration. Thus

in the two horizontal components of the momentum equatiot j@the conservation equation

for internal energy and salt content, the density may beacegl by a reference density, say
Po, While in the vertical momentum equation it must be treated dependent variable.

4We note that in a Cartesian coordinate system fixed to théBatirface the vertical component of the Coriolis
force is small compared to the gravitational pull. The foriseherefore dropped in (10).
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2.4 The Boussinesg ocean model

It is quite common to combine the Boussinesq and the hydrostguations. Under these
circumstances the governing equations reduce to

On-u+dw = 0, (14)

Gu+0n - (uu) + 0 (wu) + fk xu = —pytOup+potor—On-(F),  (15)
o.p = —pg, (16)

36 +0y-(BU)+0,(6W) = —dFY —On-Fli +Sp, (17)
As+0n- (SU)+05(sW) = —dFY —On-FH+5, (18)
p=p(p,6,9). (19)

Equations (14) - (19) then constitute a set of seven equatitosolve for the seven unknowas
v, W, p, p, 8, ands. We note that when applying the hydrostatic and Boussinggigpaimation
the vertical velocity component and the density are reducedlagnostic variablegust as
pressure. This is in contrast to the horizontal velocity pormentsu, potential temperature
6, ands, which areprognostic variablesn the sense that they are governedpdrggnostic
equationsthat is, equations containing a time rate of change terrhe¥ariable in question.

We note that the surface value of the shear stresg sagpresents the traction of the wind
on the ocean surface. Hence it is the energy input via the works done at the surfacels
being the surface current. In the benchmark cases preserfedt || Rged(2012) we specify
Ts. It should be emphasized though that the wind stress repretee momentum flux from
the atmosphere to the ocean, and hence it is more often tlasomputed as a function of
the wind. In its simplest form the wind stress may be paranzeté as (e.g. Martinsen et al,
1979)

Ts = PaCpWg|Wyg, (20)

wherep, is the air density commonly set jm = 1.3 kg/n?® , Cp is a drag coefficient com-
monly given the valu€p = 3.0- 103, andWjy is the geostrophic wind. A more sophisticated
parameterization, and commonly used in more complex mpdelhat given inEngedahl
(1995b),

Ts= PaCp|WI|W, (21)

whereW is the wind velocity at 10 m height, and where the drag coefficdepends on the
wind speed, that is,

0.0012 if|W| < 11m/s,
Co — { ( W] / (22)

0.49+0.065)|W/| if |W| > 11m/s.

Similarly we note that the stress on the bottom, Bgyepresents the loss of energy through
the work done by friction at the solid bottom. It thereforeeas an energy loss on all wave
lengths. In its simplest form this term is parameterized agétgh friction, that is,

Tp = YUp, (23)

whereuy, is either the velocity at or near the bottom, or simply the maepth current.
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Figure 2: Sketch of a one layer, barotropic model convehjiamowing some of the notation.
Note thath = h(x,y,t) = n(x,y,t) + H(X,y).

Finally we note that (14) - (19) are the common basis for mbdtecomplex, three dimen-
sional, barotropic-baroclinic ocean models used todgy, BROMS (http://www.myroms.org/),
NEMO (http://www.nemo-ocean.eu/), HYCOM (http://hycarg/) and POM (http://www.aos.princeton.edu/W

2.5 The one-layer model

If we in addition to the above Boussinesq and hydrostatic@pmation also assume that
the density is uniform in time and space, ie.= pp Wherepg is a constant, the governing
equations reduces to

On-u+dw = 0 (24)
GU+ O - (Uu)+0,(wu) = —fkxu—pytOup+py 10T —On-Zh,  (25)
o:p = —pog. (26)

Note that when the density is constant the conservationtemssor internal energy (17), the
salinity equation (18) and the equation of state (19) arelablete. Figure 2 provides a sketch
of such a model and conveniently shows some of the notatied insbelow.

We note the assumption of a uniform density allow us to irgeg(26) from any arbitrary
depthzto the surface = n(x,y,t), that is,

P=Ps+9po(n —2) (27)
whereps is the pressure at the sea surface gnd the deviation of the sea surface from its
equilibrium levelz= 0 as sketched in Figure 2. Thus the pressure forcing in (2&8)rhes

Onp = UOnps—+poglHn. (28)

Substituting (28) into (25) and integrating (24) and (2®)nfrthe bottonmz = —H(x,y) to
the topz= n(x,y,t) we get,

uu AT
UtrOp-(— )+ fkxU+P = —— 4+ AD%U 30
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where
H+n

P=9HDHn+%gDHn2+ OH Ps. (31)

To derive (29) and (30) we have used the kinematic boundarglitions (7) and (9) and the
dynamic boundary conditiop= psatz=n. HereU = f[’H udzis the volume flux or volume
transport of fluid through a fluid column of degth= H +n, AT = Ts— T, Wwheretrs andty, are,
respectively, the turbulent vertical momentum fluxes atdipeand bottom of the fluid column,
commonly called the wind stress and bottom stress, respéctiThe last term in (30) is an
explicit parameterization of the last term on the rightdhare of (25) as a diffusive process,
that is,.Z{} = —AO4U whereA is a constant referred to as the eddy viscosity coefficient.
We observe that this term is necessary to avoid non-lineamenical instabilities to appear
(Haltiner and Williams 1980). Finally we note that we have absorbed the term grisom

the approximation
n uu
/ Uy - (UU)dZ% Uy - (—) (32)
_H h

into the last term on the right-hand side of (30). We commaafgr to (30) and (29) as the
barotropic non-linear, shallow water equatian#/ritten in this form they are said to be written
in flux form.

These equation may be linearized assuming that the devsagiway from a mean is small,
in which case (29) and (30) reduce to

H Ts—rb
U+ fk xU+gHOyn +—0Oxps = , (34)
Po Po

which are the barotropic, linear, shallow water equatidste that we have dropped the ex-
plicit eddy viscosity term since there is no energy cascagaitds higher wave numbers in this
case, and hence no non-linear numerical instabilitiesdcda¥urthermore, we are now using
the volume transports as our dependent variables, andibumttom stress parameterization
(23) is replaced by

R
Tp = poﬁU, (35)

whereRis a friction coefficient commonly set R = 2.4- 103 m/s Martinsen et al, 1979).

2.6 The two-layer model

Commonly the ocean is stratified in the vertical. Stratifamahas the effect that surfaces of
constant pressure and surfaces of constant densities ceoessarily coincide. If this is the
case, which is more often the case than not, the model isddadieoclinic. The assumption
of a constant density is therefore in general not a verysealassumption. However, when
dealing with, e.g., storm surge problehamd tidal elevations it turns out that the stratification

5Storm surges are water level changes due to atmospheriadoroainly mean sea level pressure and wind
traction
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Figure 3: Sketch of a two-layer ocean model of thickne$sesh(x,y,t) andhy = hy(x,y,t)
and densitiep —Ap andpg, respectively. We note that=H +n whileh, =H2+ (.

has a minor effect, and thus may safely be neglediae@ 1979). For most other oceanic
problems the baroclinicity is, however, of zero order intpoce.

The simplest baroclinic ocean model is the two-layer modedketched in Figure 3. The
model consists of two layers of different yet constant desssi To be statically stable the
lower layer is heavier than the upper layer, here by an amépntThe density in the upper
layer is hencgp = pp — Ap and its thickness i = h(x,y,t), while the lower layer has density
po and thicknes$i, = hy(x,y,t). In equilibrium their thickness are respectivélyandH, =
Ha(x,y). We note that all the layer thicknesses varies in time andespgexcept the upper layer
equilibrium thickness that is constant.

We also note that the motion is governed by the governingteansof the Boussinesq
ocean model. Moreover since the density is constant witaghdayer, the motion within
each layer is in fact governed by (24) - (26). As for the ongtebarotropic model we may
hence integrate (26) vertically within each layer to detive pressure at an arbitrary degth
within the layer. Thus integrating the hydrostatic equatibl) from an arbitrary depth in the
upper layer to the top, and letting the surface (or atmosppeessureps = 0, we get

pP=(po—Lp)ad(n -2V n<z<-H+{, (36)

wherep is the pressure in the upper layer. Likewise, integratir®) (®m an arbitrary depth
in the lower layer to the interface, we get

P2 = (po—Ap)gh+p9(-H+{ -2V —-H+{<z<—-H-Hy, (37)

wherep, is the pressure in the lower layer. To arrive at (36) and (3& have used (8) and
p=ps=0atz=n. In addition we have used the dynamic boundary condigica p, at
z= —H + { where( is the deviation of the interface away from its equilibriumsfion at
z= —H (Figure 3), which is the dynamic boundary condition. Foetatonvenience we note
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that the deviationg and{ may also be written as functions of the layer thicknesses,ish

n = (h—H)+(hp—Hz)=h+hy—H—-H> (38)
{ = hpy—Hy, (39)

whereh is the thickness of the upper layer amgis the thickness of the lower layer.

Integrating the continuity equation (24) first from the mideez = —H + { to the surface
z=n, and then from the bottom= —H — H; to the interface, and making use of the kinematic
boundary conditions at the top, at the interface and thebgtive get

gh+04-U = 0, (40)
ohy+0y-Uy = 0, (41)

whereU andU- are the volume transports in the upper and lower layer, otispéy. Thus the
continuity equation simply says that the local time ratelafrige of the respective thicknesses
are proportional to the divergence of the transport in eaghrl We note that the thickness is
the volume per areal unit. Thus this results is expectecesimcler the Boussinesq approx-
imation the continuity equation implies conservation ofuvne. Adding (40) and (41) we
get

g(H+Hx+n)+04-(U+Up) =0. (42)

We note from (42) that if the transports in the upper and Idasger compensate each other
exactly, that is, ifU = —U,, then the time rate of change of the total thickness of a fluid
column is zero. Thus if the thickness of the lower layer iases then this increase may
be compensated either by 1) a similar increase in the totedrvaepthH 4+ Ho 4+ n (the sea
surface experiences a similar increase), or 2) by a simdareise in the upper layer thickness
without any change in the sea surface elevation (Figure.fifst one is called barotropic
responseand corresponds to the response as if the model was a oerertegel of constant
density throughout the water column. The second one isctallearoclinic responsesince
it takes into account that the two-layer model is baroclinit most cases the response is a
combination of the two, and that such a model therefore esredl to as a barotropic-baroclinic
ocean model. We note that the pure baroclinic responseresgihiat) = —U5 is satisfied for
all times. This is the same as requiring

hu = —h2U2. (43)

We now integrate the momentum equation vertically over dagér separately. We also
assume that the currents are almost uniform with depth méhch layer, and what is left may
be accounted for in the eddy viscosity term. We then get

uu
dtU+DH~(T)+fk><U+J = polAT+ADRU, (44)
UoUo -1 2
&Uo+ Oy - h +fkxUx+Jp, = Po ATz—l—ADHUz. (45)
2
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2 MATHEMATICAL FORMULATION 2.6 The two-layer model

z

h barotropic respons

X

7

baroclinic respons

| .

7

Figure 4: As Figure 3. The figure illustrates the differenedéneen a purely barotropic re-
sponse (upper panel) and a purely baroclinic response I(ljpareel) for a two-layer
model.

Here
J=ghOn[(1—¢€)(h+ha—H—Hz)] =gh(1—¢&)0un, (46)

and
Jo =ghOn[(1—&)h+hy—H —Hy] = ghp(1—€)0nn +ghp0K (47)

are the pressure forces in the upper and lower layer respBctiThe variablee = Ap/po is
referred to as the reduced density. Furthermore,

AT=Ts—T1T|, AT =T —Tp, (48)

wherert, is the turbulent shear stress at the interfake.is therefore the difference between
the shear stress at the surface and the interface, whjlés the difference between the shear
stresses at the interface and the bottom. To arrive at (46)ave also made use of (36) and
(37) and the dynamic condition that the shear stresses raugiritinuous at the interface.

11



2.7 The %-Iayer model 2 MATHEMATICAL FORMULATION

Thus for each layer the governing equations are,

&h+0x-U = 0, (49)
dtU+DH~<U—:)+fk><U+J = po AT+ ADRU, (50)

and
dhy+0n-Uy = 0, (51)
dU2+DH~<UESZ)+kaU2+J2 = po AT+ ATRU,, (52)

respectively, that is, six equations for the six unknownsgl,, V, V,, h andhs.

We note the two sets (49) and (50) and (51) and (52) are foyrsatiilar to the one-layer
set (30) and (29). Thus both belong to the class of equatialtedcshallow water equations.
The two-layer model is hence made up of a stack of two oneslahallow water models that
exchange momentum through the pressure term and the tdestieess term.

We note that it = 0, that is, ifp = pg then the densities are equal in the two layers, and the
two-layer model reduces to a one-layer model. Moreovecesinn the ocean is a very small
number, terms of ordef’(£2), may safely be neglected compared to terms of ordés).
Note that we have retained terms of ordg(e) although they are small compared to terms of
0'(1). The rationale is that ifi < hy then terms of orde¢’(1) in the pressure forcing cancel
each other.

As for the one-layer model these equations may be lineariZéds their linear versions
read

ah = —On-U, (53)
GU = —fkxU—gHOun +py At (54)
oh, = —0On-Uy, (55)
Uy, = —fkxUz—gHOn (n+Q)+pg AT, (56)

respectively, wherg' = £g is the reduced gravity.

2.7 The 1%-Iayer model

We now assume that the lower layer depth is large compardtetagper layer equilibrium
thickness everywhere and for all times. Mathematicallg thiplies thah < h, for all times
everywhere. Under these circumstances it impossible tataiaia barotropic response. Thus
the response turns into a pure baroclinic one. According3pthe layer transports must then
be equal of sign and of opposite direction. Thiug| = |hous|. Sinceh <« h; this implies that
|us| < |u|. In turn follows that/uy| — O when(hy/h) — . From (44) we observe that we
achieve the latter by letting the pressure force in the |dewger be zero. From (47) we then
get

Jo~0 = DH(hz—H —Hz)% —(l—s)Dth. (57)

12



3 FINITE DIFFERENCE FORMULATION

By substituting this into (46) we get
1 / 2
stghDthég Onxhe, (58)

when neglecting terms of ordér(£2). We notice that it in this case it is paramount to keep
terms of ordew(¢) in (46) and (47) since now we assuime& h,. In summary we may thus
neglect the motion in the lower layer, and hence (52) andi{gtépmes obsolete. For the upper
layer governing equations we get

uu 1, 12, 1 2

oU = —DH~<T)—kaU—§gDHh +pp AT +AD{U. (60)
We observe that (60) and (59) are quite similar to (30) and, @& obviously belong to the
shallow water equation class. There are differences thadgist prominent, is the difference
in the pressure term. Variations in the bottom topograppwgt(al variations inHy) is now
neglected, and the ordinary gravitational acceleratioepaced by the reduced gravity. As
shown byCushman-Roisin and O'Brie(1983) it is possible though to retain the first order
effect of a spatially varying bottom topography. To first@rdh the parametqhi2 they found

that the reduced gravity is replaced by

* / H -
g=9g(1+ o . (61)
2

Thus wherH /H, — 0 we observe tha* — ¢'. Hence (60) and (59) are recovered. Another
and less prominent difference is that the bottom stresplaced by the interface stress.
Similar to (30) and (29) also (60) and (59) may be linearized/hich case we get

gh+04-U = 0, (62)
aU+fkxU = —gHOyh+pylAr. (63)

Again we have dropped the eddy viscosity term since it is ngéo needed.

3 Finite difference formulation of the one-layer model

We start by rewriting the governing equations (30) and (Z3he one-layer model in scalar
form. Hence we get

dU—fV = —o u* Ca (V) ZgHan — Tgan?+ X+ ATRU (64)
= %5 A gHAN — 5900 hU,
uv V2 1 .,
an = —oU -4V, (66)

13



3 FINITE DIFFERENCE FORMULATION

where we have sgt = 0. We also note thad = H(x,y) is the equilibrium depth. Furthermore
we have replaced the stress termsbgndY, respectively. Thus

X R

X=-=__U, 67
po H (67)
and Y R

15
Y=—=—--V. 68
po H (58)

In linear form these equations reduces to

gU—fV = —gHdn +X, (69)
oV —-fU = —gHdn-Y, (70)

Note that in both the non-linear and linear cases the effeatgpatially varying bottom to-
pography is retained sind¢ = H(x,y). Thus it works through the pressure term and in the
non-linear advection terms. Furthermore note that in tiedr version we repladewith n as
variable.

To obtain consistent, centered in time and centered in spaoend order accurate finite
difference (FD) formulations for each term in (64) - (66)dan (69) - (71), we make use of
Taylor series expansions. Thus at each point in our numeimhwe replace the continuous
derivatives with a finite difference approximation by trating Taylor series. The grid we
employ is displayed in Figure 5, and corresponds to lattioéMesinger and Arakawél976).
The rationale is that the inherent staggering avoids sgiegiimore boundary conditions than
necessary to determine the integration constants. Thagyadented so that the-axis in a
Cartesian coordinate system points in the east-west mirggiositive eastward) and tlyeaxis
in the north-south direction (positive northward).

We note that th&J-, V-, andh-grids are staggered, so that compared tohtgeid theU -
grid is staggered one half grid length along #axis, while theV-grid is staggered one half
grid length along thg-axis. As indicated in Figure 5 we count cells rather tham®iThis
avoids the use of the cumbersome half indexes. There is laofofa+ 1 timesK + 1 cells
counted using the dummy indexggk along thex- andy-axes, respectively. To keep track of
the geographic location of the various grid points we legjorbe located half a grid length
away from theh-point in grid cell number (1,1) in both horizontal direct® Thus, as is
common when employing the staggered C-grid,Xfeis goes througk -points, while the
y-axis goes througbl -points. We may then let any north-south closed boundandbmugh
U-points, and east-west closed boundaries go thraigloints as sketched in Figure 6. We
return to this point when discussing the boundary conditid®ection 4.4.

Accordingly we use the notation

1 1
Tk = h(X] - éAy7 Yk — éAyatn>7 (72)
1
U]T( = U (XJ Yk — éAyatn>7 (73)
1
Vik = V(x— éAx,yk,t”). (74)
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3 FINITE DIFFERENCE FORMULATION 3.1 Linear version

| | |
k+1
O —10 —10 —
| BERE |
k Ay
O —10 —10 — |
| | |
k—1
O —10 —10 —
j—1 ] j+1

Figure 5: Displayed is the spatial grid and grid cells we wsgdive (64) - (66) by numerical
means. The grid increments ake, Ay, respectively in the,y directions. There is a
total of J+ 1 x K 4 1 grid cells along the- andy-axes, counted by using the dummy
indicesj, k. Circles, (O), correspond o, H- andn-points, horizontal dashes; |,
to U-points, and vertical lines/) to V-points. The point marked with & is the
position of the poinij,yx in grid cell j,k. The coordinates of thb-, H- and n-
points in the grid are thug — 3Ax andyy — 3Ay as defined in (72). The coordinates
of theU-points andV/-points are as specified in (73)-(74), resepctively.

We also note that all terms appearing in (64) are evaluatét@oints, while all the terms
appearing in (65) are evaluatedapoints. Likewise are all terms appearing in (66) evaluated
ath-points.

3.1 Linear version

For the linear version we use a so called backward-forwanérse in time and a centered,
second order scheme in space. This scheme was first sughgSedlecki(1968) for rotating,
linear shallow water equation. It corresponds to the schemployed byMartinsen et al.
(1979) in the first ever attempt to simulate storm surges imdgian waters numerically.
Thus we get

n+1 — n At u At

. n_—"p4_—"pv 75

r’]k r’jk AX jk Ay jko ( )
— At At u

Ujrll(-‘rl — UJr|](+ fAtVTk+ B(Pjuk+ % [XJT(—HL} s (76)
nH+1 n —nt1 | At At ne1]Y

VR = Vi a0 jk+%[ij ], 77)
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3.1 Linear version 3 FINITE DIFFERENCE FORMULATION

| | |
KK
O —|O —]0 —
|
KK —1
O_
|
KK —2
O_
¥-2 0 W-1 N

Figure 6: Displayed are the cells necessary to account &ndhslip boundary conditions at

closed walls. In the sample shown we consider a case wittl galils in the upper
right-hand corner of the grid. The walls are drawn as healig &tue lines. The
notation is as in Figure 5, and the nine cells are thus nundbeceordingly. Note
that the cellsJJ,KK — 2), JJ,KK — 1), (JJ,KK), (JJ—1,KK) and JJ— 2 KK) are
outside of the land-sea boundary. As explained in the teit gresence is, however,
necessary to account for the no-slip boundary conditioroofetocity at the walls.

where
Dik = (U UL 1k> (78)
k= (V —Vik- 1) (79)
are the divergence terms,
pu n+1 n+1 Huk nt1 nt1 80
k = —9gH (’7]+1k Mk ) p—(psj+1k Psjk ), (80)
HU
k = —QH}/k<’7jnk++11—'71n|:rl> p—Jo(psij ps?;fl>, (81)
are the pressure terms,
n 1 0
Uk = Z<U +UL g +UL 1k+1+Ujk+1> (82)
n 1
Vik = Z(erll+an+1|<+er]+1|<*1+er|1<*1>- (83)
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3 FINITE DIFFERENCE FORMULATION 3.1 Linear version

represent the effect of the Earth’s rotation (the Coriaisits), and

114 ~ni1]Y RpPo 1

[xjr,‘j } _ [xjr,'j ] o ount, (84)
11V one1]Y RPO 1

v = - v Vi ©

are the combined wind and bottom stresses, where the no¥atibis used to denote the wind
stress components. Note that we make us of the supersgnpts remind ourselves that the
respective terms are to be evaluated &t-point, respectively -point. We emphasize that
because of the staggering the evaluation of the Coriollegeare somewhat cumbersome in
the C-grid, necessitating the use of the averaging of the ne&rasigrid points. We further
emphasize that at the points next to solid boundaries th®lZoterms must be changed to
satisfy the boundary condition of no throughflow throughdsbloundaries. Essentially this
involves changing the factor from one quarter to one half. rédwer, we observe that the
pressure terms in (76) and (77) are evaluated at the new tepa s 1, and so is the Coriolis
term in (77). Thus as soon as a variable is updated we use theatpvalue in the next
equation. This accounts for the reference to the schemeawartl-backward scheme.

Regarding the stress terms (84) and (85) we recall that threeg@nposed of two com-
ponents, namely the wind stress whose common parametenizatgiven in (21) and the
bottom friction whose parameterization is given in (23). Meall that theX component must
be evaluated dt/-points, while theY component must be evaluated\apoints. This is al-
ready accounted for in the bottom stress terms, while fonihe stress we recall that they are
specified as functions ok(y,t) and thus are specified at thg(yk)-points (Figure 5). Thus
we get

A u 1
po KR = 20— S0t =

1
00 [Yn—i-l]v — T%l( . —AX Vi trH—l)

(205 + (Ra) (86)

([ + (24 - (87)

I\JII—\I\JIH

Similarly we note that the equilibrium depth is specified tath@ same points d@sandn.
Thus

1 1
Hii = Hx(Xj, Yk — EAy,t””> =5 (Hirax+Hik) (88)
while
Vv . 1 n+1 1
Hiji = Hy (X} — éAx,yk,t )= > (ij+1+ ij) . (89)
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3.2 Non-linear version 3 FINITE DIFFERENCE FORMULATION

3.2 Non-linear version

Since the forward-backward scheme does not work for thelimear version we replace it by
the leapfrog or centered in time and centered in space (C$&®me. Thus we get

20t 2t

n+1 _ n-1__ \

M = M~ 2Pk 2y P )
0 2At 2Nt 2Nt

1 n—1 n n+1

URF = URH+2f AtV o+ Nj+ Pl = [X ] +2AAtE;,  (91)
a2t 21t 20\t

v = vjrl‘(—l—ZfAtU?kJrA—yNijJr Ay PJK+E[Y{|‘(+1} +2AMEj.  (92)

Here D‘lev(" represent the divergence ternE?k,ij the Coriolis terms,N}Jlé" the non-linear
terms,P,." the pressure terms, aﬁ#’k"’ the eddy viscosity terms.

We first observe that the divergence terms, the Coriolisseand the stress terms are un-
changed and thus given by (78), (79), (82), (83), (84) an{, (@spectively. Regarding the
pressure terms we now get,

g 1

Pk = _é(hT+1k+ hik) [(h?-i-lk_th)"'(Hj—i-lk—ij) 0% —(ps] i — ps?fl)}, (93)
g 1

k= — 5+ [( s —hl) + (Hjkyr —Hi) — a0 —(Psfiein— IOsTIl)} (94)

For the eddy viscosity terms we use the Dufort-Frankel sehérhus we get

- A)(2‘|'Ay2 n+1
Ejk = Ejk - N Ui ™ (95)

= NS + Ayz n+1

v o _
k= Bk~ “aeny Vik (%6)
where
U 1 1 n—1 n
=V 1 n—1 n 1 n—1
Bk = Ac <V1+1k Vik +ijlk) Ay <V1k+1 Vi~ + Vi 1) (98)

Note that the Dufort-Frankel scheme requires us to repteseerms B, and 2/;; that would
normally appear in a CTCS approximation to the eddy visgasiims by the sum of its neigh-
bors in time, that is, @ — URF* +Uj "t and 2/ — Vi + Vit The resultis that the last
terms on the right-hand side of (95) and (96) have to be may#tktleft hand side of (91) and
(92), respectively. This avoids using an elliptic solveattis, (90) - (92) can still be solved
explicitly as outlined in Section 4.

Finally we turn our attention to the non-linear terms in@ddn (91) and (92). It turns out
to be convenient to first define an average expressions similar to what we did for the
volume transports in regarding the Coriolis terms, tha32) and (83). Thus we define

—N
hik = (h +hjk+1+hj+lk+1+h]+1k> (99)
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4 SUMMARY OF THE FDES

By use of (99) we then get

2 2
1 <an+1k+UPk) <U1r|]<+UJ 1k>

Ny =7 _ |
J 4 hT+1k th
L X AX (Ujk+1+uj”)(vj+1k+vlﬁ‘() (UR+Uj_ 1)(lek VD) } 100
I~K )
Ay hjk hjk 1
and
2 2
NY T (Vir|]<+1+vjrl]<> (erll—i_vjrl](fl)
v — = _
J 4 h?k—i—l h?k
Ay [(UR i +UR Vg +Vi) (U gy +UD ) (VRE+Vg)
T ax = - =1 . (101)
AX hjk hjk—l

The application of Dufort-Frankel scheme regarding theyedscosity terms implies that
the scheme is inconsistent. However, the eddy viscositgderre added chiefly to keep the
scheme from blowing up due to non-linear numerical instigbil hus the eddy viscosity does
not represent any specific physics, but are added to premergyeto accumulate at the shorter
wavelengths. The eddy viscosity coefficigntherefore depends on the grid size and must be
tuned so as to extract exactly the right amount of energyeteém mimic the energy loss to
the sub-grid scale (SGS) motion.

4 Summary of the finite difference equations

We are now in a position to summarize and write down the finifferénce equations (FDES)

that replace the linear and non-linear version of the coltils equations, that is, (69) - (71)
for the linear version and (64) - (66) for the non-linear vans To make the presentation self
sufficient we have reiterated all the terms present in thedHiD&tead of referring back to their
earlier definitions.

4.1 Linear version

For the linear version the FDE is just slightly differentirdhose appearing in (75) - (77),
that is,

At At
n+1 n
M = Mk~ ax (U Ul_lk) Dy (V ~Vik- 1) (102)
— At JAV R IO u
Uit = Bl {ank—l— AV + — Ax Puk-l-p— [Xjr;:rl] }, (103)
1 —nt1 At At 1Y
Vi = B‘j’k{ — fAtU " + AyPk+p— [Yj?j } : (104)
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4.2 Non-linear version 4 SUMMARY OF THE FDES

where
DY = (Uk-Uls). Dl=(VR—Via). (105)
rat\ rat\
jk ik
1 1
Hic = 5 (Hjak+Hiw), H}IkZE(ij+1+ij), (107)
— 1
Ul = 4(U FUL U 1 FUj), (108)
— 1
Vi = 4(V Vi Vi +Viked)s (109)
I:)jUIk = gij(”Jr]-t]:!-k nH)—p—](psTi%k psT;rl), (110)
P = —gHk (nih—n 1)—p—’(|os,”k+j1 psii ). (112)
%] = ! (2205 + [0k 4 ) (112)
ik 205 \Tsik sljk-1)
Y 1
= s (e ] ) (113)

respectively. The appearance of the facBﬂl;% are due to our choice of evaluating the bottom
stress at the new time leveh- 1, as specified in (84) and (85).

4.2 Non-linear version

The non-linear version is slightly more complicated beeanisthe additional non-linear and

eddy viscosity terms. Because we made use of the DufortkElacheme for the eddy vis-

cosity terms an additional terms must be moved to the lefdlgade, and hence the factors
B‘jj,’(V must be expanded. Again it is only the momentum equationsatieaaffected. Thus we

get

2\t 2N\t
n—1 \Y}

M~ ax Pk~ Ty Pk (4
n+1 u n—1 il 1 u 1 u 1 An+1u U
Ut = BY ULt 2nt fvjk+&Njk+&ij+%[xjk ] +ABY ) b, (115)

1 1

n+1 v n—-1 ih v

v 1 nt1]’ . gv
PR IR By ) ¢ 116)
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4 SUMMARY OF THE FDES 4.3 Numerical stability condition

where
DY = (Uk-Ulu). Dh= (Vi vJk 1) (117)
RAt  2AAL(AX2 4 Ay?) RAt  2AAt (AR +Ay?) |
Bie = |1+ HY T aeny Biie= |1 H_Vk+ Ax2Dy? (118)
j j
— 1
Ul = 4(U FUL U i1 FUj), (119)
— 1
Vi = 4(V ViV a1 +Vike1), (120)
2
NI 1 (Uj—i—lk—i_ujrll() (U]k+U] 1k>
U= _
] 4 hT 1 hk
Ax (Ujrl]<+1+ujn>(vj+1k+vjrl]<> (Ui +Uj- 1)(V1+1k 1+ V1)
+ E =~ =~ , (121)
ik k-1
A A& ’ VI 4V ’
y 1 <]k+l+ jk) (jk+ jkfl)
v o= = _
' 4 M1 hk
Ay | Uik YRV e+ Vi) (Vg FU ) (ViR +V g
+ B( hn hn ) (122)
ik jk—1
pu = S0, 02— (W02 — 20, g+ W0 (Hy ok — Hi) (123)
k= ax |Vitk jk j+1k T M) (Rj+1k— Hijk) |
gAt
Pk = A—y[( ?k+1)2—(th)z—Z(th+1+h?k)(ij+1—ij)}, (124)
and finally
{ Sy (LN (125)
jk - 200 sljk slik=1)>
Y 1
[er|1(+1] = Z—F)()([Tgwk"i'[rg]?—lk): (126)
go = L (yn —uf-tun L (ur —uf-tun (127)
jk AX2 j+1k jk j—1k Ay2 jk+1 jk jk=1)>
A 1 1
b= e (VR VRSV ) + 55 A (Vi —VE Vi), (128)

4.3 Numerical stability condition

We note that the above schemes are numerically stable gatiet Courant-Friedrich-Levy
(CFL) condition is satisfied. If we leix = Ay = 2As andcg = /gHmax WhereHmax denotes
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4.4 Implementation of boundary conditions 4 SUMMARY OF THEBEFS

the maximum equilibrium depth, the CFL condition reads

At < As\/2
Co

, (129)

providedAs << Lg, whereLr = cp/ f is the Rossby radius of deformation.

4.4 Implementation of boundary conditions

We emphasize that the above FDEs are valid only away from hysigal boundaries. As for

the continuous equations the boundary conditions prevtikeaboundaries of the domain. As
alluded to this has some numerical consequences regaldir@driolis terms, the non-linear
terms and the eddy viscosity terms. in order to properlgs8athe boundary conditions in our
FDEs. We underscore that the one of the main reason for usstaggered grid is to avoid

over-specifying the number of boundary conditions. The benof specified boundary con-
dition should exactly match the number of integration cantt of the continuous, governing
equations (e.gR@ed 2011).

4.4.1 Closed boundaries

Let us first consider a motion within a rectangular domainratad by solid, impermeable
walls on the four sides. Accordingly we have to change the $[IE the points next to any
boundary to account for this fact. As alluded to in Sectiont 3 icommon, if we employ
the staggered C-grid, to let the boundaries go thrdugpoints andv-points as displayed in
Figure 6. Thus the physical condition of no flow through an@mmpeable wall is satisfied by
lettingU = 0 andV = 0 along the respective boundaries in the appropriate cells.

In particular we have to reevaluate the Coriolis term in thiésaeighboring a solid bound-
ary to avoid spurious residual flows close to the boundanygigie "wet-point-only” method
first suggested byJamart and Ozerl986). Looking at Figure 6, featuring a solid boundary
through theV-points in the cells numbered,KK — 1), we notice that the averaging of the
Coriolis term in (104), that is\_/?,zrl consists of four terms of which two of them are zero.

Hence the factor must be changed to one half instead of omhfdhat is, at these poin\TS?k
in (109) and (120) is replaced by

n

— 1
Vikk-1= E(erjKK—Z +Vikk _2)- (130)

Similarly follows that if there are solid walls along all hadaries that

- 1 .

Vig = E(er.]z+V'+12)a (131)
N 1

U = Uz +Ush, (132)
—n+1 1
UjZw = 2 (Ugnf_lzkﬂ + Ugnf_lgk)- (133)
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4 SUMMARY OF THE FDES 4.4 Implementation of boundary corahis

For the non-linear version the number of integration camstare increased due to the
appearance of the eddy viscosity terms. Thus we also retipgreelocity along closed, solid
walls to be zero as well, that is, bdth= 0 andV = 0 must be satisfied at all boundaries. We
note that there are nd-points along the boundaries throughpoints, and vice versa. One
way to satisfy the boundary condition of no flow tangentialgng the (physical) boundary
is to interpolate across the boundary, so that the intetpadiealue at the boundary becomes
zero. As displayed in Figure 6 we achieve this by adding thie catside of the boundary, and
let the value of the transport component in question be ‘omedl”. For instance look at the
U-points along thé&c = KK — 1 closed boundary in Figure 6. To satisfy the conditioblof O
at the boundary we simply Idatj”KK = —Uj”KK_1 for all j (linear interpolation). Similarly we
let V3, = —Vjy, for j = JJfor all k.

4.4.2 Open boundaries

At open boundaries the governing equations are still vatidwever, since our grid is finite
we have to specify a boundary condition within the cellsdgaty open boundaries. A host
of such conditions exist in the literature (e.Bged and Cooperl987;Palma and Matanp
2000). A common denominator is that none of them are perfect.

We employ a particular simple one based on the so called Fislad@tion Scheme (FRS)
suggested biMartinsen and Engedalil987), but first suggested for use in numerical weather
prediction (e.g.,Davies 1976). The variables in the open boundary cell is first dated sim-
ply by using a one-dimensional version of the governing #qna. Commonly this solution is
referred to as the external solution to separate it fromritegmal solution, that is, the solution
of the true governing equation. Next we relax the intern&litsan to the external solution
through a buffer zone.

For instance, let the internal solution at time lenet 1 before relaxation by in all cells
except for the boundary cells, whegeis any of the prognostic variables. Furthermore, let
the external solution at time leveh- 1 bet,uer-‘,jl. We obtain the solution at the new time step
n+ 1 for the entire domain including the boundary cells by pening a simple relaxation,
that is,

Wi = (1— ) Wi+ ay®i (134)

whereaj is a number between zero and one such that it varies monatlyfiom aj =0
inside of the buffer zones, that is, in the domain of intgrestrj = 1 in the boundary cells.
Thus within the domain of interegtj"* = ¢, , while in the boundary cellg/fi "™ = y0*.

As an example let us consider that the upper boundary dieglay Figure 6. The cells
j,KK for all j are then open boundary cells. The external solution is fdundse of the
governing (69) - (71) by neglecting all terms with a derivatacross the boundary. In this
impliesdy = 0. Thus we get

an® = —oU, (135)
GU® = fV€—gHAN®+X, (136)
Ve = —fue+Y, (137)
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where we have dropped the sea surface pressure term. $mtilarFDEs to compute the
external solutions may be derived from (102) - (104). If weusse the computational domain
to be rectangular with open boundaries alongyais to the left and right, then we get

Nt = neE—%D”, (138)

uentt — Bg{ueﬂJrfAt\F”—gH.‘(‘%((neEH—neE)JrAt [XQ“}”}, (139)

verrt = BV — AU ot [ (140)

where
D = US-US 4, BE:<1+%)1, (141)
k

B — (1+%t)_1, Y = 2 (Fhe + H). (142)

U%, = JUF+U), V=SV +VTL), (149

R = 2—;([réJE+[r§JE_1), (144)

Ve = %[Tsyh?, (145)

5 Summary and final remarks

To summarize we have showed how simple one-layer, two-laydrl%-layer ocean models
may be derived from the full Reynolds Average Navier-Stoff@8NS) equations, and how
the one-layer model in particular may be replaced by finifeidince equation. Both the linear
version and the non-linear version were included.

The rationale behind this derivation is to pave the way fa¥ akthese simple models
in ensemble prediction systems. Furthermore we would likevestigate the possibility
of solving these equations numerically making use of themaers Graphical Processing
Units (GPUSs) rather than the Central Processing Units. Teesthese equations on GPUs
require computer programs different form the tradition@RTRAN program language and
other common program languages in use today (e.g. C++). 3tlusions to well defined
benchmark case, by which the solutions using GPUs may bé&eetrare needed. In the
accompanying Part IRged 2012) we therefore present such solutions. The benchragdsc
are solved using the traditional FORTRAN program languaue Rart Il also present the
FORTRAN source code used to generate the solutions.
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