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I INTRODUCTION 

I.1 Framework 

Work package 2 (WP2) of the MyWave project focusses on increasing the use of 
earth observations by improving data processing algorithms and data assimilation 
systems for ocean waves. Aiming at the exploration of new methodologies in data 
assimilation, improvement of the use of near-shore satellite data and connection of 
large-scale forecast and near-shore forecasts. Its ultimate goal is to use improved 
data processing and data assimilation methods to obtain better wave forecasts from 
regional or coastal high-resolution models. 

I.2 Motivation 

Many off-shore and coastal activities are influenced by wind-generated waves. Since 
a relatively large part of these activities are near the coast, wave forecasts in these 
areas are crucial for safety at sea and optimal economic use. This work package 
(WP2) of the MyWave project studies a number of methods to further increase the 
accuracy and reliability of coastal wave forecasts. The activities can roughly be 
divided in three groups: 

1. Assimilation of observations 
2. Use of high-resolution wind forecasts and use of wave models with a high 

resolution near the coast 
3. Improving our understanding of the largest uncertainties in the forecasts 

through the use of triple collocation. 
 
Data assimilation has seen a strong development of new methods recently. 
Application of these new insights, mainly from meteorology and oceanography, to 
wave forecasting can improve the amount of information extracted from observations. 
Here, we consider a number of different types of observations: in-situ observations 
by downward looking radars or wave buoys, coastal HF-radar and space-borne 
scatterometer observations of wind speed. Space-borne observations by altimeter 
and SAR were used for validation and triple collocation (WP 2.1 and 2.2.2).  
 
Regional wind and wave forecasts for the considered study areas have been 
compared with scatterometer winds, altimeter wave heights, wave-buoy observations 
and in-situ wind observations to make a realistic assessment of the accuracy of each, 
to identify inconsistencies and to suggest potential improvements. Special attention 
has been given to particularly difficult areas as the Northern Adriatic Sea. Here the 
surrounding mountains make the wind forecast particularly challenging, while the 
proximity of coastlines challenges the satellite capability. 
Furthermore, the impact of high-resolution wind forcing, e.g., as provided by the 
HARMONIE model, has been studied to assess the impact on accuracy of the wind 
forecasts, as well as wave forecasts from wave models forced with these data. The 
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higher resolution potentially leads to a higher accuracy, but the variability increases 
at the same time, which makes high-resolution forecasting far from trivial.  
 
Unstructured grids can be more easily adapted to increase resolution locally than 
structured grids, which makes them very attractive for coastal wave-forecasting. Here 
the unstructured-grid approach is compared to the more traditional nesting of refined 
local structured grids. 
 
In general differences between model forecasts and observations can be caused 
both by errors in the model and its forcing as well as errors in the observations. Triple 
collocation is a technique that can help further our understanding of the remaining 
uncertainties in the wave forecasts. By making use of at least three sources of data 
for the same locations and times, and assuming that the errors of these sources are 
independent, one can estimate the contributions for each source. Although some 
care has to be used to verify these assumptions, this technique has the potential to 
further our understanding and help guide future efforts on error analysis. 

I.3 Objectives 

The objectives of WP2 are to assess the current accuracy of high-resolution coastal 
wave forecast and to test various options for further improvement of the accuracy 
and reliability of these forecasts. This report contains all main WP2 results and may 
contain some repetition of the previous deliverables ([DR1] and [DR2]). 
 
The main contents of the report follow the structure of the MyWave workpackage 2, 
i.e.: 

 Data-assimilation (Task 2.1) 

 Coastal wind products and their impact on wave forecasts (Task 2.2) 

 Connecting large-scale forecasts to near-shore forecasts (Task 2.3)  

I.4 Contributors to the report 

The MyWave WP2 team members that have contributed to this report are Gert-Jan 
Marseille and Ad Stoffelen from KNMI on assimilation of scatterometer data in a non-
hydrostatic atmospheric model (sections III.2, IV.3.1 and V.3.3), Martin Verlaan and 
Sofia Caires from Deltares on Ensemble Kalman Filter data assimilation on a coastal 
wave model (sections II.3, III.3, IV.2.2, V.3.4 and V.3.5), Kathrin Wahle, Heinz 
Günther and Joanna Stavena, from HZG on neural networks data assimilation on a 
coastal wave model (sections II.4.1, II.4.2, III.4, IV.2.3 and V.4), Marta Gómez and 
Cristina Toledano from PdE-AEMET on the North Atlantic and Cantabrian Sea 
studies (sections II.4.3, IV.2.4 and V.5) and Paolo Pezzutto and Luigi Cavaleri from 
ISMAR on the Adriatic study (sections IV.2.1, IV.3.2 and V.2).  
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II WAVE AND ATMOSPHERIC MODELS 

II.1 Introduction 

This chapter gives a short introduction of the atmospheric and wave models that 
have been applied in this study. These are 1) HARMONIE, the Numeric Weather 
Prediction (NWP) model used operationally at KNMI, 2) SWAN, the wave model used 
in the operational Dutch North Sea forecasts and 3) WAM the wave model used 
operationally by Puertos del Estado and by HZG. These models are presented in this 
order in the following sections.  

II.2 HARMONIE 

KNMI is currently in the transition phase from moving from the operational hydrostatic 
model HirLAM (High resolution limited area model) to the non-hydrostatic 
HARMONIE (Hirlam ALADIN Research on Mesoscale Operational NWP in Euromed) 
model. The grid size of the latest HirLAM model version is 11 km, where HARMONIE 
is operated typically at 2.5 km grid size. Besides the smaller grid size, a major 
difference of both models is that HARMONIE explicitly resolves convective 
processes, where HirLAM uses sub-grid-scale parameterizations to simulate 
convection. The HARMONIE model is available since early 2012. The model domain 
covers mainly Western Europe and part of the North Atlantic, see Figure II.1. The 
number of grid points is 800x800, meaning that the domain covers a 2000x2000 km2 
area. The model top is at 10 hPa (~26 km) and the number of model levels equals 
60. The operational HARMONIE model version at KNMI is nested in the HirLAM 
model. Experimental tests indicated that nesting within the ECMWF model gives 
slightly better results. The results discussed in this report are all based on 
HARMONIE nesting with the ECMWF model. 
 
Observations are assimilated in the model, initially four times a day, i.e., with a 6-
hour assimilation window. In the current operational setting, a 3-hour assimilation 
window is used and analyses performed 8 times per day. Operationally observations 
are used from radiosondes, synop stations, buoys and aircraft (AMDAR). 
Experimental tests are performed with high spatial and temporal resolution radar, 
Mode-S (Euro Control radar-tracked aircraft) and GPS humidity observations. 
Section V.3.3 reports on the introduction of scatterometer winds in HARMONIE 
assimilation. 
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Figure II.1 HARMONIE mesoscale model domain, used operationally by KNMI (The 

Netherlands). The domain is centered at 51 degrees latitude, 3 degrees longitude and is 

composed of 800x800 grid points covering a 2000x2000 km area. 

II.3 SWAN 

Deltares is responsible for the operational model used to forecast the wave 
conditions in the Dutch North Sea. The model used for the operational wave 
forecasts is SWAN. SWAN is a state-of-the-art third generation shallow water phase-
averaging wave model. It can account for: 
 
• Wave propagation in time and space, shoaling, refraction due to current and 

depth, frequency shifting due to currents and non-stationary depth. 
• Wave generation by wind. 
• Three- and four-wave interactions. 
• Whitecapping, bottom friction and depth-induced breaking. 
• Dissipation due to vegetation. 
• Wave-induced set-up. 
• Transmission through and reflection (specular and diffuse) against obstacles. 
• Diffraction. 
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Furthermore, SWAN computations can be made on a regular, a curvi-linear grid and 
a triangular mesh in a Cartesian or spherical co-ordinate system. Nested runs, using 
input, namely two-dimensional wave spectra, from other (larger scale) models can be 
made with SWAN. 
 
The SWAN model has been validated and verified successfully under a variety of 
field cases and is continually undergoing further development. It sets today’s 
standard for nearshore wave modelling. For more information on SWAN, reference is 
made to http://swanmodel.sourceforge.net/online_doc/online_doc.htm from where 
the SWAN scientifical/technical documentation and used manual can be 
downloaded. 
 
In short, the model solves the action balance equation, in Cartesian or spherical 
coordinates, without any ad hoc assumption on the shape of the wave spectrum. In 
Cartesian coordinates the equation is 
 

        tot
x y

SN
c N c N c N c N

t x y
 

  

    
    

    

, (1) 

 

where N  is the action density, t is the time,  is the relative angular frequency, and  

the wave direction. The first term on the left-hand side of Eq. (1) represents the local 
rate of change of action density in time. The second and third terms represent 
propagation of action in geographical space. The fourth term represents shifting of 
the relative frequency due to variation in depth and currents. The fifth term 
represents depth-induced and current-induced refractions. The quantities xc ,

yc , c  

and c  are the propagation speeds in the geographical x- and y-space, and in the - 

and the -space, respectively. The expressions of these propagation speeds are 
taken from linear wave theory. In (1) Stot is the energy source term. This source term 
is the sum of separate source terms representing different types of processes: wave 
energy growth by wind input, wave energy transfer due to non-linear wave-wave 
interactions (both quadruplets and triads), and the decay of wave energy due to 
whitecapping, bottom friction, and depth induced wave breaking. For some source 
terms more than one formulation is implemented in SWAN, see 
http://swanmodel.sourceforge.net/ online_doc/online_doc.htm. 
 
As to SWAN’s numerical approach, the integration of the propagation and of the 
source terms of Eq. (1) has been implemented with finite difference schemes in all 
four dimensions (geographical space and spectral space). A constant time increment 
is used for the time integration. The model propagates the wave action density of all 
components of the spectrum across the computational area using implicit schemes in 
geographical and spectral space, supplemented with a central approximation in 
spectral space. In geographical space the scheme is upwind and applied to each of 
the four directional quadrants of wave propagation in sequence. Three of such 
schemes are available in SWAN: a first-order backward space, backward time 
(BSBT) scheme, a second-order upwind scheme with second order diffusion (the 
SORDUP scheme) and a second order upwind scheme with third order diffusion (the 
S&L scheme). The numerical schemes used for the source term integration are 

http://swanmodel.sourceforge.net/online_doc/online_doc.htm
http://swanmodel.sourceforge.net/%20online_doc/online_doc.htm
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essentially implicit. In order to match physical scales at relatively high frequencies 
and to ensure numerical stability at relatively large time steps, a limiter controlling the 
maximum total change of action density per iteration at each discrete wave 
component is imposed. 

II.3.1 Dutch North Sea operational wave model 
 
The operational SWAN North Sea model used for wave forecasts in the Dutch waters 
consists of two grids. The first grid, the SWAN Dutch Continental Shelf (SWAN-
DCSM) model covers a large area and computes boundary conditions for the nested 
detailed model domain. In this study we only consider the SWAN-DCSM grid and 
model and shall refer to it as SWAN-DCSM. The characteristic of the SWAN-DCSM 
grid are given in Table II.1 and its domain and bathymetry are shown in Figure II.2. 
 

Shape ΔX ΔY 
number of cells 
(active grid points) 

Xmin;Xmax Ymin;Ymax 

rectangular 
1/20° ≈ 
3.6 km 

1/30° ≈ 
3.6 km 

420 x 480 
(136,892) 

-12° ; +9° 
≈ 1500 km 

+48° ; +64° 
≈ 1700 km 

Table II.1 Grid characteristics of SWAN-DCSM. 

 
The directional domain of the model covers the full circle, divided into 45 bins of 8° 
each. The frequency range is from 0.03 Hz to 0.6 Hz (1.7 s – 33.3 s). SWAN divides 
this into 31 frequency bins. The time step of the computations is 1 hour. 
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Figure II.2 SWAN-DCSM model domain and bathymetry. 

 
The offshore wave boundary conditions of the SWAN-DCSM model come from the 
global ECMWF-WAM (ECMWF, 2011) and are available on a regular grid with 0.25 x 
0.25 degrees resolution. The SWAN boundaries can thus in principle be chosen 
freely. However, ECMWF-WAM contains only limited shallow water physics and 
SWAN should cover the regions where shallow water effects are considered relevant. 
The SWAN domain was selected such that it should be expected – mainly due to 
resolution and added physics - to achieve better results than those of ECMWF-WAM. 
A larger domain than the one chosen will probably not improve the quality of the 
forecasts in the area of interest near shore.  

II.4 WAM 

II.4.1 Model Description 
 
WAM is a third generation wave model which solves the wave transport equation 
explicitly without any presumptions on the shape of the wave spectrum. It represents 
the physics of the wave evolution in accordance with our knowledge today for the full 
set of degrees of freedom of a 2d wave spectrum. WAM computes the 2d wave 
variance spectrum through integration of the transport equation in spherical 
coordinates: 
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The source functions on the right of the transport equation comprise the contributions 
of wind input (Sin), nonlinear interaction (Snl), dissipation (Sdis), bottom friction (Sbf) 
and wave breaking (Sbr) : S = Sin + Snl + Sds + Sbf + Sbr. 

 

The last release of the third generation wave model WAM Cycle 4.5.4 is an update of 
the WAM Cycle 4 wave model, which is described in Komen et al. (1994) and 
Guenther et al. (1992). The basic physics and numerics are kept in the new release. 
The source function integration scheme made by Hersbach and Janssen (1999), and 
the up-dates model (Bidlot, et al., 2005) are incorporated. Other main improvements 
introduced in WAM Cycle 4.5.4 are technical improvements, which take into account 
the new possibilities of Fortran 95 and the MPI (Message Passing Interface) for 
parallelization purposes. On request from the user community a number of additional 
options are added in the model. A big advantage of the new state-of-the-art version 
WAM Cycle 4.5.4 is its high-grade modular composition which allows an easy 
replacement of individual parts of the code.  

II.4.2 German Bight Set-up  
 
The nested-grid wave model system for the German Bight is been implemented at 
HZG The system includes a regional WAM model for the North Sea (spatial 

resolution:  *  = 0.05 * 0.08333 ~ 5 km) and a finer meshed local model for the 

German Bight ( *  = 0.00928 * 0.015534 ~ 900 m). The driving wind fields for 
both are provided by the German Met Service (DWD: Deutscher Wetterdienst), 
computed as U10-fields by the atmospheric model COSMO_EU. The model area of 
the COSMO_EU is shown in Figure 1 (upper left). It provides forecast results for 78 
hours with a spatial resolution of about 7 km. 
 
The required boundary information used at the open boundaries of the North Sea 
model is derived from the regional wave model EWAM for Europe that is running 
twice a day in the operational wave forecast routine of the DWD. The depth 
distribution in the model grid for EWAM is given in Figure 1 (upper right). The local 
model for the German Bight receives its boundary values from the North Sea wave 
model. The model grids and the depth distributions (Figure 1, North Sea on the lower 



F ,, ,,t 
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left and German Bight on the lower right side) for the two wave models correspond to 
those used in the setup for the GETM circulation model in order to simplify the 
coupling of both for the German Bight. The complete setup of the nested-grid model 
system for the German Bight is concentrated in Figure II.3.  
 

 
 

 
 

Figure II.3 Setup of the nested-grid wave model system for North Sea and German Bight.  

 
Driving wind fields are provided by the COSMO_EU model (upper left, the red line 
denotes the location of the EWAM in COSMO_EU), boundary values by the regional 
European wave model EWAM (upper left: EWAM depth distribution). Depth 
distribution of the model for the North Sea (lower left) and for the German Bight 
(lower right). 
 
The wave models run in shallow water mode including depth refraction and wave 
breaking and calculate the two dimensional energy density spectrum at the active 
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model grid points in the frequency-/direction space. The solution of the WAM 
transport equation is provided for 24 directional bands at 15o each with the first 
direction being 7.5o measured clockwise with respect to true north and 30 
frequencies logarithmically spaced from 0.042 Hz to 0.66 Hz at intervals of Δf/f = 0,1. 
 
The driving wind fields for all wave model runs discussed in this report are provided 
by the atmospheric COSMO_EU model of the DWD. This regional non-hydrostatic 
model with its integration domain shown in Figure II.3 (upper left) runs at the DWD 
since September 2005. It uses 40 vertical levels with the lowest level 10 meter above 
ground and performs forecasts for 78 hours (at 00 and 12 UTC). For the specification 
of the used rotated grid, the south pole has been shifted to 40

o
S and 10

o
E. The spatial 

resolution is 7 km. The rotated lat-lon coordinates of the lower left and the upper right 
corner of the integration domain are lon=- 18.0

o
, lat=-20.0

o and lon= 23.5
o
, lat= 21.0

o, 
respectively. The integration domain includes 665x657 model grid points and 
boundary values at its open boundary are provided by the global DWD model GME. 
For all wave model runs the U10 COSMO_EU wind fields are used. Those are 
available in hourly intervals. As an example of wind variability we show the wind 
speed and direction during the storms Christian and Xavier that took place in October 
and December, 2013, see Figure II.4. The horizontal distribution of the wind field for 
the German Bight is shown on Figure II.5. 
 

       
 

     
Figure II.4 Wind speed and wind direction for Helgoland Station during the storm events 

Christian in October, 2013 (left) and storm Xavier in December, 2013 (right). 
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Figure II.5 Horizontal distribution of wind fields for the German Bight region during the 

storm events Christian on 24. October, 2013 (left) and storm Xavier on 6. December, 2013 

(right). 

 

Figure II.6 shows an example of the horizontal distribution of the significant wave height in 

the North Sea and in the nest for the German Bight on the 15
th

 of February 2012 at 06 UTC 

with significant wave heights up to 6.8 m. 

 

 
Figure II.6 Nested-grid wave system for North Sea and German Bight (right). 

 
The results of both wave models include the full two dimensional spectral information and 29 

integrated parameters which are included in Table II.2.  
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Parameter No. Parameter Dimension 

1 Wind speed U10 m/s 
2 Wind direction Degree from North (towards) 
3 Friction velocity m/s 
4 Drag coefficient  
5 Water depth m 
6 Current speed m/s 
7 Current direction Degree from North (towards) 
8 Dummy  
9 Significant wave height m 

10 Wave peak period s 
11 Wave mean period s 
12 Wave Tm1 period s 
13 Wave Tm2 period s 
14 Wave direction Degree from North (towards) 
15 Directional spread Degree 
16 Normalized wave stress % 
17 Sea significant wave height m 
18 Sea peak period s 
19 Sea mean period s 
20 Sea Tm1 period s 
21 Sea Tm2 period s 
22 Sea direction Degree from North (towards) 
23 Sea directional spread Degree 
24 Dummy  
25 Swell significant wave height m 
26 Swell peak period s 
27 Swell mean period s 
28 Swell Tm1 period s 
29 Swell Tm2 period s 
30 Swell direction Degree from North (towards) 
31 Swell directional spread Degree 
32 Dummy  

Table II.2 Integrated parameters of the wave model output. 

 
The wave model results (integrated parameters) are validated against buoy data 
available in the area of the model grids.  

II.4.3 Puertos del Estado WAM model versión 
 
An improvement on the original WAMDI numerical spatial integration scheme was 
introduced at Puertos del Estado. This consisted of using a two-way nesting scheme 
which allows the definition of different grid resolutions in various subregions of the 
model domain. Along the boundary, between these subregions of different 
resolutions, there are two types of points, those receiving energy by advection and 
those receiving energy by interpolation. Those points are alternated within the 
advection algorithm and modified accordingly to minimise the computational cost. 
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With this two-way nesting scheme the resolution of the Atlantic application is 
increased from 1 degree, in the open deep water, to 0.25 degrees close to the 
continental shelf.  The Mediterranean application has also a variable grid spacing of 
10 and 5 minutes.  
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III DATA ASSIMILATION TECHNIQUES 

III.1.1 Introduction 
 
Even though numerical wave models are becoming more and more accurate, 
forecasts can to some extent deviate from the available observations. The process 
for correcting forecasts such that they better match the observations is known as 
Data assimilation (DA). For chaotic models that are very sensitive to changes in the 
initial conditions, such as meteorological models this is a crucial step in any forecast 
system. For wave models, the significance is smaller, but still significant 
improvements through the use of data-assimilation have be shown in a number of 
studies. 
Over the past decades a large number of algorithms have been developed for data-
assimilation. 3D-VAR, 4D-VAR and the Ensemble Kalman Filter (EnKF) are among 
the more popular. The use of Neural Networks on the other hand is a quite new an 
promising technique. 

III.2 3D-VAR 

Three-dimensional variational analysis (3D-Var) is an incremental DA method where 
the analysis increment is found by iteratively finding the minimum of a cost function 
that is composed of background and observation penalty terms. The former 
measures the deviation of the model (analysis) state to the background (short term 
forecast from the previous analysis) and the latter measures the deviation from 
observations. As such the model state is drawn to recent observations, taking into 
account the model state history through the background state (and thus past 
observations). This is done in a statistical consistent way, taking into account the 
characteristics of background and observation errors. More details are found in [DR 
1]. 
 
In data assimilation observations are gathered over a certain time period: the 
assimilation window. The aim is to find the model state that best fits the background 
state and observations at analysis time, that is generally set at the window centre. 
This model state is called the analysis. In 3D-Var it is assumed that all observations 
within the assimilation window are measured at analysis time. This is generally true 
for observations from conventional observing systems like radiosondes, synop 
stations and buoys. However, aircraft and satellite overpasses are asynoptic, 
introducing a time shift between observation and model background state.  
 
As an example, for a 6-hour assimilation wind, the 18 UTC analysis uses all 
observations between 15 and 21 UTC. Conventional observing systems measure 
hourly (buoys, synop stations) or 6/12-hourly (radiosondes). HARMONIE uses only 
those observations measured within 30 minutes from analysis time. Aircraft 
observations are available over the complete assimilation window and in principle are 
all used in the analysis. Satellite overpasses generally do not coincide with the exact 
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analysis time. The current setting in HARMONIE DA is to ignore the time discrepancy 
between the model simulation at analysis time and the satellite measurement. Figure 
III.1shows an example of this so-called timing issue where the satellite observation is 
almost 2.5 hours after analysis verification time. Both the model and the 
scatterometer have the front at the correct location, yet assimilating scatterometer 
winds as if they were observed at 18 UTC may shift the front position incorrectly. In 
practice the background departure check will remove most of the observations near 
the front, which is correct in the current 3D-Var implementation, but also removes 
valuable observational information near the frontal zones that is relevant for 
mesoscale forecasting in particular. Currently most NWP centres use a 3-h 
assimilation window operationally which partly resolves the timing issue. The trend is 
to further reduce the assimilation window to 1 hour, the so-called rapid update cycle, 
which is useful in particular in extreme weather events. This is further discussed in 
section V.3.3.2. In addition NWP centres work on implementing 4D-Var assimilation 
schemes, but its current status within the HirLAM/HARMONIE consortium is still 
experimental.  

 
Figure III.1 HARMONIE 6-h forecast valid at 4 November 2007 18 UTC (blue arrows) and 

overlaid scatterometer winds from 2 QuikScat overpasses near 18:52 and 20:22 UTC (red). 

The solid blue/red line mark the location of the front by the model (at 18UTC) and 

scatterometer (at 20:22 UTC) respectively.  

III.3 ENKF 

The key difference between the Ensemble Kalman filter (EnKF) and the other 
methods used in MyWave is that the model uncertainty, mainly the covariance, is 
computed from an ensemble of model forecasts in a procedure very similar to Monte 
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Carlo methods. Starting from an initial ensemble of model states 0( )a
i t the model M

is used to compute a forecast for each ensemble member: 

 
1)( ( ) ( )f a

i k i k i kt M t w t    ,   

where ( )i kw t  denote the system noise, used to model uncertainties in the model. From 

this one can compute the sample mean as  
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The Kalman gain is expressed as 

 1( ) ( ) )( ) (f f

k k ktt t    H HP H RK P ,  

where H  denotes the observation operator that maps the model state to values that 

match the observations. R  is the error covariance of the observations at time kt .  

 
The analysis or measurement-step of the EnKF uses a perturbation of the 

observations ( )i kv t  and a separate analysis for each of the ensemble members to 

obtain a consistent ensemble of states that incorporate the observations ( )ky t , 

 ( ) ( ) ( )( ( ) ( ) ( ))a f f
i k i k k k i k i kt t t y t H t v t     K   

If required one can obtain the mean and covariance of the model state after the 
analysis, that can be computed from 

 
1

( ) 1 / ( )
n

k i k

a a

i

t nx t


  ,  

and  

 
1

( ) 1 / ( 1) ( ( ) ( ))( ( ) ( ))a
n

k i k k i k

a a a a

k

i

t n t x t t x t 


   P .    

Note that the classical EnKF formulation requires the model simulations to stop each 
time an observation is available. In the asynchronous EnKF (Sakov et al., 2010) this 
restriction is relaxed. The observations are accumulated over a predefined time 

interval ] , , ]k k mt t  . During the model forecast for each member the matching values 

( ), , ( )f f
i k i k mt t  H H  are collected. Finally the observations are assimilated all at once 

as if they occurred at time k mt  , but with the predicted values that were collected at 

the appropriate times. 
 
Spectral wave models like SWAN are stable forced systems and it is therefore crucial 
to include system noise or model uncertainty when applying EnKF. Without system 
noise or covariance inflation the Kalman filter will diverge, i.e., the error covariance 

matrix ( )f
ktP  will become smaller and smaller and the observations will effectively be 

ignored. 
 
Two likely sources of uncertainty in a spectral wave model are the uncertainty in the 
wind forcing and uncertainty for the wave parameters that are specified at the open-
boundary.  
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III.3.1 OpenDA 
 
OpenDA is a generic toolbox for data assimilation. It includes, among several other 
algorithms, an implementation of the EnKF with the option for asynchronous filtering 
as described above. The easiest and most flexible way to connect a model to 
OpenDA is with what is called a black-box wrapper. The characteristics of a black-
box wrapper are that the model remains a separate executable with interaction by the 
input and output files of the model, see Figure III.2. For this purpose one needs to 
supply subroutines for reading and writing of these model specific file formats. These 
routines have been implemented for SWAN and are made available through the 
official OpenDA release (http://www.openda.org).  
 

 
Figure III.2 Schematic diagram of the black box connection between SWAN and OpenDA. 

 
The OpenDA implementation for SWAN uses the full spectra at all grid-cells as the 
state of the model. This is similar to the contents of a restart file. Most previous work 
on Kalman filtering for spectral wave models has used a reduced state, often 
consisting of the significant wave-height and wave-period. The difference in memory 
consumption between the two approaches is substantial (order 100x), but the 
reduced parametric space does not allow for assimilation of other wave parameters 
or spectral data. In addition changes of the parameter fields by the assimilation need 
a ad-hoc step to adjust the full spectra that the model requires. The computationally 

http://www.openda.org/
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more expensive approach used here allows for assimilation of all available data in a 
natural manner and can update the full spectra in a consistent manner. 

III.4Neural networks 

The neural networks (NNs) approach is a novel method for data assimilation into the 
wave models. In general the NN aims to explore an extensive parallel network of 
simple elements in order to obtain result in a very short time and, at the same time, 
with insensitivity to loss and failure of some of the elements of the network. These 
unique properties make possible to use the NN in a wide range of applications, e.g. 
remote sensing (e.g. Schiller, 2007), financing, engineering, image processes, 
recognition of patterns, etc. Detailed description of the NN method can be found in 
Haykin (1994) and Bischop (1995). 
 
Neural Networks can be used to approximate an arbitrary non-linear function that 
maps a vector of input variables to a vector of output variables. It is also possible to 
use previous outputs of the NN as input for a next step of the computation, but these 
recursive NN are not considered here. The application of a NN can be divided into a 
training phase and a forecasting phase. During the training phase a large dataset of 
input and output vectors are used to train the NN, i.e., to estimate the coefficients 
and structure of the NN. The training phase consists of adjusting the weights for the 
best performance of the network in establishing the mapping of many input/output 
vector pairs. 
 
Contrary to physically-based models, with the NN it is not necessary that the relation 
between inputs and outputs is causal, a statistical correlation is sufficient. This gives 
an additional freedom to decide which variables are inputs and which variables are 
outputs. This unique property of NN makes it possible to perform data assimilation by 
simply changing the input and output variables for the NN. Where physically-based 
wave models, such as WAM (http://www.hzg.de/institute/ 

coastal_research/structure/system_analysis/KSD/topics/developments/003136/index_0003136

.html), require wind and boundary conditions as inputs and provide computed wave 
parameters on the grid-points as outputs, a NN can in principle accept observed 
wave parameters as inputs and wind and boundary conditions as outputs. The 
technical changes for this are very small. The challenge is to select the right input 
and output variables that work well with the objective (learning) function, since a NN 
will always provide an answer, but some choices can result in much more accurate 
results than others. 
 
To understand the performance of NNs for data assimilation in the wave models it is 
difficult to estimate both wind and boundary conditions together. One first has to use 
the new methodology either for optimizing the wind forcing or the boundary 
conditions and then combine both forcings.  
 
NNs provide a statistical estimation procedure and thus have similar properties to 
e.g. multiple linear regression methods. For example, if too many input variables are 
selected, with a limited set of training data, then the training may overfit the data. It is 

http://www.hzg.de/institute/%20coastal_research/structure/system_analysis/KSD/topics/developments/003136/index_0003136.html
http://www.hzg.de/institute/%20coastal_research/structure/system_analysis/KSD/topics/developments/003136/index_0003136.html
http://www.hzg.de/institute/%20coastal_research/structure/system_analysis/KSD/topics/developments/003136/index_0003136.html
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therefore necessary to reserve part of the available data for validation. The most 
obvious indication for overfitting is when the NN has a much higher accuracy for the 
training data than for the validation data. Another property is generalization, i.e. a NN 
may sometimes generate good estimates for new inputs (i.e. data with properties not 
well captured by the training data set), but there is no guarantee. 
 
An extreme example is if the training data only covers calm weather, then the NN 
may perform poorly for storms. An important technique to reduce overfitting is to 
reduce the number of inputs. One way to do this is with Principal Component 
Analysis (PCA), sometimes also called POD, POP or EOF. Another way is to lump a 
variable e.g. for a whole boundary instead of allowing spatial variation. 
 
A NN is usually trained for each scalar output variable separately. This makes it 
cumbersome to compute output for many output variables. The approach proposed 
here is to use an 'inverse' NN to estimate the wave parameters at the open boundary 
of the wave model from the observations. Next, these estimated boundary conditions 
can be used as input for a run with a physically-based model, here WAM. It is also 
possible to train a forward NN to generate output for a limited number of output 
locations. 
 
The combined procedure that we are developing works as follows: First train a 
forward NN, with wind forecasts and boundary conditions from a larger scale model, 

e.g. significant wave height ( sH ), mean wave period, etc. at a number of locations 

along the open-boundary. To reduce the number of inputs for wind and boundary 
conditions, a PCA is used. 
 
The outputs of the forward model are given by the outputs of the wave model 
corresponding to the actual observations. This implies that the forward model will 
mimic the behaviour of the physically based wave model.  
 
An additional inverse NN is trained with the same data, but with a reversed role. Here 
WAM-output matching the observations as input of the inverse-NN and boundary and 
wind PCA values are obtained as outputs. Note that the experiments with a 
preliminary version in this report use winds as an input for the inverse-NN. Note that 
the training procedure does not require any real observations, but it does require 
model output for a reasonably long WAM run. In general, it is also possible to use the 
same training procedure, but with real observations.  
 
After training of the forward-NN and inverse-NN one can perform a forecast by first 
running the inverse-NN with real observations, which results in an estimate for the 
open-boundary (and wind forcing). The forward-NN and/or the WAM model can then 
be used to compute the forecast. To forecast more than a few hours ahead the 
boundary-conditions and wind fields are complemented with forecasted boundary-
conditions from a larger model and wind fields from a meteorological model. 
 
The experiments in this report are performed with a synthetic dataset. The first-guess 

uses 0sH   at the open-boundary and the 'truth' model, that is used to generate 
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training data and synthetic observations, uses wave parameters from the large scale 
North Sea WAM model for the boundary conditions. 
 
This is a rather extreme case, which was chosen to clearly show the impact of the 
data-assimilation procedure. It is important to mention that after training NN has a 
lower computational cost than extended and linear KF, variational method, and 
particle filter.  
 
Within the MyWave Project a new methodology based on the use of NN for data 
assimilation in the wave models is developed. The following assimilation schemes 
have been developed: 

1. apply inverse WAM NN for each (point) measurement → ensemble of 
boundary values and / or wind ensemble 

2. apply forward WAM NN for each ensemble member → emulated 
measurements in each point  error (quality) estimate 

3. from these 'ensemble' of boundary and / or wind values chooses the best one 
in terms of error. 

The basic idea and first results have already been described in detail in [DR2]. 
 
In summary, Neural Networks were used to emulate the WAM model and its adjoint 

in the German Bight area. Given (synthetic) measurements 𝑟𝑀⃗⃗⃗⃗ of integrated 
parameters (significant wave height, period and mean wave direction) a first estimate 

of variables 𝑐  (wind forcing, boundary values) are derived by the NN emulating the 
adjoint wave model 𝑐1⃗⃗  ⃗ = 𝑁−1(𝑟𝑀⃗⃗⃗⃗ ). Subsequent application of the forward NN gives an 

error 𝜒1
2 which is minimised using the Levenberg-Marquardt algorithm: 

 

𝜒𝑘
2 = (𝑟𝑀⃗⃗⃗⃗ − 𝑟𝑘⃗⃗  ⃗)

𝑇𝐶(𝑟𝑀⃗⃗⃗⃗ − 𝑟𝑘⃗⃗  ⃗)

𝑐𝑘+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑐𝑘⃗⃗  ⃗ + (𝑀𝑇𝐶−1𝑀 + 𝜆1)−1𝑀𝑇𝐶−1(𝑟𝑀⃗⃗⃗⃗ − 𝑟𝑘⃗⃗  ⃗)
 

 

where 𝐶 is the covariance matrix and 𝑀is the Jacobian matrix with 
 
 (𝑀𝑛𝑖) = (𝜕𝑚𝑛 𝜕⁄ 𝑐𝑖)𝑐 =𝑐𝑘⃗⃗ ⃗⃗   

 

which is known since using feedforward backpropagation NNs. 𝜆 is a control 
parameter allowing to gently adjust between a Gauss-Newton (0) and a gradient 
descent (1) scheme. 
 
Data from the pre-operational wave forecast system at HZG served as data base for 
training and testing the NNs (see [DR2]).  The two leading Principal Components 
(PC) of wind fields and of boundary values were supplied to the forward NN to derive 
integrated parameters in a sub-area of the German Bight (synthesising 
measurements by an HF-radar). Analyses of forward NN showed a very good overall 
performance except for very shallow areas, which is probably due to the wave 
breaking processes. 
 
The inverse (adjoint) NN showed errors that are of one order of magnitude larger 
than the corresponding forward NN experiment. These large errors were explained 
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by the non-bijectivity of a wave model: one and the same sea state might have been 
caused by different combinations of swell and wind sea. Thus we decided to reduce 
the complexity of the inversion problem by dividing the adjoint model into two parts: 
one for deriving boundary values where PC's of wind fields serve as additional input 
for the inverse NN and a second working vice versa. The retrieval of boundary values 
was thereby significantly improved and reconstructed wave heights compared well 
with target values (see [DR2]). 
 

Missing in [DR2] was the wind retrieval and a validation of the adjoint model in an 
assimilation experiment which is demonstrated in this report. 
 
The idea for the data assimilation based on NN is schematically presented in Figure 
III.3.  

 
Figure III.3 Idea of assimilation scheme, w, w’ are the wave measurements, b-boundary 

values, g-latitude, longitude and wind values, c-other parameters, q-quality indicator. 

 

One big advantage of using NNs in data assimilation is its computational speed: once you 

have the NNs trained its further application costs little time. Additionally, the NNs scheme 

implies a quality/ out of scope check. These aspects make the use of NNs attractive compared 

to direct inversion of numerical models, like AdWAM by Hersbach (1998).  

 

The methodology and preparation of data for the NNs data assimilation is described in the 

next section.    

 

III.4.1 Neutral Network for wind retrieval 

 
The Neural Network for wind retrieval was trained using wave integrated parameters 

(significant wave height Hs, wave period tm1, and mean direction thq) at given locations 

(indicated by latitude- and longitude indices) at present time, three and six hours back in time 

and northern and western boundary values (first two PC's of Hs, tm1 and thq at one location) 
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reaching three to twelve hours back in time as input parameters (the time range is motivated 

by the average time duration for wind waves passing the German Bight area). Wind fields 

(first two PCs of u- and v-component) reaching zero, three and six hours back in time are 

derived by this NN. 
 
The performance of the NN when applied to independent (not used during training) testing 

data is demonstrated on Figure III.4. 
 

 

 
Figure III.4 Performance of NN for wind retrieval when applied to testing dataset. Left: 

leading PC of east wind component six hours ago. Right: same for north wind component
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IV WIND AND WAVE DATA 

IV.1Introduction 

This chapter describes the considered sources of wind and wave data. Next section 
deals with in-situ data and Section IV.3 with satellite data. 

IV.2 In-situ 

IV.2.1 Mediterranean Sea 
 
All the available data over the Mediterranean Sea are hosted on a dedicated CNR-
ISMAR server, provided by various institutions on a monthly basis, starting from July 
2013. This storage area is accessible operationally by all the interested partners, in 
order to perform WP3 forecast validations. ISPRA gathers the information from 30 
WMO coded buoy stations in the Mediterranean Region (see Table IV.1), while 
ISMAR has managed to obtain the data from two buoys from the Israel Ports 
Development and Assets Company Ltd and Coastal (IPC) and Marine Engineering 
Research Institute Ltd (CAMERI). This has been possible through a specific 
agreement signed by ISMAR in order to get the data for MyWave Project research 
purposes. 
 
Each time-series is quality checked (see MyWave D3.2) in order to guarantee 
reliability of the observations. Cameri provides high frequency sampled wind data, 
which have been filtered and under-sampled on 30 minutes basis, and 30 minutes 
wave spectra, from which we derive the necessary spectral moments. The 
parameters of interest collected for this subtask (2.2.3) are significant wave height 
(HS, m) and wind speed at 10 m above ground (U10, m/s). All series are stored in 
NetCDF4 self-describing format, adding proper metadata, therefore providing overall 
uniformity. 
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Name WMO id °E °N Source Provider 

RonSV 61200 8.18 43.92 ARPAL ARPAL 

Ashdod - 34.65 31.88 Cameri Cameri 

Haifa - 34.94 32.84 Cameri Cameri 

Athos 6101003 24.72 39.97 HCMR MyOcean 

Iraklio 61277 25.12 35.73 HCMR MyOcean 

Methoni 68422 21.60 36.82 HCMR MyOcean 

Saron 6101001 23.57 37.60 HCMR MyOcean 

Rhone 61284 4.87 43.32 Ifremer MyOcean 

Lion 61002 4.70 42.10 MeteoFrance MeteoFrance 

Nice 61001 7.89 43.42 MeteoFrance MeteoFrance 

C. Begur 61196 3.63 41.91 PdE MyOcean 

C. Gata 61198 -2.33 36.57 PdE MyOcean 

C. Palos 61417 -0.33 37.65 PdE MyOcean 

Dragonera 61430 2.10 39.56 PdE MyOcean 

Mahon 61197 4.44 39.72 PdE MyOcean 

Tarragona 61280 1.47 40.68 PdE MyOcean 

Valencia 61281 0.20 39.52 PdE MyOcean 

Alghero 61213 8.11 40.55 RON ISPRA 

Ancona 61218 13.72 43.83 RON ISPRA 

Cagliari 61221 9.45 39.11 RON ISPRA 

Catania 61207 15.15 37.44 RON ISPRA 

Cetraro 61211 15.91 39.45 RON ISPRA 

Civitavecchia 61216 11.69 42.13 RON ISPRA 

Crotone 61210 17.22 39.02 RON ISPRA 

La Spezia 61219 9.83 43.93 RON ISPRA 

Mazara 61208 12.53 37.52 RON ISPRA 

Monopoli 61215 17.38 40.98 RON ISPRA 

Palermo 61209 13.34 38.26 RON ISPRA 

Ponza 61214 12.95 40.87 RON ISPRA 

Venezia 61220 12.52 45.34 RON ISPRA 

Table IV.1 List of moored buoys, limited to the ones that have been sufficiently 

operational (meaning at least 100 qc data) between July 1
st
 and Dec 31

st
 2013. 

IV.2.2 Southern North Sea 
 
For the validation of the Dutch North Sea wave results and forcing winds in-situ 
measurements maintained by the Dutch Government have been used. Figure IV.1 
shows the locations for which results are presented in this report. At some of the 
locations measurements from more than one wave measuring device are available. 
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Figure IV.1 Location of in-situ measurement stations maintained by the Dutch Government 

and from which data were used in this study. 

IV.2.3 German Bight 
 
The measurements for validation of the German Bight North Sea model results are 
obtained from the GTS (Global Telecommunications System) net that provides 
continuously wind and wave data worldwide. The wave model simulations of the fine 
resolution German Bight set-up have been validated with measurements recorded by 
the buoys of the BSH (Bundesamt für Seeschifffahrt und Hydrographie, Hamburg) 
and by the buoys of the HZG. The main focus of  directed on the conditions in the 
German Bight, therefore the discussion of the comparisons between the wave model 
results with measurements will be more detailed for that area. Figure IV.2 indicates 
the location of the buoy locations in the German Bight where wave measurements 
are available. 
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Figure IV.2 Buoy locations with measurements in the German Bight. 

IV.2.4 Atlantic Ocean and Cantabrian Sea 
 
The buoy data used for the tasks Cantabrian cross validation and the comparison of 
unstructured grid versus regular in Canary Islands come from 2 PdE netwoks: 
coastal and deep sea buoy. 
 
The Deep Sea Buoy network is based on 12 Seawatch and 3 WaveScan buoy 
stations. The instruments are located at points with depths between 200 and 800 m 
and measure atmospheric and oceanographic parameters. Measurements are 
transmitted every hour via satellite to Puertos del Estado and directly posted to the 
web. 
 
The Coastal Buoy Network is providing real time data in some specific points located 
at shallow waters. The main objective of the measurements is to complement those 
of the Deep Sea Network at those locations of special interest for the port operations 
or wave modeling validation. The buoys employed are directional Tryaxis. 
 
The buoys used from the Deep Sea Network are 7: Estaca de Bares, Cabo de 
Peñas, Santander IEO, Bilbao-Vizcaya, Villano-Sisargas, Cabo Silleiro and Tenerife 
Sur. All of them are Seawatch buoys.  The oceanographic parameters measured are 
calculated over periods of 10 min and depth of 3 m. The wave parameters are 
calculated over 26 min periods. The meteorological parameters measured are over 
10 min periods at 3 m height. 
 
The two buoys used from the Coastal Buoy Network are Santa Cruz de Tenerife and 
Las Palmas Este. These buoys only measure the directional wave and water 
temperature. 
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Buoy Network Lat Lon Depth 

Estaca de Bares  Deep Sea 44.12ºN 7.67ºW 1800 m 

Cabo de Peñas Deep Sea 43.75ºN 6.16ºW 615 m 

Santander – IEO Deep Sea 43.85ºN 3.77ºW 2500 m 

Bilbao-Vizcaya  Deep Sea 43.64ºN 3.05ºW 2136 m 

Villano-Sisargas  Deep Sea 43.50ºN 9.21ºW 386 m 

Cabo Silleiro  Deep Sea 42.12ºN 9.43ºW 600 m 

Santa Cruz de Tenerife  Coastal 28,46ºN 16,23ºW 56m 

Las Palmas Este  Coastal 28,05ºN 15,39ºW 30m 

Tenerife Sur  Deep Sea 27,99ºN 16,58ºW 710m 

Table IV.2 Buoys used for Cantabrian triple colocation and SWAN unstructured validation in 

Canary island. 

 

 
Figure IV.3 Deep Sea Buoy Network. 
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Figure IV.4 Coastal Buoy Network. 

IV.3 Satellite 

IV.3.1 Scatterometer 
 
A scatterometer is a satellite radar instrument, which provides a measure of wind 
speed and direction near the sea surface. Scatterometers measure the 
electromagnetic microwave backscatter by the wind-roughened ocean surface (Figa-
Saldaña et al., 2002). Scatterometer wind information is organised on a grid of Wind 
Vector Cells (WVCs) projected on the earth swath of the instrument. The number of 
across-swath WVCs determine the sampling resolution of the surface wind field and 
the wind information is considered to be Nyquist sampled, with modest correlation 
between neighbouring WVCs. Each WVC contains between two and four ambiguous 
local wind vector solutions that are the result of the inversion of the CMOD5 wind 
Geophysical Model Function (GMF), for a given set of backscatter values and a given 
scanning geometry (Stoffelen and Anderson, 1997; Portabella and Stoffelen, 2004). 
Each wind ambiguity is characterised by a solution probability that is determined 
based on the distance-to-cone residual after the inversion.  
 
The wind ambiguities, solution probabilities and prior information from the ECMWF 
model 10-m background wind are used in a 2D variational (2D-Var) ambiguity 
removal procedure (Vogelzang et al., 2009) to produce an analysed surface wind 
field. This wind field is then used to select the wind vector ambiguity in each WVC 
that is closest to the analysis, based on vector difference, as the solution for the 
observed surface wind. A wind vector solution flag is set to the index of the selected 
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wind ambiguity in each WVC. Finally, the backscatter measurements, wind 
ambiguities, scanning geometry and wind vector solution flag, among others, are 
made available as a scatterometer wind product1 in BUFR and NetCDF format. A 
detailed overview of past and current operational scatterometer is provided in 
Verhoef et al. (2012). Here we summarize the main characteristics of the 
scatterometers used in the MyWave study: 
  

 SeaWinds. US Ku-band (sensitive to rain) scatterometer on QuikScat satellite. 
Launched in 1999 and operational until November 2009;  

 ASCAT. European C-band (rain insensitive) scatterometer on Metop-A 
satellite. Launched 19 October 2006 and instruments A and B still operational; 

 OSCAT. Indian Ku-band (rain sensitive) scatterometer on OceanSat-2. 
Launch June 2011 and operational until February 2014. 

 
Seawinds (QSCAT) and OSCAT 10-m wind vector observations are representative 
for 25 km areas (25-km product), ASCAT provides a 12.5-km product. A relatively 
new product developed at KNMI as part of the EUMETSAT OSI-SAF activities is the 
ASCAT coastal product. Away from coastal regions this product is almost identical to 
the nominal 12.5 km product. However, an enhanced processing is applied to the 
beam footprints to calculate the wind in coastal WVCs (Verhoef et al., 2012). As such 
it is possible to compute winds as close as ~15 km from the coast, while in the 
nominal 12.5-km product, WVCs closer than ~35 km from the coast are flagged 
because of land contamination, see (Verhoef et al., 2012, Verhoef and Stoffelen, 
2011). Verhoef et al. (2012) show that the quality of coastal winds is similar to that in 
the open ocean. Figure IV.5 shows the locations of the coastal product in red and 
overlaid the 12.5 km ASCAT product in grey. Away from the coastal regions, the 
locations of the coastal and 12.5 km product overlap, but near the coasts, the coastal 
product produces substantially more winds than the 12.5 km product. For instance, 
the coverage is about doubled in the Irish Sea.   
 
                                            
1
 See http://www.knmi.nl/scatterometer 
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Figure IV.5 ASCAT observation locations over sea for the coastal product (red) and 

overlaid the 12.5 km product (grey) for all satellite overpasses on 11 July 2011 in the 

HARMONIE domain. The red band following the European coastline shows the additional 

ASCAT observations of the coastal product relative to the 12.5 km product. 

 
Figure IV.6 zooms in to North Sea between the UK and The Netherlands. The 
distance of adjacent observations near the coast is clearly smaller than 12.5 km, due 
to the advanced processing near the coast. On average the distance of observations 
from the coast has been reduced from about 50 km to about 35 km by evolving from 
the 12.5 km to the coastal product. The additional observations are potentially very 
useful for collocation with buoys that are positioned close to the coasts. Moreover, 
these additional observations may improve the modelled wind field near the coast to 
better forecast storm surge. 
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Figure IV.6 Same as Figure IV.5 but now zoomed in to the North Sea region between the 

UK and the Netherlands. White spots, e.g. at the top of the figure, indicate data void regions 

where the quality control procedure has flagged the corresponding observations as low 

quality. 

IV.3.1.1.1 QuikScat re-processing 

 
The GMF for QuikScat processing was improved in 2014. As a result, the complete 
10-year QuikScat data has been re-processed at KNMI. Figure IV.7 shows that 
statistics of the old and re-processed QuikScat product are similar for low wind 
speeds, but the bias was reduced substantially for large wind speeds. These 
statistics are preliminary as evaluations are still on-going at the time of writing. 
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Figure IV.7 Statistics of QuikScat minus buoys wind speed before (top) and after (bottom) 

QuikScat reprocessing. Red/cyan lines show the bias and standard deviation respectively. 

 
Comparing Figure IV.8 and Figure IV.9 shows that the wind speed over the North 
Sea has reduced substantially from a maximum of 10 Bft to a maximum of 9 Bft, after 
re-processing. Regions of more calm winds are largely unaffected. 

 
Figure IV.8 QuikScat 10-m wind speed measured at 9 November 2007, obtained from the 

previous version of the GMF. Combined plot of 2 QuikScat overpasses near near 04:30 UTC 

and 6:12 UTC. 
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Figure IV.9 Same as Figure IV.8 but now after re-processing. 

 
Figure IV.10 shows an intercomparison of re-processed QuikScat winds with 10-m 
HARMONIE model background winds. The proximity of the cyan and red curve 
illustrates the general close correspondence between the model and scatterometer 
winds. The large deviations between model and observations are mainly due to time 
mismatch between model analysis time and observation time, see section III.2, and 
the model positive bias for strong winds. The latter is confirmed by other studies, e.g. 
Baas (2014). 
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Figure IV.10 Scatter plot of the intercomparison of HARMONIE (y-axis) and QuikScat 

scatterometer (x-axis) wind speed over the 1 week period 4-11 November 2007. The red solid 

line is the diagonal, the cyan line the best match to the scatter points. Large deviations 

between model and observations are mainly due to time mismatch between model analysis 

time and observation time, see section III.2, and the positive model bias for strong winds. 

IV.3.2Altimeter 
 
Wave altimeter data over the North Sea and Mediterranean Sea have been extracted 
from the RADS (Doornbos, 2013, http://rads.tudelft.nl/rads/) archive and processed in 
order to provide controlled numerical fields to be used in OI procedures. This archive 
is DEOS' effort in establishing a harmonised, validated and cross-calibrated sea level 
data base from satellite altimeter data. It operates within the framework of the 
Netherlands Earth Observation NETwork NEONET, an internet facility, funded by the 
Dutch government (BCRS and SRON), for exploitation of remote-sensing expertise 
and data. The retrieved altimeters are listed in Table IV.3. 
 
Handling of the altimeter data via the RADS system after the web retrieval consists in 
selecting the available data, within all available satellite cycles, with reference to a 
certain area and time interval, as well as to a certain number of parameters.  
 
For the project purpose, in the Mediterranean Sea significant wave height and wind 
speed data were considered with an overall quality check based on the following 
parameters: norm std dev of range (threshold 0.15), norm std dev of significant wave 
height (1.00) and, wherever available, off-nadir angle squared from waveform 
(0.40).In the North Sea only significant wave height data were considered. 

http://rads.tudelft.nl/rads/
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Mission Name id Launched Provider 

ERS-2 23560 21 Apr 1995 TuDelft 

GFO-1 25157 10 Feb 1998 TuDelft 

ENVISAT1 27386 1 Mar 2002 TuDelft 

Jason 2 33105 20 Jun 2008 TuDelft 

CryoSat 2 36508 8 Apr 2010 TuDelft 

Saral-Altika 39086 25 Feb 2013 TuDelft 

Table IV.3 List of considered satellite missions altimetry data. 
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V COASTAL WAVE FORECAST 

V.1Introduction 

This chapter is dedicated to the validation of the considered Mediterranean Sea, 
North Sea and North Atlantic wave forecasts. Each section deals with one region. 
Effects of 3D-Var EnKF and NN data assimilation are considered separately in 
sections V.3.3, V.3.5 and V.4. A detailed triple collocation study is reported in the 
next section and in Section V.5.2. The final section of this chapter compares the 
unstructed gridding with the grid nesting ways of obtaining high resolution coastal 
wave forecasts. 

V.2 Mediterranean Sea 

In this section we present the results of MyWave subtask 2.2.3, which aim is to cross 
validate in-situ and satellite measurements, together with wind speed and wave 
height forecasts. In particular the target is a realistic assessment of the accuracy of in 
situ and satellite measurements in the Mediterranean Sea. 

V.2.1 Introduction 
 
Observations are affected by errors. In a statistical sense, this means that a single 
observation is a realization of the convolution of the true climate distribution and the 
error distribution. These errors are helpful for a number of operations along the 
forecast process. For example, the design and the verification of an ensemble 
system does strongly depend on them. The exclusion of errors in the validation 
process would indicate a somehow “fake” reliability for the considered Ensemble 
Prediction System (EPS). For example, if the EPS were perfectly reliable, then it 
would lack of reliability if verified against pure observations. 
 
V.2.1.1Available Data 
 
In MyWave we have the opportunity to make use of high resolution forecast for the 
estimate of in situ and satellite instrument error uncertainties. The work done so far in 
WP3 has made an extensive set of co-located observations in Mediterranean Sea 
available to MyWave partners. The data set covers the six months period ranging 
from July 1st to December 31st 2013. Thanks to the cooperation between UKMO, 
ISMAR and USAM, each observation is co-located with both UKMO and Nettuno 
(nearest neighbour) forecast systems. In the following we make use of the 
(supposed) independence of the two forecast errors in order to extensively asses the 
error uncertainties for all the available observations set. 
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Figure V.1 Schematic representation of an instrument dataset. 

 
For each instrument we present here the statistical characterization of the observed 
data. The representations are given graphically, and can be read with the help of 
Figure V.1. Buoys wind speed and significant wave height sets are depicted in Figure 

V.2 and Figure V.3, respectively. We must add that the stations list is restricted to 
those which turned out to be useful for the present work. That is, stations with a very 
small number of points are flagged as unreliable for that particular variable, therefore 
not considered. Altimeter (U10 and HS) are given in Figure V.4, and Scatterometer 
wind speed distributions are rendered in Figure V.5. 
 

 
Figure V.2 Buoy observations. Distributions of wind speed measurements. 
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Figure V.3 As Figure V.2 but for significant wave height measurements. 

 

  
Figure V.4 Altimeter observations. Distributions of wind speed (left) and significant wave 

height (right) measurements. 

 

 
Figure V.5 Scatterometer observations. Distributions of wind speed measurements. 

 
V.2.1.2 Methodology 
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The estimate of the accuracy of a signal (observation or forecast) can be assessed 
by means of the cross estimation between three signals, via triple collocation 
(Stoffelen, 1998; Janssen, et al. 2007). This technique requires that the three signals 
(xi) are estimators of the true signal s: 
 

1,2,3i i i i  x s e  (2) 

 
The fundamental hypothesis states that the errors (ei) associated to the signals are 
mutually independent, i.e.: 
 

jij

T

i  0ee  (3) 

 
and that they are not correlated with the true signal. The output of the procedure are 
the absolute estimates of the three error 2-norms (root mean squared errors), 
together with the estimates of two relative slopes, that is the set: 
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with arbitrary choice of the indices. 
 
In the present work, due to the limited extension of some subsamples, the confidence 
intervals are retrieved via a Monte Carlo bootstrap algorithm. Moreover, prior to each 
triple collocation, we make sure that each subsample is unbiased by subtracting the 
subsample mean value. In this way, the error estimates are actually the error 
standard deviations, i.e., the measure of the error uncertainties. In other words, we 
replace the hypotheses on error orthogonality with the same condition applied to 
unbiased errors. That is 
 

    jijj

T

ii  0eeee  (5) 

 
and 
 

  0 s
T

ii ee . (6) 

V.2.2Observations Accuracies 
 
In this paragraph we present the results of triple collocation assessment for each one 
of the available (and consistent) data set. Following figures (Figure V.6 to Figure V.9) 
give, instrument by instrument, the estimated error uncertainties together with error 
bars. These indicate the 90% confidence intervals as estimated from the plain 
bootstrap procedure. For sake of uniformity with literature results, the results are 
given as scatter index, that is the error uncertainties are normalized dividing them by 
the observations sample mean. 
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There might be the case of a low energetic sample in which the truncation errors 
become very important. In the scatter index fashion, the errors are therefore 
amplified. For example, most of the RON buoys are provided by the same producer, 
same model, and operate with the same software. But observing Figure V.7 alone 
there seems to be a huge difference in performance between Alghero and Mazara 
buoys. With an eye to Figure V.3 one can argue that the reason of performance 
difference may come from the fact that Alghero climate is much more energetic than 
Mazara’s. The differences in normalized error uncertainties between buoys may 
therefore strongly depend on the observed climate due to the speed scaling and the 
spatial representativeness errors (Stoffelen, 1998). 
 
In the case of satellite measurements, their behaviour is very similar to what 
previously reported in literature (see e.g. Janssen, et al. 2007) with few differences 
between instruments. Altimeter wind speed scatter index (Figure V.8) varies between 
22% (CryoSat) and 24% (Jason 2), while scatterometer (Figure V.9) relative 
uncertainty varies between 19% (MetOpB) and 22% (MetOpA). The altimeter errors 
on HS do strongly depend on the mission: CryoSat uncertainty is approximately 24% 
of the sample mean, Jason’ is 21% and Altika is 18% (Figure V.8). 
 

 
Figure V.6 Accuracy of wind speed buoy observations. Results are dressed with 90% 

bootstrap confidence intervals. 
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Figure V.7 As Figure V.6 but for significant wave height measurements. 

 

 
Figure V.8 Altimeter normalized errors. Wind speed (left) and significant wave height 

(right). 

 
Figure V.9 Normalized errors of scatterometer wind speed observations. 
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V.2.3 Overall Accuracies 
 
In this paragraph we give the results of the triple collocation procedure for the overall 
dataset. We persist with the distinction instrument type by instrument type, but we 
consider them as a whole, in order to evaluate the somehow averaged uncertainties 
in the Mediterranean Sea. In this case, we also give the regression slopes of the 
model control forecasts (relative to the instrument) and the models associated 
uncertainties. 
 
Since the model errors, true signal and amplifications are expected to vary along 
forecast lead time, we perform triple collocation on 6 hours overlapping time 
windows. In the case of scatterometers, the number of observations are not evenly 
distributed over the day. In fact there are few hours when none of the three 
considered instruments passes over the Mediterranean Sea. In this case, the results 
are given for first and second forecast day only. 
 
In the case of buoys both wind speed (U10, Figure V.10) and significant wave height 
(HS, Figure V.11) error uncertainties of the instruments appear to be relatively stable 
along forecast lead time. This partially confirms the triple collocation hypotheses. 
That is to say that there’s no correlation between some of the couples formed by the 
errors and the true signal, or that all correlation effects cancel each other. On the 
other side, errors grow for both models with forecast lead time. We must underline 
that the error uncertainties of both Nettuno and UKMO control runs are practically 
coincident at buoy locations. 
 
In the case of altimeters, some of the non-correlation hypotheses seems to fail. We 
can observe the effect in the bottom panels of Figure V.12 (U10) and Figure V.13 
(HS). Instrument error uncertainties seem to grow along forecast lead time, due to 
reduced correlation with the degraded model fields. The buoy and altimeter errors 
that both resolve more small-scale signal that the model, become increasingly 
correlated when the signal (in the model) decreases, therefore invalidating the simple 
triple collocation procedure. A spatial representativeness error may be considered to 
improve the interpretation (Vogelzang et al., 2011; Stoffelen, 1998). The same is 
observed in Figure V.14 for scatterometer wind speed.  
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Figure V.10 Relative slope (top) and accuracy (bottom) of UKMO and Nettuno wind 
speed control forecast. The slopes are evaluated with respect to buoy observations. 
 

 
Figure V.11 Same as Figure V.10 but for significant wave height. 
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Figure V.12 As Figure V.10 but for altimeter wind speed observations. 
 

 
Figure V.13 As Figure V.10 but for altimeter significant wave height observations. 
 
Let’s add a few words about the control forecasts behaviour. These have been 
extensively validated in WP3 (D3.4), but here we present a different point of view, 
which should be seen as a pre-validating process. The above figures describe the 
overall errors of the de-biased models, if triple collocation hypotheses were true. We 
hereby confirm that Nettuno, with respect to UKMO, presents a higher tendency to 
amplify the true signal. Regarding significant wave heights, Nettuno errors are slightly 
less uncertain than UKMO ones. The opposite occurs in the forecast wind speed 
field. 
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Figure V.14 Relative slope (left) and accuracy (right) of UKMO and Nettuno wind speed 

control forecast. The slopes are evaluated with respect to scatterometer observations. 

V.3 Southern North Sea 

V.3.1 Introduction 
 
In this section the results of the Southern North Sea forecast and data assimilation 
experiments are reported. Both atmospheric model and wave model results are 
presented. The atmospheric model experiments have been carried out by KNMI 
using their HARMONIE model. The wave modelling experiments have been carried 
out by Deltares using the SWAN North model (SWAN-DCSM). Four periods have 
been considered in the experiments and they are briefly described in the next 
section. In Section V.3.3 the HARMONIE experiments are described. In Section 
V.3.4 the wave model results are assessed using a different forcing winds, including 
those resulting from the HARMONIE experiments. At last, a SWAN-DCSM data 
assimilation experiment is presented in Section V.3.5. 

V.3.2 Storm periods 
 
Four storm periods have been agreed upon the MyWave partners for the verification 
of model wind and wave predictions in the Southern North Sea. These four periods 
are: 

 Period 1 – from 28 October until 3 November 2006 – This period is 
characterized by a NW-W storm. On the 1st of November 2006 a sharp trough 
(convergence zone in cold air) circles over the North Sea to the south, steered 
by a rapid eastward moving storm low in the northern North Sea. Wind 
variations (increase and decrease, as well as direction changes) are large 
during the day, temperature variations small (cold air event). The storm is 
marked as a surge- and SWL record in Delfzijl and well known as 
Allerheiligenvloed or the “Horses storm”, because 227 horses were isolated 
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due to flood in Marrum, 25 horses drowned, the rest was saved in a 
spectacular rescue operation. 

 Period 2 – from 4 until 11 November 2007 – On 08 November 2007 an 
intensifying low moves over the southern Norwegian Sea to Skagerak, the 
next day with decreasing intensity to the central Baltic. In its intensifying period 
it causes a north-westerly storm field over the central North Sea with a long 
fetch over water on the 9th. As a cold-air-mass-event the temperature 
changes at 1.5 km are small, about max. 5 ºC, the air mass is unstable (in 
November with relative warm seawater). This NW storm is the first since the 
building of the Nieuwe Waterweg (Dutch for “New Waterway”) and the 
Maeslantkering (Dutch for “Maeslant barrier”, 
http://en.wikipedia.org/wiki/Maeslantkering) that led to the closure/activation 
of the Maeslantkering storm surge barrier.  

 Period 3 – from 11 until 17 July 2011 - This period is characterized by a NE 
storm which is not very common but interesting. It is one of the periods used in 
the benchmark assessment of the operational SWAN model for the North Sea. 

 Period 4 – from 6 December until 6 January 2012 - A 1 month period that 
includes storm Ulli (http://en.wikipedia.org/wiki/Cyclone_Ulli). This longer 
period is considered in order to obtain more robust statistics of the models 
performances. 

V.3.3 Data assimilation in HARMONIE 
 
V.3.3.1 HARMONIE data assimilation period 2 
 
Period 2 extends from 4-11 November 2007. A brief description of the event is found 
above and in [DR1]. Four experiments with the HARMONIE model were conducted 
for this period: 
 

1. No data assimilation, i.e., downscaling from ECMWF model forecasts (NODA) 
2. Data assimilation of conventional observations only (CONV). A 3-hour 

assimilation window was used. 
3. Same as (2) but with additional assimilation of scatterometer winds from 

ASCAT and QuikScat (CONV+SCAT). The default settings for scatterometer 
assimilation were used. These are related to ECMWF’s strategy of 
scatterometer assimilation: ASCAT thinning to 100 km distance between 
adjacent observations and no thinning applied to QSCAT. 

4. Same as (3) but without ASCAT thinning (CONV+SCAT-NOTHIN) 
 

Figure V.15 shows a typical example of the coverage of used observations by 
HARMONIE for two assimilation cycles. The coarse coverage of ASCAT winds in the 
left panel clearly shows the thinning when default settings are applied (experiment 3 
(CONV+SCAT) mentioned above). In the “no-thinning” experiment 4 ASCAT 
observations at all grey dots are used. The right panel of Figure V.15 shows that 
most QSCAT observations are used. Missing data are mainly related to quality 
control checks, e.g., removing observations affected by rain or too large background 
departures. 
 

http://en.wikipedia.org/wiki/Maeslantkering
http://en.wikipedia.org/wiki/Storm_surge
http://en.wikipedia.org/wiki/Cyclone_Ulli
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Figure V.15 Observations used by HARMONIE on 4 November 2007 for the 12 UTC 

analysis (left) and 18 UTC analysis (right). Colours indicate the different observing systems: 

SYNOP stations (magenta), radiosonde (blue triangle), AMDAR (brown), ASCAT (light 

green) and QSCAT (dark green). The grey spots indicate all scatterometer locations. 

 
The Maeslantkering (part of the Dutch coastal flooding defense system) was closed 
for the first time on 9 November 2007. Figure V.16 and Figure V.17 show 4 
HARMONIE forecasts, corresponding to the 4 experiments defined above, valid on 9 
November 2007 at 06 UTC. For comparison, Figure V.18 shows the ECMWF 
forecast valid at the same time. ECMWF shows maximum wind speeds of 9 Bft over 
the North Sea in agreement with observations from QuikScat measured around the 
same time, see Figure IV.9. The maximum wind speed in all HARMONIE runs is 10 
Bft, i.e., larger than ECMWF and as observed by QuikScat, confirming the positive 
wind speed bias of HARMONIE for strong winds, see also Figure IV.10. 
 
The differences between the 4 HARMONIE runs in Figure V.16 and Figure V.17   are 
rather subtle. When zooming in to the Dutch coastal area in Figure V.19, the 
experiment including scatterometer winds shows increased winds in the South-
Westerly part of the Netherlands (Zeeland). Validation with independent observations 
from e.g. wind masts is needed to conclude which experimental set up performs best, 
see Section V.3.4.2. 
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Figure V.16 6-hour HARMONIE forecasts valid at 9 November 2007 06 UTC from 

experiment 1 (NODA) (left) and experiment 2 using conventional observations only (CONV). 

The colours in the legend on the right hand side go from 1-12 Bft. 

 
Figure V.17 Same as Figure V.16 but now for experiment 3 (CONV+SCAT) (left) and 

experiment 4 (CONV+SCAT-NOTHIN) (right). 

 
Figure V.18 Same as Figure V.16 but now for the ECMWF model. 
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Figure V.19 6-hour HARMONIE forecasts valid at 9 November 2007 06 UTC, with focus 

on the Dutch coastal area, from the NODA (upper left), ECMWF (upper right) and 

CONV+SCAT-NOTHIN (bottom left) experiments. The bottom right panel shows QuikScat, 

i.e., zoomed in from Figure IV.9. 

 
Comparing the HARMONIE forecasts with ECMWF and QuikScat observations in 
Figure V.19 it is clear that HARMONIE generates much more small-scale structures 
than ECMWF and observed, an indication that HARMONIE is too excessive on 
convective processes and/or rain; it was verified that the model produced rain around 
06 UTC. This was further evaluated by considering satellite imagery from the 
MeteoSat 2nd generation geostationary platform. Figure V.20 in combination with the 
flow pattern from e.g. Figure V.18 indicates a large scale flow pattern from the North 
Pole area moving towards Europe. Cold air flow over relatively warm ocean surface 
water triggers convection and up-and-down drafts, so called rolls. These rolls grow 
with distance from the origin of the flow. Well-developed rolls are separated over 
longer distances and have deepened, visualized by the darker clouds over the 
Southern part of the North-Sea in the infrared image. The satellite figures show 
strong convective activity over the North-Sea, but from these figures it is not clear 
whether this produced rain around 06 UTC. The rain flags in the QuikScat product 
were off, indicating that no rain was observed by QuikScat. We note that the 
QuikScat effective footprint is about 50 km (for the used 25-km product), i.e., much 
lower than the HARMONIE model grid size. The scatterometer observations thus 
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give no clue on the actual occurrence and realism of the small-scale model 
structures.  

 
Figure V.20 Imagery from the geostationary MeteoSat Second Generation satellite on 9 

November 2007 06 UTC from the Infrared (IR) channels (top left) and water vapour (WV) 

channel (top right). The lower left panel zooms in on the UK and North-Sea area. The bottom 

right panel shows the domain of the top panel figures. White/black spots in the IR figure 

correspond to relatively cold/warm regions. The temperature over the UK was around 3 

degrees, while the ocean temperature was about 9 degrees Celsius. 

 
Figure V.21 is another way of showing the small-scale features present in the model 
but not found in the QuikScat observations. It is noted that data assimilation systems 
assume all observations as point observations, also for area average observation like 
scatterometer. For global models with a typical grid size of 10-20 km and an effective 
model resolution of 100-200 km or lower this assumption may be approximately valid. 
However, this assumption breaks down for mesoscale models with grid sizes in the 
order of 3 km and smaller. Figure V.22 shows that averaging in the model domain 
equal to the observation footprint size makes the model state more representative for 
the observation, i.e., the cyan vectors, rather than the blue vectors, are better in 
agreement with the red vectors. Mesoscale data assimilation will therefore profit from 
more advanced observation operators that take into account the observation footprint 
size. 
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Figure V.21 HARMONIE 6-hour 10-m wind forecast valid on 9 November 2007 06 UTC 

(dark blue). Wind vectors are plot on the 2.5 km HARMONIE grid. Overlaid, QuikScat 

observations used (cyan) and not used (red) by data assimilation. 

 
Figure V.22 Same as Figure V.21 but zoomed in and the HARMONIE model wind (dark 

blue) thinned to 25-km distance separation, i.e., the distance of neighboring QuikScat 

observations. The cyan vectors are the result of averaging HARMONIE winds over 25x25 km 

boxes. 
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Finally, we would emphasize that data assimilation cannot compensate for model 
deficiencies, such as biases. The left panel of Figure V.23 shows the background 
state of the 06 UTC analysis in the right panel. Clearly, QuikScat has been able to 
reduce the too strong background winds North of Germany, near Denmark. However, 
the subsequent forecasts in Figure V.24 and Figure V.25 show that the model tends 
to strengthen the wind field again. Already, after 3 hours the wind field bias is at the 
same level as before the assimilation of QuikScat. 

 
Figure V.23 HARMONIE 3-hour forecast valid at 9 November 2007 06 UTC (left) and 

HARMONIE analysis valid for the same time (right). 

 
Figure V.24 Left: 1-hour forecast initiated from the 06 UTC analysis in the right panel of 

Figure V.23. Right: similar but now for a 2-hour forecast 
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Figure V.25 Same as Figure V.24, but now the 3-hour forecast initiated from the 06 UTC 

analysis. 

 
V.3.3.2 HARMONIE data assimilation period 4 
Period 4 extends from 6 December 2011 until 6 January 2012 and covers the period 
before and at the moment that storm Ulli hit West Europe and gave high water levels 
in the Netherlands on 5 January 2011. A more complete description of the event is 
found in [DR1]. Three experiments with the HARMONIE model were conducted for 
this period: 
 

1. Data assimilation of conventional observations only. The assimilation window 
is 3 hours. (CONV-3h) 

2. Same as (1) but with additional assimilation of scatterometer winds from 
ASCAT and OSCAT (CONV+SCAT-3h). Scatterometer observations were 
used at their maximum resolution, i.e., no data thinning was applied  

3. Same as (2) but for a 1-hour assimilation window (CONV+SCAT-1h) 
 
The 3rd experiment with a 1-hour assimilation window was used for the first time in 
HARMONIE and motivated by the findings from the earlier experiments of period 2, 
see section V.3.3.1, that a 3 hour window may be too large for high-impact weather 
events discussed in this report. 
 
An advantage of 1-hour over 3-hour cycling is that about 3 times more observations 
from SYNOP stations and buoys are used. Second, the timing mismatch between 
asynoptic observations and the analysis time as discussed in III.2 is less prominent. 
Table V.1 and Table V.2 show that both the bias and standard deviation of the 
background departures are smaller for 1-hour assimilation window. The number of 
used observations is expected to be slightly larger because of reduced time-
mismatch and subsequent denial of observations through quality control (background 
departure check). This is true indeed for ASCAT, but surprisingly not for OSCAT. 
Further study is needed here. 
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(m/s) ASCAT-u ASCAT-v OSCAT-u OSCAT-v 

3-h window 0.06/0.01 -0.77/-0.14 0.40/0.29 -0.33/-0.01 

1-h window -0.03/-0.00 -0.66/-0.11 0.31/0.18 -0.56/-0.29 

Table V.1 Background departures (o-b) bias (m/s) for the 10-m wind components of 

ASCAT and OSCAT for the experiment with a 3-hour and 1-hour assimilation window. 

Statistics are based on the 1-month period: 6/12/2011 – 6/1/2012.  

 

(m/s) ASCAT-u ASCAT-v OSCAT-u OSCAT-v 

3-h window 2.02/1.11 1.86/1.00 2.17/1.61 1.9/1.61 

1-h window 1.79/1.01 1.72/0.93 1.76/1.24 1.84/1.31 

Table V.2 Same as Table V.1 but now for the standard deviation (m/s). 

 

# ASCAT-u ASCAT-v OSCAT-u OSCAT-v 

3-h window 56087 56087 9994 9994 

1-h window 58810 58810 8634 8634 

Table V.3 The number of used observations over the 1-month period in the 3-hour and 1-

hour experiments. 

 

Model forecast output of all 3 HARMONIE experiments has been compared to 
independent wind and surface pressure observations measured by buoys (from 
standard averaging over a 10-minute period) and ships. Observation quality control 
was limited to removing duplicate observations at a single time step but reported at 
different locations. More strict quality control by removing observation outliers was 
not implemented. Presented statistics below should therefore be considered as 
relative, comparing the various experiments, rather than as absolute measures. The 
location of the buoys and ships over the 1-month period is displayed in Figure V.26. 
 

 
Figure V.26 Locations of buoys (red triangle) and ships (colored tracks) over the 1-month 

period 6/12/2011 – 6/1/2012. 
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Next, for each of the 3 experiments the nearest forecast to observation location time 
is used and interpolated to the observation location. For each experiment forecasts 
were generated at 1 hour intervals. Experiments CONV-3h and CONV+SCAT-3h 
have 3-hour assimilation cycles and either 1-h, 2-h or 3-h forecasts used for the 
comparison with observations. For the CONV+SCAT-1h experiment only 1-hour 
forecasts are used. In addition ECMWF model forecasts are used in the evaluation. 
These are available at hourly interval but only starting from 00 and 12 UTC. This 
means that for the comparison with observations 1-h, 2-h, …., 12-h forecasts are 
used for ECMWF. Figure V.27 and Figure V.28 show a typical example for a buoy 
located in the North-Sea. 
 

 
Figure V.27 Time series of buoy (black) mean sea level pressure (hPa) (left) and wind 

speed (right) for buoy number 62123 located at latitude 56.30 degrees and longitude 2.20 

degrees. Model winds from nearest available forecasts are obtained from ECMWF (red) and 

the 3 HARMONIE runs: CONV-3h (blue), CONV+SCAT-3h (cyan) and CONV+SCAT-1h 

(green). See text for details of these experiments. The title provides statistics of (o-b), 

including bias and RMSE and the correlation value between time series. 

 

 
Figure V.28 Same as Figure V.27 but now for the 10-m zonal (left) and meridional (right) 

wind components. 

 
For each buoy and ship statistics of the background departures, (o-b), have been 
calculated. Buoy observations were obtained from standard averaging over a 10-
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minute period. In addition the correlation values of the observation and model time 
series were calculated for the 3 HARMONIE model runs and ECMWF. Combining the 
statistics of all buoys and ships in a single plot in Figure V.29 and Figure V.30 shows 
the added value of using a 1-hour assimilation cycle for HARMONIE: the model wind 
for the 1-hour cycle is closer to the observations for both wind components and wind 
speed. Also the correlation value is generally larger. However, mean sea level 
pressure becomes slightly worse in the 1-hour cycling experiment. Also, ECMWF 
generally outperforms all HARMONIE experiments except for the meriodonal wind 
component of ships. Also the correlation value is generally higher for CONV+SCAT-
1h than ECMWF. As mentioned above, the RMSE errors in Figure V.29 and Figure 
V.30 do include representativeness errors, that are larger for ECMWF than 
HARMONIE given the 10-minute integration period of buoy observations. In addition, 
outliers may have entered the statistics. Given these limitations, the presented 
absolute values should be treated with care and focus should be on the relative 
intercomparison of the various experiments. 
 

 
Figure V.29 Mean of RMSE of observation minus forecast for all buoys. Same for the 

correlation value (right). Each coloured bar corresponds to the experiment as provided by the 

legend. The 4 groups in each plot correspond to the zonal wind component, meridional wind 

component, wind speed and mean sea level pressure respectively. 

 

 
Figure V.30 Same as Figure V.29 but now for all ships. 
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V.3.3.3 Conclusions and recommendations from the HARMONIE data assimilation 
experiments 
 
The following conclusions and recommendations follow from the results presented 
above.  
 

 The time mismatch between observation time of (satellite) observations and 
analysis time reduces observational impact in a 3D-Var assimilation system 
because many observations are rejected from the analysis. This is most 
prominent in high impact weather events with a strong flow, for instance giving 
a large discrepancy of the location of a front as observed and at analysis time. 
It was concluded that a 6-hour, but also a 3-h (currently operational) 
assimilation window is too large for such events. A 1-h window showed 
significant improved results that is explained by (i) a larger number of used 
observations in the analysis and (ii) mitigation of time mismatch between 
observation and analysis time. It was found that HARMONIE model fields from 
1-h cycling better fit to pressure and wind observations from buoys and ships. 
Ultimately, a 4D-Var system will solve the timing issue, but this is still under 
development in the HARMONIE community. 

 HARMONIE better resolves convective processes and small-scale 
phenomena like squall lines and polar lows than Hirlam and ECMWF. A 
challenge remains to improve mesoscale model deterministic forecasts, i.e., to 
use the observational information to get the small-scale phenomena at the 
right location at the right time in the model simulation. Currently, the additional 
variance in mesoscale models relative to global models reduces forecast skill, 
using classical measures like bias and RMSE. In other words, HARMONIE 
small-scale spatial structures look realistic but are not real, i.e., they do not 
verify with observations. Within the HARMONIE community, quite some effort 
is put to solve this issue which includes going from 3D-Var to 4D-Var, a better 
representation of background error covariances (structure functions), optimal 
use (weight, thinning, superobbing) of observations in the assimilation and 
improving the model itself. 

 HARMONIE overestimates the wind speed for strong winds exceeding 15 ms-

1. First results at the Norwegian Meteorological Institute indicate that a 
physically consistent coupling of the HARMONIE atmosphere with 
ocean/wave parameters mitigates HARMONIE ocean surface wind biases due 
to increased roughness. The physical coupling includes a more sophisticated 
formulation of ocean roughness, i.e., going from a relation where the 
roughness is described by wind only, to a formulation where the surface 
roughness length scale depends on the ocean wave spectrum, also including 
the effect of wave age and wave steepness. This is work in progress and may 
be validated with satellite wind and wave data. 

 Data assimilation cannot compensate for model deficiencies, such as biases. 
Successful assimilation relies on bias correction of both the observations and 
model. The preferred strategy in case model biases cannot be corrected may 
be to add the bias to the observations, do the assimilation next and correct the 
bias in a post-processing step. This approach has not been implemented and 
more research is needed. 
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Mesoscale data assimilation will profit from more advanced observation operators 
that take into account the observation footprint size. For instance scatterometer 
observation footprints typically cover 12.5 to 50 km areas. Yet, they are still treated 
as point observations which may be a good approximation for global models but less 
so for mesoscale models, because the footprint is large compared to the mesoscale 
model grid size.  

V.3.4 SWAN performance 
 
The performance of the SWAN-DCSM model is assessed by hindcasting the 
considered four period using different wind fields. The considered wind fields are:  

 The operational HIRLAM wind fields, which are the ones used currently to 
force the model operationally and have a spatial resolution of about 20 km x 
20 km in the earlier periods and about 10 km x 10 km in the more recent 
periods. 

 The wind fields from the operational ECMWF model, which is used to force 
HARMONIE in the experiments carried out by KNMI and have a spatial 
resolution of about 25 km x 25 km. 

 The HARMONIE wind fields from the experiments carried out by KNMI and 
which have a spatial resolution of about 2.5 km x 2.5 km. 

 
Because the HARMONIE winds do not cover the whole SWAN-DCSM grid (cf. Figure 
II.1 and Figure II.2), these have been augmented with the ECMWF winds in order to 
use them to force the SWAM-DCSM model. An example of such augmentation is 
shown in Figure V.31. 
 

 
Figure V.31 Augmentation of the HARMONIE wind using the ECMWF wind. Top left 

panel: Original HARMONIE wind, which is available in a curvilinear grid with a resolution 
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of 2.5 km x 2.5 km. Top right panel: ECMWF wind in the region covered by the SWAN-DCSM 

model and linearly interpolated to a regular grid with a resolution of 2.5 km x 2.5 km. Bottom 

left panel: HARMONIE wind interpolated using the nearest neighbour to a regular grid with 

a resolution of 2.5 km x 2.5 km covering the region of the SWAN-DCSM model. Bottom right 

panel: Final field obtained by filling the gaps in the data shown in bottom left panel using the 

ECMWF data shown in the top right panel.  

 
In the setting up and validation of the operational SWAN-DCSM model a number of 
whitecapping and bottom friction settings have been assessed. In all SWAN 
computations reported here the Westhuysen whitecapping formulation and a bottom 
fiction coefficient of 0.038 were applied. The remaining SWAN settings are equal to 
those used operationally.  
 
The computed waves at the five in-situ locations shown in Figure B.2.2 have been 
validated against the available hourly in-situ measurements of significant wave 
height, mean wave period and mean wave direction and against wave height 
altimeter measurements of the significant wave height. Because the considered 
periods are relatively short to compute error statistics from the altimeter data (there 
are at most a few colocations per period) no statistics with relation to the altimeter 
data are presented. In all cases where the collocation of model, in-situ and altimeter 
significant wave height data were possible, the altimeter wave heights were very 
close to those of the in-situ measurements. The applied wind fields were validated at 
the five in-situ locations shown in Figure B.2.2 against hourly in-situ measurements 
(corrected using a Charnock relation to a height of 10 m) and scatterometer data. 
Again the colocations with the scatterometer data are limited due to the considered 
short periods. No error statistics of the model results with relation to Scatterometer 
data are presented, but the data are shown in the time series plots. 
 
V.3.4.1 Period 1 
 
We start by presenting the results for period 1. In this period the SWAN-DCSM model 
was forced using three wind datasets:  

 HIRLAM three hourly data from the operational forecast, 

 the HARMONIE hourly data from an experiment run by KNMI (although not 
presented in the previous section) with scatteromenter data assimilation with 
an assimilation window of 1 hour, 

 ECMWF three hourly data from the operational forecast. 
 
The model results are compared with the observations in the following figures and 
tables from locations: K13, Euro platform (EPL in Figure B.2.2), L.E. Goeree (LEG in 
Figure B.2.2), IJmuiden (MUNS in Figure B.2.2) and ELG (ELD in Figure B.2.2). The 
figures show the time-series of the computed and observed significant wave height, 
mean wave period, mean wave direction, wind speed and direction. The tables show 
the bias, RMSE and correlation (R) between the model results and the in-situ 
observations. For locations Euro platform and IJmuiden wave observations from two 
measuring devices are available. There are no wind measurements available 
IJmuiden and ELG and no wave direction measurements available at K13 and L.E. 
Goeree. 
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The results show that the model results compare generally well with the observations 

with the RMSE in sH , 1,0mT   and 10U  being of at most 0.4 m, 0.7 s and 1.7 m/s, 

respectively; errors in wind and wave directions are generally of less than 20 
degrees. The model results are quite close to each other, with the differences 
between model results being much less than the differences between the model 
results and the observations. In general the results of the model forced with the 
ECMWF winds compare slightly better with the observations than the results of the 
models forced with the HIRLAM and the HARMONIE winds, although for certain 

variables at and at certain locations (e.g. sH  at K13, cf. Table V.4) the results of the 

model forced with the HARMONIE winds are those closer to the observations. The 
wave height at the peak of the storm are underestimated at the offshore location K13 
and underestimated at the other locations. 

 

K13 29/10/2006-03/11/2006 sH  (m) 1,0mT   (s) 

n bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 132 -0.18 0.41 0.97 -0.35 0.63 0.96 

 
ECMWF  

 132 -0.33 0.42 0.99 -0.56 0.73 0.97 

 
HARMORIE  

(scat. 1h assim.) 132 -0.04 0.34 0.98 -0.23 0.56 0.96 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
HIRLAM  

 132 0.36 1.35 0.95 -10.02 14.88 0.95 

 
ECMWF  

 132 0.24 1.29 0.95 -6.31 12.75 0.95 

 
HARMORIE  

(scat. 1h assim.) 132 0.77 1.47 0.96 -6.23 12.23 0.95 

Table V.4 Error statistics of the modeled wind and waves at K13 platform. 
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Figure V.32 Comparisons at K13 between the observed and the modeled wind and waves 

using different forcing winds. 

 

Euro platform 29/10/2006-03/11/2006 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 132 
-

0.04 0.34 0.97 -0.22 0.47 0.96 

  
ECMWF  

 132 
-

0.14 0.29 0.98 -0.33 0.44 0.97 

 
HARMORIE  

(scat. 1h assim.) 132 0.08 0.33 0.98 -0.07 0.39 0.96 

Directional 

buoy 

HIRLAM  

 132 
-

0.06 0.34 0.97 -0.24 0.48 0.95 -3.00 14.00 0.92 

 
ECMWF  

 132 
-

0.17 0.29 0.98 -0.35 0.47 0.97 -0.11 11.02 0.94 

 
HARMORIE  

(scat. 1h assim.) 132 0.06 0.30 0.98 -0.08 0.40 0.95 -2.72 13.39 0.93 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
HIRLAM  

 132 0.14 1.63 0.92 -1.88 18.41 0.86 

 
ECMWF  

 132 
-

0.09 1.47 0.94 -0.65 13.93 0.91 

 
HARMORIE  

(scat. 1h assim.) 132 0.38 1.66 0.92 -1.80 14.86 0.90 

Table V.5 Error statistics of the modeled wind and waves at Euro platform. 
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Figure V.33 Comparisons at Euro platform between the observed and the modeled wind 

and waves using different forcing winds. 

 

L.E. Goeree 29/10/2006-03/11/2006 sH  (m) 1,0mT   (s) 

n bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 132 0.04 0.36 0.97 -0.13 0.47 0.96 

 
ECMWF  

 132 
-

0.02 0.27 0.98 -0.25 0.41 0.97 

 
HARMORIE  

(scat. 1h assim.) 132 0.16 0.39 0.97 0.03 0.43 0.96 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
HIRLAM  

 132 0.10 1.41 0.94 -1.81 17.68 0.87 

 
ECMWF  

 132 0.30 1.50 0.93 0.99 16.07 0.88 

 
HARMORIE  

(scat. 1h assim.) 132 0.39 1.50 0.94 -0.87 21.77 0.84 

Table V.6 Error statistics of the modeled wind and waves at L.E. Goeree. 
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Figure V.34 Comparisons at L.E. Goeree platform between the observed and the modeled 

wind and waves using different forcing winds. 

 

IJmuiden  

28/10/2006-03/11/2006 
sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Buoy 
HIRLAM  

 131 -0.17 0.35 0.98 -0.39 0.63 0.96 

  
ECMWF  

 131 -0.25 0.33 0.99 -0.56 0.72 0.97 

 
HARMORIE  

(scat. 1h assim.) 131 -0.04 0.32 0.98 -0.23 0.53 0.96 

Directional 

buoy 

HIRLAM  

 126 -0.25 0.39 0.98 -0.44 0.63 0.97 -3.75 19.46 0.87 

 
ECMWF  

 126 -0.31 0.39 0.99 -0.60 0.74 0.97 -1.62 15.71 0.89 

 
HARMORIE  

(scat. 1h assim.) 126 -0.11 0.33 0.98 -0.27 0.54 0.97 -3.00 18.53 0.87 

Table V.7 Error statistics of the modeled waves at IJmuiden. 
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Figure V.35 Comparisons at IJmuiden platform between the observed and the modeled 

wind and waves using different forcing winds. 
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ELG 28/10/2006-03/11/2006 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Directional 

buoy 

HIRLAM  

 132 -0.08 0.37 0.98 -0.30 0.49 0.97 -5.62 19.35 0.90 

 
ECMWF  

 132 -0.16 0.33 0.99 -0.47 0.58 0.98 -3.29 16.28 0.92 

 
HARMORIE  

(scat. 1h assim.) 132 0.11 0.40 0.99 -0.09 0.39 0.97 -3.62 18.79 0.90 

Table V.8 Error statistics of the modeled waves at ELG. 

 
Figure V.36 Comparisons at ELG platform between the observed and the modeled wind 

and waves using different forcing winds. 

 
V.3.4.2 Period 2 
 
For Period 2 the SWAN-DCSM model was forced using three wind datasets:  

 HIRLAM three hourly data from the operational forecast, 

 HARMONIE hourly data from an experiment with scatterometer data 
assimilation with an assimilation window of 3 hours (experiment 3 described in 
§V.3.3.1), 

 ECMWF three hourly data from the operational forecast. 
 

The results of the models are compared with the observations at K13, Euro platform, 
L.E. Goeree, IJmuiden and ELG in the following figures and tables. For locations 
K13, Euro platform and IJmuiden wave observations from two measuring devices are 
available. There are no wind measurements available IJmuiden and ELG and no 
wave direction measurements available at L.E. Goeree. 
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As was the case for Period 1, although in Period 2 the errors in the wave direction 
are higher and those in wind direction lower, the model results compare generally 
well with the observations. Also, the model results are quite close to each other, with 
the differences between model results being much less than the differences between 
the model results and the observations and with the results of the model forced with 
the ECMWF winds being those closer to the observations. The wave heights at the 
peak of the storm are to a certain extent underestimated at the offshore location K13 
and underestimated at the other locations. 
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K13 06/11/2007-11/11/2007 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 136 0.02 0.43 0.94 -0.36 0.73 0.87 

 

 
ECMWF  

 136 -0.12 0.39 0.95 -0.38 0.71 0.89 

 
HARMORIE  

(scat. 3h assim.) 136 0.12 0.46 0.94 -0.17 0.63 0.88 

Directional 

buoy 

HIRLAM  

 135 -0.01 0.49 0.92 -0.40 0.80 0.88 -26.96 34.69 -0.15 

 
ECMWF  

 135 -0.15 0.46 0.94 -0.43 0.80 0.89 -20.25 28.03 -0.10 

 
HARMORIE  

(scat. 3h assim.) 135 0.09 0.51 0.92 -0.21 0.70 0.88 -23.92 33.20 -0.12 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
HIRLAM  

 136 1.33 1.87 0.92 -7.93 12.21 0.94 

 
ECMWF  

 136 0.74 1.63 0.90 -2.13 9.62 0.94 

 
HARMORIE  

(scat. 3h assim.) 136 1.11 1.84 0.90 -5.54 9.48 0.96 

Table V.9 Error statistics of the modeled wind and waves at K13 platform. 

 

 
Figure V.37 Comparisons at K13 between the observed and the modeled wind and waves 

using different forcing winds. 
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Euro platform 06/11/2007-11/11/2007 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 136 0.06 0.37 0.94 -0.11 0.38 0.93 

  
ECMWF  

 136 0.00 0.32 0.95 -0.12 0.34 0.94 

 
HARMORIE  

(scat. 3h assim.) 136 0.20 0.39 0.96 0.05 0.35 0.94 

Directional 

buoy 

HIRLAM  

 28 
-

0.09 0.28 0.75 -0.31 0.40 0.84 -18.56 25.84 0.64 

 
ECMWF  

 28 
-

0.12 0.20 0.90 -0.37 0.43 0.88 -11.94 19.26 0.60 

 
HARMORIE  

(scat. 3h assim.) 28 0.07 0.25 0.81 -0.17 0.30 0.87 -16.24 25.06 0.64 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
HIRLAM  

 136 0.62 2.02 0.85 -3.45 13.44 0.90 

 
ECMWF  

 136 0.38 1.90 0.87 4.46 13.33 0.92 

 
HARMORIE  

(scat. 3h assim.) 136 0.84 1.81 0.90 0.55 13.15 0.90 

Table V.10 Error statistics of the modeled wind and waves at Euro platform. 

 

 
Figure V.38 Comparisons at Euro platform between the observed and the modeled wind 

and waves using different forcing winds. 
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L.E. Goeree  

06/11/2007-11/11/2007 
sH  (m) 1,0mT   (s) 

n bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 136 0.12 0.41 0.93 -0.05 0.35 0.93 

 
ECMWF  

 136 0.10 0.34 0.95 -0.07 0.33 0.94 

 
HARMORIE  

(scat. 3h assim.) 136 0.24 0.45 0.94 0.12 0.37 0.94 

 10U  (m/s) dirU  (º) 

n bias n bias n bias n 

Anemometer 
HIRLAM  

 136 0.27 1.73 0.87 -2.06 11.12 0.92 

 
ECMWF  

 136 0.52 1.71 0.88 6.75 12.92 0.92 

 
HARMORIE  

(scat. 3h assim.) 136 0.60 1.81 0.87 2.99 10.04 0.94 

Table V.11 Error statistics of the modeled wind and waves at L.E. Goeree. 

 

 
Figure V.39 Comparisons at L.E. Goeree platform between the observed and the modeled 

wind and waves using different forcing winds. 
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IJmuiden  

06/11/2007-11/11/2007 
sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Buoy 
HIRLAM  

 129 -0.09 0.46 0.92 -0.60 0.86 0.91 

  
ECMWF  

 129 -0.19 0.42 0.95 -0.64 0.86 0.94 

 
HARMORIE  

(scat. 3h assim.) 129 -0.04 0.44 0.93 -0.42 0.69 0.93 

Directional 

buoy 

HIRLAM  

 133 -0.17 0.49 0.93 -0.55 0.83 0.90 -28.38 33.91 0.07 

 
ECMWF  

 133 -0.26 0.47 0.95 -0.60 0.83 0.93 -21.90 27.36 0.15 

 
HARMORIE  

(scat. 3h assim.) 133 -0.10 0.43 0.94 -0.36 0.67 0.92 -26.03 32.84 0.12 

Table V.12 Error statistics of the modeled waves at IJmuiden. 

 

 
Figure V.40 Comparisons at IJmuiden platform between the observed and the modeled 

wind and waves using different forcing winds. 
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ELG 06/11/2007-11/11/2007 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Directional 

buoy 

HIRLAM  

 136 -0.07 0.48 0.93 -0.46 0.69 0.93 -19.11 25.47 0.20 

 
ECMWF  

 136 -0.16 0.38 0.96 -0.51 0.70 0.96 -13.17 19.33 0.30 

 
HARMORIE  

(scat. 3h assim.) 136 0.04 0.43 0.94 -0.24 0.52 0.95 -15.33 22.90 0.28 

Table V.13 Error statistics of the modeled waves at ELG. 

 

 
Figure V.41 Comparisons at ELG platform between the observed and the modeled wind 

and waves using different forcing winds. 

 
V.3.4.3 Period 3 
 
For period 3 only HIRLAM three hourly data from the operational forecast were used 
to force the SWAN-DCSM model.  
 
The model results are compared with the observations in the following figures and 
tables. 
 
As also show in the previous periods, the model results compare well with the 
observations, but underestimate to a certain extent the peak event in the period. In 
comparison with the performance of the HIRLAM results in periods 1 and 2 the 
results for this period are closer to the observations. This better performance is 
partially because the HIRLAM model for this period has a higher resolution than in 
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the previous periods and partially because the wind and wave conditions are milder 
in this period.  
 

K13 12/07/2011-17/07/2011 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  
 115 -0.07 0.29 0.96 -0.62 1.02 0.68  

Directional 

buoy 
HIRLAM  
 115 -0.10 0.31 0.96 -0.61 1.03 0.68 0.30 38.67 

-
0.22 

 10U  (m/s) dirU  (º) 

n bias RMSE R n bias n 

Anemometer 
HIRLAM  
 115 0.56 1.52 0.92 -6.16 10.16 0.97 

Table V.14 Error statistics of the modeled wind and waves at K13 platform. 

 

 
Figure V.42 Comparisons at K13 between the observed and the modeled wind and waves 

using different forcing winds. 
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Euro platform 12/07/2011-17/07/2011 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 115 
-

0.06 0.26 0.96 -0.23 0.44 0.93 
 

Directional 

buoy 

HIRLAM  

 115 
-

0.05 0.24 0.96 -0.24 0.46 0.92 0.84 22.81 0.72 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
HIRLAM  

 115 
-

0.21 0.98 0.96 1.52 7.73 0.98 

Table V.15 Error statistics of the modeled wind and waves at Euro platform. 

 

 
Figure V.43 Comparisons at Euro platform between the observed and the modeled wind 

and waves using different forcing winds. 
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L.E. Goeree 12/07/2011-17/07/2011 sH  (m) 1,0mT   (s) 

n bias RMSE R bias RMSE R 

in-situ radar 
HIRLAM  

 115 0.04 0.27 0.96 -0.18 0.42 0.93 

 10U  (m/s) dirU  (º) 

n bias n bias n bias n 

Anemometer 
HIRLAM  

 115 
-

0.41 1.29 0.95 -5.57 10.84 0.97 

Table V.16 Error statistics of the modeled wind and waves at L.E. Goeree. 

 

 
Figure V.44 Comparisons at L.E. Goeree platform between the observed and the modeled 

wind and waves using different forcing winds. 
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IJmuiden  

12/07/2011-17/07/2011 
sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Buoy 
HIRLAM  

 114 -0.03 0.29 0.97 -0.38 0.57 0.92 
 

Directional 

buoy 

HIRLAM  

 114 -0.01 0.25 0.97 -0.31 0.53 0.92 1.40 22.57 0.70 

Table V.17 Error statistics of the modeled waves at IJmuiden. 

 
Figure V.45 Comparisons at IJmuiden platform between the observed and the modeled 

wind and waves using different forcing winds. 
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ELG 12/07/2011-17/07/2011 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Directional 

buoy 

HIRLAM  

 113 -0.05 0.35 0.94 -0.39 0.79 0.78 5.01 33.28 0.46 

Table V.18 Error statistics of the modeled waves at ELG. 

 
Figure V.46 Comparisons at ELG platform between the observed and the modeled wind 

and waves using different forcing winds. 

 
V.3.4.4 Period 4 
 

For Period 4 we present results of the forcing of the SWAN-DCSM model with the 
following fields: 
• ECMWF hourly data from the operational forecast, 
• HARMONIE hourly data from an experiment with no assimilation of 

scatterometer surface winds (experiment 1 described in §V.3.3.2),  
• HARMONIE hourly data from an experiment with 3-hourly assimilation of 

scatterometer surface winds (experiment 1 described in §V.3.3.2), and 
• HARMONIE hourly data from an experiment hourly assimilation of scatterometer 

surface winds (experiment 1 described in §V.3.3.2).  
 

Given that the amount of considered HARMONIE experiments we do not show 
results of forcing the SWAN-DCSM model with the operational HIRLAM fields as 
done for the other periods. 
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The model results are compared with the observations in the following figures and 
tables. This period is much longer than the other considered periods and the much 
higher number of collocations with the scatterometer data can be seen in Figure V.47 
to Figure V.51.  
 
In general, the same conclusions taken for the previous periods can also be taken for 
this period: 

 The model results compare generally well with the observations.  

 The model results are quite close to each other, with the differences between 
model results being much less than the differences between the model results 
and the observations.  

 The model results tend to overestimate the more energetic wave peaks. 
However, the results of the model forced with the ECMWF wind compare more 
noticeably than in periods 1 and 2 better with the observations than those forced with 
the HARMONIE winds. This is probably because the temporal and spatial resolution 
of the ECMWF model higher for this period then it was for periods 1 and 2. 
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K13 07/12/2011-06/01/2012 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 
ECMWF 
 733 -0.09 0.33 0.96 -0.19 0.46 0.93 

 

 
HARMORIE  

(scat. 3h assim.) 733 0.27 0.51 0.95 0.11 0.48 0.92 

 
HARMORIE  

(scat. 1h assim.) 733 0.23 0.48 0.95 0.09 0.47 0.92 

 
HARMONIE 

 (no scat.) 733 0.26 0.51 0.95 0.12 0.48 0.92 
Directional 

buoy 

ECMWF 

 733 -0.10 0.33 0.96 -0.17 0.48 0.93 -29.0 49.4 0.60 

 
HARMORIE  

(scat. 3h assim.) 733 0.25 0.49 0.95 0.13 0.49 0.92 -33.8 55.2 0.55 

 
HARMORIE  

(scat. 1h assim.) 733 0.21 0.46 0.95 0.11 0.48 0.92 -34.5 55.2 0.56 

 
HARMONIE 
 (no scat.) 733 0.24 0.49 0.95 0.14 0.49 0.92 -34.0 55.7 0.55 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
ECMWF 

 733 0.11 1.22 0.95 -3.3 9.2 0.97 

 
HARMORIE  

(scat. 3h assim.) 733 0.95 1.57 0.96 -6.1 10.5 0.97 

 
HARMORIE  

(scat. 1h assim.) 733 0.81 1.42 0.96 -6.8 10.6 0.98 

 
HARMONIE 

 (no scat.) 733 0.90 1.54 0.96 -6.2 12.0 0.96 

Table V.19 Error statistics of the modeled wind and waves at K13. 

 
Figure V.47 Comparisons at K13 between the observed and the modeled wind and waves 

using different forcing winds. 
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Euro platform  

7/12/2011-06/01/2012 
sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 
ECMWF 

 733 0.01 0.35 0.94 -0.12 0.41 0.91 

 

 

HARMORIE  

(scat. 3h 

assim.) 733 0.38 0.60 0.93 0.18 0.49 0.89 

 

HARMORIE  

(scat. 1h 

assim.) 733 0.39 0.62 0.92 0.18 0.50 0.88 

 
HARMONIE 

 (no scat.) 733 0.38 0.59 0.93 0.19 0.49 0.89 

Directional 

buoy 
ECMWF 
 733 -0.01 0.34 0.94 -0.15 0.44 0.91 -25.4 42.2 0.69 

 

HARMORIE  

(scat. 3h 

assim.) 733 0.35 0.56 0.93 0.15 0.48 0.89 -29.6 46.8 0.65 

 

HARMORIE  

(scat. 1h 

assim.) 733 0.37 0.58 0.93 0.15 0.50 0.89 -29.8 47.0 0.65 

 
HARMONIE 

 (no scat.) 733 0.35 0.56 0.93 0.16 0.48 0.90 -29.6 47.0 0.65 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
ECMWF 

 732 -0.14 1.32 0.94 3.8 10.9 0.96 

 

HARMORIE  

(scat. 3h 

assim.) 732 1.01 1.77 0.93 1.0 10.6 0.96 

 

HARMORIE  

(scat. 1h 

assim.) 732 1.01 1.80 0.93 0.9 10.5 0.96 

 
HARMONIE 

 (no scat.) 732 0.95 1.71 0.94 0.8 10.7 0.96 

Table V.20 Error statistics of the modeled wind and waves at Euro platform. 
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Figure V.48 Comparisons at Euro platform between the observed and the modeled wind 

and waves using different forcing winds. 
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L.E. Goeree  

7/12/2011-06/01/2012 
sH  (m) 1,0mT   (s) 

n bias RMSE R bias RMSE R 

in-situ radar 
ECMWF 

 732 0.12 0.40 0.93 -0.06 0.44 0.90 

 
HARMORIE  

(scat. 3h assim.) 732 0.44 0.65 0.91 0.23 0.55 0.88 

 
HARMORIE  

(scat. 1h assim.) 732 0.46 0.68 0.90 0.23 0.56 0.87 

 
HARMONIE 

 (no scat.) 732 0.44 0.65 0.91 0.23 0.55 0.88 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 
ECMWF 

 731 -0.13 1.37 0.93 -1.6 10.2 0.96 

 
HARMORIE  

(scat. 3h assim.) 731 0.80 1.76 0.92 -5.2 11.4 0.97 

 
HARMORIE  

(scat. 1h assim.) 731 0.87 1.79 0.92 -4.9 10.9 0.97 

 
HARMONIE 

 (no scat.) 731 0.80 1.73 0.92 -5.2 10.8 0.97 

Table V.21 Error statistics of the modeled wind and waves at L.E. Goeree. 

 

 
Figure V.49 Comparisons at L.E. Goeree between the observed and the modeled wind and 

waves using different forcing winds. 
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IJmuiden  

7/12/2011-06/01/2012 
sH  (m) 1,0mT   (s) MWD (º) 

N bias RMSE R bias RMSE R bias RMSE R 

Buoy 
ECMWF 

 639 -0.03 0.35 0.94 -0.28 0.59 0.91 

 

 
HARMORIE  

(scat. 3h assim.) 639 0.30 0.56 0.91 0.01 0.56 0.88 

 
HARMORIE  

(scat. 1h assim.) 639 0.31 0.58 0.91 0.00 0.58 0.87 

 
HARMONIE 

 (no scat.) 639 0.30 0.56 0.91 0.01 0.56 0.88 

Directional 

buoy 

ECMWF 

 641 -0.04 0.36 0.94 -0.23 0.58 0.89 -38.2 53.0 0.58 

 
HARMORIE  

(scat. 3h assim.) 641 0.30 0.56 0.91 0.04 0.55 0.87 -42.6 57.9 0.54 

 
HARMORIE  

(scat. 1h assim.) 641 0.30 0.58 0.90 0.03 0.58 0.86 -42.9 58.3 0.53 

 
HARMONIE 

 (no scat.) 641 0.29 0.56 0.91 0.03 0.55 0.87 -42.6 58.0 0.54 

Table V.22 Error statistics of the modeled waves at IJmuiden. 

 

 
Figure V.50 Comparisons at IJmuiden between the observed and the modeled wind and 

waves using different forcing winds. 
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ELG 7/12/2011-06/01/2012 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Directional 

buoy 

ECMWF 

 666 -0.01 0.36 0.96 -0.18 0.50 0.94 -32.5 47.5 0.56 

 
HARMORIE  

(scat. 3h assim.) 666 0.34 0.56 0.95 0.12 0.48 0.93 -35.8 51.3 0.52 

 
HARMORIE  

(scat. 1h assim.) 666 0.33 0.56 0.95 0.09 0.48 0.93 -36.3 51.5 0.52 

 
HARMONIE 

 (no scat.) 666 0.34 0.57 0.95 0.11 0.49 0.93 -35.7 51.2 0.52 

Table V.23 Error statistics of the modeled waves at ELG 

 

 
Figure V.51 Comparisons at ELG between the observed and the modeled wind and waves 

using different forcing winds. 

 
V.3.4.5 Conclusions 
 
The main conclusions that can be taken from this assessment of the SWAN 
performance is that: 

 The SWAN-DCSM model results compare generally well with the observations 
and the considered wind data compare quite well with the observations. 

 The model results using different wind data are quite close to each other, with 
the differences between model results being much less than the differences 
between the model results and the observations.  

 The SWAN-DCSM errors are larger at the peak of the storms and these tend 
to be overestimate. 
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V.3.5 Data assimilation in SWAN 
 
A number of experiments have been carried out by Deltares and KNMI aiming at 
improving the wave predictions of the SWAN-DCSM model near the coast of the 
Netherlands. The KNMI experiments, described in Section V.3.3, used assimilation of 
scatterometer data in their operational high resolution atmospheric model 
HARMONIE with the 3D-VAR method. These winds have then been used by 
Deltares to force SWAN-DCSM model, see previous section. The data-assimilation 
experiments by Deltares involved the direct assimilation of significant wave height 
measurements in the SWAN-DCSM model, considering uncertainty in the forcing 
wind and using the HARMONIE wind fields for period 4 and without the assimilation 
of the scatterometer data as first guess. In all SWAN computations the Westhuysen 
whitecapping formulation and a bottom fiction coefficient of 0.038 were applied. 
 
The results of these experiments for a subperiod of period 4, the period between the 
12th and the 21st of December 2011 are presented next. 

V.3.5.1.1 Forcing winds 

 
For the considered period four different wind fields have been received from KNMI 
and used to force the SWAN-DCSM model in hindcast mode, see §V.3.4.4. These 
were: 
• Fields from the ECMWF model. 
• Fields from the HARMONIE model with no assimilation of scatterometer surface 

winds.  
• Fields from the HARMONIE model with 3-hourly assimilation of scatterometer 

surface winds.  
• Fields from the HARMONIE model with hourly assimilation of scatterometer 

surface winds.  

V.3.5.1.2 EnKF settings 

 
Before applying SWAN’s OpenDA EnKF implementation to this real case a number 
of twin experiments using simplified 1D and 2D SWAN models for the North Sea 
were carried out (Verlaan et al., 2014). The results of these experiments lead to a 
number of adjustments in SWAN’s OpenDA EnKF implementation and lead to a 
better definition of a number of EnKF settings which have been applied in this study. 
 
The EnKF is sensitive to a number of parameters, such as: 

 number of ensemble members; 

 assimilated data and their uncertainty; and 

 uncertainty specification for forcing wind and boundary waves (control 
variables). 

 
Although SWAN’s EnKF setup can include uncertainty for the open boundary and for 
the wind forcing, in this application we have only considered it for the wind forcing. 
The temporal correlation has been set with a scale of 12 hours and a magnitude of 
1.0m/s and the spatial correlation has been set as 500km. The two wind components 
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are treated independently. The noise is specified on the same grid as the wind input. 

Observations by a directional waverider of moH  have been assimilated every hour at 

the K13 and Euro platform locations. The standard deviation for errors in the 
observations was set to 0.2m. 
 
To reduce the computational effort the wind fields have been coarsened from a 
resolution of 2.5 km x 2.5 km to a resolution of 25 km x 25 km and the SWAN-DCSM 
computational grid coarsened from a resolution of about 3.6 km x 3.6 km to a 
resolution of 36 km x 3.6 km. If the assimilation is successful the estimated wind 
fields can be used to force the high resolution model. 
 
Runs were carried out considering 10, 30 and 100 ensembles. The number of 
ensembles did not affect the results much but the error statistics of the run with 30 
ensembles were slightly better than those of the run using 10 ensembles. The run of 
the 30 ensemble was carried out is a core-i7 computer with double quad cores. The 
needed computational time was about 1 hour and 40 minutes per simulation day. 
This computational time can be reduced if the ensembles are run in parallel, as we 
have shown in [DR2]. 

V.3.5.1.3 Results 

 

The results of the experiments are shown in the following figures and tables from 
locations: K13, Euro platform (EPL in Figure B.2.2), L.E. Goeree (LEG in Figure 
B.2.2), IJmuiden (MUNS in Figure B.2.2) and ELG (ELD in Figure B.2.2). The figures 
show the time-series of the computed and observed significant wave height, mean 
wave period, mean wave direction, wind speed and direction. The tables show the 
bias, RMSE and correlation (R) between the model results and the observations. For 
locations K13, Euro platform and IJmuiden wave observations from two measuring 
devices are available. There are no wind measurements available IJmuiden and ELG 
and no wave direction measurements available at L.E. Goeree. 
 
In general the comparisons show that the quality of the wind fields is generally high, 
even that those of the coarser ECMWF model, which show less overestimation than 
those of HARMONIE. Furthermore, the significant wave height is generally 
overestimated, especially in the storm at the start of the considered period. In general 
the EnKF assimilation leads to an improvement of the model results. 
 
Per location the following comments apply: 
• K13 The significant wave height observations from the directional buoy at 

this location have been assimilated. The positive effect of the assimilation can 
be seen in a reduction of the RMSE from 0.37 m to 0.21 m when using the first 
guess wind fields and the ones resulting from the EnKF assimilation. The 
positive effect is also to be seen in the statistics for the data that were not 
assimilated. However, although EnKF wind speed and mean wave direction 
results compare better with the observations than the other model results that, is 
not the case for Tm-1,0. 
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• Euro platform The significant wave height observations from the directional 
buoy at this location have been assimilated and this has led to reduction of the 
Hm0 RMSE from 0.51 m to 0.23 m when using the first guess wind fields and the 
ones resulting from the EnKF assimilation. As was the case for K13, the positive 
effect of the Hm0 assimilation is also to be seen in the statistics for the data that 
were not assimilated. For all variables except for the wind direction the EnKF 
results compare better with the observations than the other model results. 

• L.E. Goeree The observations at this location have not been assimilated 
using EnKF, still the results of the EnKF are those comparing in general better 
with the observations. The Hm0 RMSE having decreased from 0.57 m to 0.26m 
when using the first-guess wind fields and the ones resulting from the EnKF 
assimilation. 

• IJmuiden Similar to the case for L.E. Goeree, no observations from this 
location have been assimilated, but still the results of the EnKF are in general in 
better agreement with the observations. Note also, the good comparison of the 
results of the simulation using the ECMWF winds and the observations. 

• ELG The positive effects of the assimilation of the wave heights at K13 and 
Euro platform can be seen in the comparisons between the EnKF results and 
the Hm0  and MWD observations at this location. 
 

 

K13 12/12/2011-21/12/2011 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 

ECMWF wind 238 -0.15 0.32 0.95 -0.19 0.42 0.87 

 

HARMORIE  

(scat. 3h assim.) 238 0.08 0.40 0.94 0.02 0.41 0.85 

HARMORIE  

(scat. 1h assim.) 238 0.06 0.36 0.95 0.01 0.41 0.86 

HARMONIE (no scat.) 238 0.06 0.40 0.94 0.03 0.41 0.86 

HARMONIE with 

ENKF 238 -0.02 0.22 0.96 0.13 0.45 0.83 

Directional 

buoy 

ECMWF wind 238 -0.18 0.33 0.95 -0.17 0.41 0.87 -28.8 41.6 0.69 

HARMORIE  

(scat. 3h assim.) 238 0.05 0.36 0.95 0.04 0.40 0.86 -32.4 46.4 0.66 

HARMORIE  

(scat. 1h assim.) 238 0.03 0.33 0.96 0.03 0.39 0.87 -32.0 45.0 0.67 

HARMONIE (no scat.) 238 0.03 0.37 0.95 0.05 0.40 0.87 -32.7 46.7 0.66 

HARMONIE with 

ENKF 238 -0.05 0.21 0.97 0.15 0.47 0.82 -28.0 37.0 0.74 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 

ECMWF wind 238 0.34 1.29 0.95 -4.9 12.1 0.96 

HARMORIE  

(scat. 3h assim.) 238 0.80 1.58 0.94 -7.8 13.1 0.96 

HARMORIE  

(scat. 1h assim.) 238 0.70 1.34 0.96 -7.1 12.8 0.96 

HARMONIE (no scat.) 238 0.66 1.50 0.94 -8.2 16.8 0.93 

HARMONIE with 

ENKF 238 0.35 1.25 0.95 -6.3 12.6 0.96 

Table V.24 Error statistics of the modeled wind and waves at K13. 
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Figure V.52 Comparisons at K13 between the observed and the modeled wind and waves 

using different forcing winds. 
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Euro platform 12/12/2011-21/12/2011 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

in-situ radar 

ECMWF wind 238 
-

0.02 
0.37 0.89 

-

0.05 
0.39 0.80 

 

HARMORIE with 3-

hourly scat.  

assimilation 

238 0.24 0.51 0.89 0.15 0.43 0.81 

HARMORIE with 

hourly scat.  

assimilation 

238 0.24 0.54 0.88 0.15 0.44 0.80 

HARMONIE (no 

scat.) 
238 0.25 0.52 0.89 0.18 0.44 0.80 

HARMONIE with 

ENKF 
238 0.07 0.23 0.95 0.10 0.34 0.85 

Directional 

buoy 

ECMWF wind 238 
-

0.03 
0.37 0.89 

-

0.07 
0.41 0.80 

-

16.8 
28.2 0.83 

HARMORIE  

(scat. 3h assim.) 
238 0.23 0.50 0.89 0.13 0.43 0.81 

-

21.1 
32.3 0.81 

HARMORIE 

(scat. 1h assim.) 
238 0.23 0.52 0.88 0.12 0.43 0.80 

-

21.8 
33.5 0.80 

HARMONIE  

(no scat.) 
238 0.24 0.51 0.89 0.15 0.44 0.80 

-

20.9 
31.9 0.82 

HARMONIE with 

ENKF 
238 0.06 0.23 0.95 0.08 0.35 0.84 

-

19.0 
30.3 0.83 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 

ECMWF wind 237 
-

0.18 
1.49 0.92 

1.7 14.0 0.94 

HARMORIE  

(scat. 3h assim.) 
237 0.84 1.86 0.92 

1.4 13.2 0.95 

HARMORIE 

(scat. 1h assim.) 
237 0.66 1.87 0.91 

1.6 14.0 0.94 

HARMONIE  

(no scat.) 
237 0.70 1.77 0.92 

2.9 13.4 0.95 

HARMONIE with 

ENKF 
237 0.18 1.44 0.92 

1.7 14.0 0.94 

Table V.25 Error statistics of the modeled wind and waves at Euro platform. 
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Figure V.53 Comparisons at Euro platform between the observed and the modeled wind 

and waves using different forcing winds. 
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L.E. Goeree 12/12/2011-21/12/2011 sH  (m) 1,0mT   (s) 

n bias RMSE R bias RMSE R 

in-situ radar 

ECMWF wind 237 0.07 0.44 0.79 0.00 0.43 0.76 

HARMORIE  

(scat. 3h assim.) 237 0.29 0.56 0.80 0.18 0.48 0.76 

HARMORIE 

(scat. 1h assim.) 237 0.30 0.59 0.78 0.18 0.49 0.74 

HARMONIE  

(no scat.) 237 0.30 0.57 0.80 0.20 0.49 0.75 

HARMONIE with 

ENKF 237 0.02 0.26 0.90 0.16 0.38 0.82 

 10U  (m/s) dirU  (º) 

n bias RMSE R bias RMSE R 

Anemometer 

ECMWF wind 236 0.02 1.55 0.89 0.73 12.04 0.96 

HARMORIE  

(scat. 3h assim.) 236 0.86 2.09 0.87 

-

4.83 15.28 0.94 

HARMORIE 

(scat. 1h assim.) 236 0.89 2.07 0.88 

-

3.60 12.11 0.96 

HARMONIE  

(no scat.) 236 0.85 1.97 0.89 

-

4.07 13.45 0.95 

HARMONIE with 

ENKF 236 

-

0.34 1.61 0.89 

-

1.48 11.98 0.96 

Table V.26 Error statistics of the modeled wind and waves at L.E. Goeree. 

 
Figure V.54 Comparisons at L.E. Goeree between the observed and the modeled wind and 

waves using different forcing winds. 
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IJmuiden  

12/12/2011-21/12/2011 

sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias 
RM

SE 
R bias RMSE R 

Buoy 

ECMWF wind 225 -0.04 0.34 0.91 -0.15 0.45 0.83 

 

HARMORIE  

(scat. 3h assim.) 225 0.21 0.48 0.92 0.05 0.45 0.82 

HARMORIE 

(scat. 1h assim.) 225 0.21 0.49 0.92 0.05 0.43 0.83 

HARMONIE  

(no scat.) 225 0.20 0.48 0.92 0.04 0.44 0.83 

HARMONIE with 

ENKF 225 0.00 0.22 0.95 0.04 0.40 0.85 

Directional 

buoy 

ECMWF wind 
226 -0.05 0.35 0.91 -0.18 0.47 0.83 

-

23.8 36.9 0.77 

HARMORIE  

(scat. 3h assim.) 226 0.20 0.48 0.91 0.02 0.46 0.81 

-

27.1 41.1 0.74 

HARMORIE 

(scat. 1h assim.) 226 0.20 0.49 0.92 0.02 0.45 0.82 

-

27.0 41.7 0.73 

HARMONIE  

(no scat.) 226 0.19 0.48 0.91 0.02 0.45 0.83 

-

26.8 40.2 0.75 

HARMONIE with 

ENKF 226 -0.01 0.22 0.95 0.01 0.39 0.87 

-

24.0 36.4 0.78 

Table V.27 Error statistics of the modeled waves at IJmuiden. 

 
Figure V.55 Comparisons at IJmuiden between the observed and the modeled wind and 

waves using different forcing winds. 

 



 

Validation of coastal forecasts Ref : MyWave—D2.3 

Date  : 27 Feb 2015 

Issue : 1.0 

 

 © My Wave – Public     Page 104/ 125 

ELG 12/12/2011-21/12/2011 sH  (m) 1,0mT   (s) MWD (º) 

n bias RMSE R bias RMSE R bias RMSE R 

Directional 

buoy 

ECMWF wind 
214 

-

0.09 0.34 0.92 

-

0.13 0.40 0.85 

-

23.2 38.1 0.75 

HARMORIE  

(scat. 3h assim.) 214 0.20 0.44 0.91 0.10 0.40 0.84 

-

25.0 40.6 0.73 

HARMORIE 

(scat. 1h assim.) 214 0.19 0.43 0.92 0.07 0.39 0.85 

-

25.4 40.7 0.73 

HARMONIE  

(no scat.) 214 0.18 0.44 0.92 0.09 0.41 0.83 

-

24.2 38.8 0.75 

HARMONIE with 

ENKF 214 

-

0.04 0.29 0.93 0.11 0.43 0.81 

-

23.5 35.9 0.77 

Table V.28 Error statistics of the modeled waves at ELG 

 

 
Figure V.56 Comparisons at ELG between the observed and the modeled wind and waves 

using different forcing winds. 

V.3.5.1.4 Conclusions 

 
The assimilation of significant wave height measurements in SWAN-DCSM was 
shown to be very efficient, leading to improvements in error statistics for variables 
other than the significant wave height and at locations other than those of the 
observations used. The obtained improvements of the error statistics are larger than 
those obtained assimilating scatterometer winds in the atmospheric model. This is 
mainly because the quality of the wind fields seem already to be very high. 
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Computational times were kept at acceptable levels by coarsening the grid of the 
wind fields and the computational grid of SWAN-DCSM. 

V.4 German Bight 

V.4.1 In Situ Data /Strom Simulations  

 
As representative examples for the validation of the wave model results in the 
German Bight some comparisons with measurements will be discussed for October 
2013. In the end of that month the severe storm Christian afflicted the coasts of 
Germany with high wind speeds above 30 m/s and significant wave heights of about 
8 m. Time series of wind and wave heights at FINO station are given on Figure V.57. 
At 28th of October during storm Christian the wind speed increases rapidly to 30 m/s 
causing brake down of several buoys and making impossible to provide 
measurements for this extreme event. 
 

  
Figure V.57 Time series of wind and wave heights at FINO station (storm Christian). 

 
At Elbe and Helgoland stations (see Figure IV.2 for their coordinates) the wave 
heights were lower than the ones at FINO station during Christian and they 
continuously recoded the wave parameters during the storm event. Figure V.58 
includes the corresponding comparisons for significant wave heights, Tm2/Tz-periods 
and total wave directions at the location Elbe. The agreement between measured 
and modelled wave parameters is very good. The peak on the 28th of October (3 pm 
UTC) in Hs of about 6 m and in Tm2 of about 8 s is well predicted by the wave model. 
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Figure V.58 Time series of measured and computed wave parameters at the location Elbe. 

 
The same is valid for the comparisons done at Helgoland station despite the small 
underestimation at the peak by the model. The measured peak is higher here (7.7 m) 
compared with the Elbe station peak. The statistical analysis of the comparisons (see 
Table V.29) supports the good quality of the nested-model wave simulations for the 
German Bight area. 
 

  
  

  

 

Figure V.59 Time series of measured and computed wave parameters at the location 

Helgoland. 
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buoy 

 

number of 

comparisons 

mean of 

measurements 

bias root mean 

square error 

skill scatter 

index 

Hs - (m) (m) (m) -  (%) 

Fino 218 1.59 0.11 0.33 0.86 19 

Elbe 247 1.23 0.08 0.31 0.84 25 

Westerland 247 1.17 0.14 0.28 0.88 21 

Helgoland 247 1.45 -0.03 0.30 0.90 20 

Tm2/Tz  (s) (s) (s)   

Fino 218 4.53 -0.15 0.50 0.74 11 

Elbe 247 3.92 -0.23 0.52 0.71 12 

Westerland 247 4.07 -0.12 0.74 0.74 18 

Helgoland 247 4.27 -0.11 0.52 0.80 12 

skill : reduction of variance, scatter index : standard deviation*100/mean of the measurements 

Table V.29 Hs statistics for October 2013 at buoys located in the German Bight. 

 

  

  
Figure V.60 Scatter plots for measured and computed wave heights for October 2013. 
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Figure V.61 Comparison of measured and computed one-dimensional wave spectra at 

location Elbe (left) at the peak of storm Christian on 20131028 15:27 UTC (model results: 

15:00 UTC) and at location Helgoland (right) at an intermediate peak on 20131017 11:46 

UTC (model results: 12:00 UTC). 

V.4.2 Assimilation using Neural Networks – separate tests for boundary value 
and wind field retrieval 
 
In order to test the newly developed assimilation scheme and with the aim of using it 
in storm situations two experiments have been performed.  
 
The forecast was re-run to obtain first-guess values using the following to setups by: 
1. using the correct wind fields but no boundary values: 
2. using the correct boundary values but no wind . 
 
The synthetic HF-radar data together with: (i) correct PC's of wind-fields or (ii) correct 
PC's of boundary data were applied to the two NN's emulating the adjoint WAM. The 
NN output (either innovated wind fields or boundary values) was optimised using the 
Levenberg-Marquardt algorithm described in the previous sections and in [DR2]. 
Figure V.62 and Figure V.63 show a comparison between NN estimated values and 
the ones  estimated directly from the wave model. 
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Figure V.62 Boundary values taken from WAM model run (top) and as emulated by Neural 

Network based assimilation scheme (bottom). Left: significant wave height at Northern 

boundary, right: at Western boundary. The x-axis is hours since July 12
th

 12 UTC, y-axis is 

either longitude or latitude. 

 

 
Figure V.63 Same as Figure V.62 but for wind fields (wind speed and direction). Left: 

profiles along 8 degrees East, right: profiles along 54 degrees North in the German Bight 

area. 

 
The emulated boundary values match the correct values well over the whole 
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assimilation period. The storm event (around 60 hours) is slightly underestimated in 
the East and North and slightly overestimated in the South. 
 
Similar behaviour is observed in the experiment for the emulated wind fields. The 
wind speed during the storm is underestimated, especially towards the Northern 
open boundary and the East coast. In addition, the predicted storm duration is also. 
Emulated wind directions are mainly northern, whereas the correct wind fields 
contain a (small) eastward component. From the comparisons of the results we can 
conclude that the overall performance of the NNs data assimilation is very promising. 
 
As next, more advanced experiment, the emulated wind fields and boundary values 
were used together with either correct boundary values or correct wind fields as input 
to the NN emulating WAM. The thus obtained wave heights and periods give an 
estimate of innovations that could be achieved in WAM. The mean of the absolute 
relative errors in the area where data were assimilated is shown on Figure V.64 and 
Figure V.65. 
 

 
Figure V.64 Mean of the absolute relative errors for significant wave height (left) and m1 

period (right). The first guess WAM model run (no boundary values) is on top and below 

innovations as emulated by Neural Network using correct wind fields and boundary values 

from assimilation scheme. 
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Figure V.65 Same as Figure V.64 but with first guess WAM model run without wind fields 

and innovations as emulated by Neural Network using correct boundary values and wind 

fields from assimilation scheme. 

 
Evidently, first-guess errors are largest in the open sea area when boundary values 
are neglected and largest towards the coast when suppressing wind fields, since the 
shallow wave state is dominated by local wind. The errors of the innovated wave 
parameters have been reduced significantly in either case throughout most of the 
measurement area in particular for tm1 wave period. In summary, the validation of 
the assimilation scheme gives promising results in the open ocean. It can be 
supposed that running the wave model with forcing derived by using NN data 
assimilation method, the large errors in the shallow regions will be diminished. 

V.4.3 Assimilation using Neural Networks – first experiment of combined 
retrieval 
 

After validating the two inverse NN's separately we now present a first experiment of 
combined retrieval of wind-fields and boundaries. 
 
We used the same data as for the previous experiments. However, the first-guess 
scenario is more realistic because the shifting of both wind and boundary fields is 
consistent. The two inverse NN's gave first estimates of improved winds and 

boundaries. This was iterated until the error 𝜒2for both nets did no longer decrease. 
As in the previous chapter an estimate of innovations was calculated using the 
forward NN. The results are shown in Figure V.66. The errors of significant wave 
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height decreased throughout the deep water area, only close to the coast the error 
increased as was expected from the previous experiments. For the tm1 period errors 
improved only in the Northern area but still are quite small (note the different scales 
for SWH and tm1). 
 

 

 
Figure V.66 Same as Figure V.64 and Figure V.65 but with first guess WAM model run 

with time shifted wind fields and boundary values. The innovations are emulated by combined 

use of the two inverse Neural Networks. 

 
In Summary, the results of the twin experiments are very promising and confirm the 
practicability of the newly developed assimilation technique. The method has several 
advantages compared with other methods: it can be easily implemented for other 
wave models and regions since it only requires model output and measurements. 
Additionally, it can be adapted to specific problems (derive improved wind fields 
and/or boundary conditions or any other model parameter of interest). Data 
Assimilation using Neural Networks is computational very efficient compared to other 
advanced (non-local) assimilation strategies. The Neural Network software is freely 
accessible to any interested user. 
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V.5 North Atlantic  

V.5.1 Introduction 
 
Puertos del Estado and AEMET have worked in two subtasks related with the 
improvement of coastal wave forecasts: Cross validation of satellite data, in-situ 
observations and wave forecasts and Comparison of unstructured model versus 
nesting. 
 
In the first case, Aemet-PdE has applied a triple-collocation method to calibrate and 
estimate wave heights for the period June 2008- July 2009 in Cantabrian Sea from 
Pde-WAM model, Jason2 and Cantabrian PdE buoy network. This work is described 
in section V.4.2.  
 
In regard with the second subtask, two SWAN applications have been developed and 
compared for the Canary Islands, one based on a standard regular grid and the other 
one on based on a unstructured grid. Both applications have been compared with 
buoys from the PdE’s buoy network. This work is described in section V.4.3. 

V.5.2 Cross-validation of satellite data, in-situ observations and wave-
forecasts. 
 
V.5.2.1. Introduction. 
 
Cantabrian WAM data used is forced by analyzed HIRLAM wind fields, provided by 
AEMET and the model has a spatial resolution of 5’x5’ and the time resolution is 3 
hours. 
 
The buoy data used in this study come from PdE database. This data has been 
processed and have passed a quality control. Time resolution is 1 hour. 
 

Buoy Lat Lon Depth 

Estaca de Bares 
Buoy 

44.12ºN 7.67ºW 1800 m 

Cabo de Peñas Buoy 43.75ºN 6.16ºW 615 m 

Santander – IEO 
Buoy 

43.85ºN 3.77ºW 2500 m 

Bilbao-Vizcaya Buoy 43.64ºN 3.05ºW 2136 m 

Villano-Sisargas 
Buoy 

43.50ºN 9.21ºW 386 m 

Cabo Silleiro Buoy 42.12ºN 9.43ºW 600 m 

Table V.30 Depth and location of buoys used for triple collocation. 
 
Jason2 significant wave height was obtained from the DEOS radar altimeter data 
base system (http://rads.tudelft.nl/rads/rads.shtml). All observations for which Hs>18 
are neglected. Also observations that deviate more than 4 times the standard 
deviation of the hourly data from its mean are discarded. 

http://rads.tudelft.nl/rads/rads.shtml
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It is important to remark that to use this methodology the three datasets must have 
uncorrelated errors. This method is explained in Stoffelen (1998), Janssen et al. 
(2006) and Caires and Sterl (2003). 
 
V.5.2.2. Data collocation 
 
From the Jason2 measurements satellite “super observations” have been formed, by 
grouping together the consecutive observations crossing a 1.5º by 1.5º latitude-
longitude region. The satellite super observation is the mean of these grouped data 
points after the quality control. These satellite super observations are in 1.5º by 1.5º 
latitude-longitude region centered at the buoy location. 
 
Due to the difficulty to get data to work with the triple collocation method, the process 
to obtain the wave model field (which has been interpolated in an hourly resolution) is 
doing two model counterparts, one referring to the satellite observation Xalt, and one 
referring to the buoy observation. To ensure that the error estimation is not affected 
by the collocation error, only collocations satisfying a relative difference at most 5% 
are considered.  
 
The number of observations with the triple collocation has pretty decreased, and 
there are locations where any location wasn’t found. 

 
Figure V.67 Number of observation per location for triple satellite, Buoy and WAM 
model collocation. 
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V.5.2.3 Error estimation and results 
 
The method used to determinate the respective errors from the three independent 
estimates of the truth and to calibrate the data by minimization is described in 
Janssen et al. 2006. Also MyWave-D4.1 explained how this method works: 
 
A triple collocation essentially provided 3 estimates of the truth, X,Y,Z. It is assumed 
that the measurements depend on truth T in linear fashion: 

 =    +       
 =      +     

 =     +     
 
Where             denote the residual errors and          are the linear calibration 

constants. Assuming that the measurement results have uncorrelated errors, and 
introducing new variables to eliminate the calibration constant (X’ = X/    ) it is 
obtained: 
 
  −   =      −       

  −   =      −                (7) 

  −   =      −       

 
Multiplying the first equation in Eq. (7) above with the second gives the variance error 
in X’ in terms of the variance of X’ and the covariance’s of X’ and Y’, X’ and Z’. 
Multiplying the first and the third equation gives the variance error in Y’ and the 
variance error of Z’ is obtained by multiplying the second and the third. This leads to: 

 (     
2  =  (  −   ) (  −   )    ) 

The errors are uncorrelated so this approach can be used to estimate the variance of 
the error in each of them. 
 
The truth is unknown, so only two of the three calibration constants can be obtained.  
In fact, the relative calibration factors can be computed with respect to a reference 
and it does no matter statistically which one. 
 
Taking X arbitrary, bx = 1, by=<yz>/<xz> and bz = <yz>/<xy>.. 
 
With this method, we have estimated the RMS error of collocated wave datasets. We 
have applied this approach to the estimation of wave height error in Cantabrian Sea 
WAM , Jason 2 and PdE buoys network.  
 
We have obtained   = 1 1    = 1         =    1     =   1  −    and     =    1. 
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Figure V.68 Scatter diagrams of WAM model data with buoy data for the period 
June 2008- July 2009 on the right results with data calibrated with the triple 
collocation method. 
 
Due to the problems to find altimeter samples to form datasets for the period June 
2008-July 2009, we have worked with only 29 datasets to apply the triple collocation. 
 
After applying triple collocation method, the comparisons of significant wave height 
between model and buoy calibrated are better, with the exception of values near 
zero, where the difference has increased. 

V.5.3 Comparison of unstructured model versus nesting 
 
V.5.3.1 Configuration of grids 
 
Aemet-PdE have developed two SWAN applications for Canary Islands, one with a 
standard regular grid and the other one with an unstructured grid that increases the 
resolution around each island of the archipelago. These two applications run with 
boundary conditions provided by PdE’s Atlantic WAM application (15’x 15’ resolution) 
and wind fields from the AEMET HIRLAM application (3’x3’ resolution).  
 

 
Figure V.69 Nested regular (left) and unstructured (right) SWAN grid of the Canary 
Islands. 
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The regular grid has a resolution of 5’X5’ which results in 1980 computational grid 
points.  
The unstructured grid has been generated by BatTri, taking into account the 
resolution of the regular grid, the boundary condition, the coastline provided by the 
NOAA Coastline Extractor, the imposition of a minimum angle of 25º and a maximum 

element area of 500km2 and a refinement mesh imposing 
 

    
= (

   (    )

   (    )
). 

 
The result is an unstructured grid with 1376 computational points and a refinement 
round the coast.  
 
Due to the complexity of the region with islands and defined on an almost closed 
rectangle, running unstructured SWAN has not been straight forward. Although from 
40.72 version SWAN can theoretically work with unstructured grid, only with the last 
version (40.91) did we managed to run with the unstructured grid. The grid generated 
by BatTri did not work directly and some changes in the grid elements were done. 
We also encountered a problem with the boundary conditions, i.e. the boundary 
command option SEGMENT to define parametric spectra at the boundary does not 
work properly, only the option SIDE works. 
 
V.5.3.2. Results and Conclusion 
 
Both applications are operative, the computational time of the unstructured SWAN is 
8 minutes and of the SWAN with regular grid is 6 minutes. The models run in Linux 
64 bits in a sequential mode on PdE supercomputer. Outputs are in a regular grid 
with a resolution of 5’. The interpolation of the unstructured SWAN in a regular output 
is the cause of the unstructured model takes more than regular. 
 
Significant wave height maps and time series are generated in each run. The results 
have been compared with the PdE buoy network. 
 

 
Figure V.70 Buoys used for validation. 

 

 

Tenerife Sur 
Buoy 

Santa Cruz de Tenerife Buoy 

Las Palmas 
Este Buoy 
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Buoy Lat Lon Depth 

Santa Cruz de Tenerife Buoy 28,46ºN 16,23ºW 56m 

Las Palmas Este Buoy 28,05ºN 15,39ºW 30m 

Tenerife Sur Buoy 27,99ºN 16,58ºW 710m 

Table V.31 Depth and location of buoys used for validation 

 
Significant wave height and mean direction have from regular and unstructured 
applications have been compared with the three buoys of Canary archipelago. The 
results show that it is not better the behaviour of the unstructured model. 
 

 
Figure V.71 Significant Wave Height Scatterplots. On the left, unstructured SWAN. Regular 

model on the right. 

 

Significant Wave 

Height 

Number 

of data 

Correlatio

n 

coefficient 

Slope of 

regression 

line 

RMSE Bias Sprea

d 

SWAN 

Unstructured 

1452 0.82 0.65 0.25 -0.1 0.27 

 SWAN Regular 1452 0.78 0.67 0.27 0.13 0.40 

Table V.32 Statistical results for Significant Wave Height. 
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Mean Direction Number 

of data 

Correlatio

n 

coefficient 

Slope of 

regression 

line 

RMSE Bias Sprea

d 

 SWAN 

Unstructured 

1264 0.70 0.89 32.1 16.15 0.14 

SWAN Regular 1288 0.83 1.01 28.83 11.49 0.12 

Table V.33 Statistical results for Mean Direction. 

 
Results indicate that in this case, SWAN unstructured does not work better than the 
model with a regular computational grid. A negative bias means that the model 
underpredicts, but both models have a reasonably overall bias. 
 

Finally, although unstructured grids are a powerful method to work with complicated 

bottom topography in shallow areas and with an irregular shoreline, it is not always 
easy to work with them.  The target of getting more resolution taking less CPU time 
has not been achieved in these experiments. Further improvements to the SWAN 
model are needed to improve the computational speed of the unstructured version. 
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VI DISCUSSION 

Wave forecasts play an important part in the planning and safety in the coastal 
region, since many activities at and near the coast benefit from advance warning of 
adverse conditions. While waves generated in deeper water can be modelled 
adequately on a global scale, these waves undergo large changes when approaching 
the coast. In mountainous regions, or when there are islands near the coast, the 
coastal wave conditions are also modified locally by local changes to the wind. For 
this purpose a number of regional high-resolution coastal wave models are available 
around Europe. Most of these forecasting systems are based on one of the spectral 
wave models, WAM, SWAN or WaveWatch (not considered). For accurate forecast 
of the local wind modification high-resolution meteorological models are applied. 
Most of these models receive boundary conditions from a large-scale or global wave 
model, such as the wave forecasts from ECMWF. 
 
Ideally, these regional wave forecasts would be connected by a three-way coupling 
between waves, hydrodynamics and meteorology, while at the same time 
assimilating all relevant observations effectively. However, this is far from the current 
practise. To our best knowledge no forecasting system in the world currently has all 
these features, though the global systems are ahead of most regional systems in this 
respect. At this stage of the development, it was considered most effective to 
improve the use of observations for coastal wave forecasting, with a number of 
different applications, with different wave models, different observations and different 
techniques. 
 
In the following paragraphs we first discuss the results of the individual applications 
before making an attempt to integrate the results: 
 

1. Satellite observations of surface winds over water are now routinely available 
and generally of high quality. In MyWave the processing of the raw data was 
improved to provide valid data closer to the coast, which is highly relevant for 
coastal wave forecasting. Experiments were performed to assimilate 
scatterometer winds into a high-resolution HARMONIE meteorological model. 
These experiments encountered some technical issues that were all resolved. 
The assimilation of scatterometer observations did improve the accuracy of 
the results at analysis time, but unfortunately the impact was quickly lost 
during the forecast. We believe that this is caused by a more fundamental 
issue: the high-resolution HARMONIE model generates features at a scale 
comparable to or smaller than the resolution of the scatterometer, which does 
not lead to satisfactory results for the assimilation with the 3D-VAR method. 
Perhaps, spatial filtering techniques or the use of an ensemble can improve 
this, but clearly there is a need for further research. 

2. The high-resolution HARMONIE winds were used subsequently to force a 
regional SWAN wave model. It was shown that assimilation of the 
scatterometer wind observations did improve the accuracy of the wave model 
runs, but the impact was not very large. The impact can probably be improved 
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further in the future by improvements of the assimilation of scatterometer into 
the HARMONIE model. 

3. In another experiment, in-situ observations of waves by wave buoys and radar 
were assimilated into a SWAN model of the same region. The well-known 
EnKF data-assimilation, here as implemented in the OpenDA toolbox, was 
used to perform the assimilation. In these experiments, the full 4D spectral 
wave energy density was corrected directly by the assimilation. A big 
advantage of this approach is that many more observation types, such as 
wind-speed and direction, wave-direction, wave-period and wave-spectra, can 
in principle be assimilated. Moreover, the method attempts to correct other 
aspects of the wave spectrum in a consistent way. It was shown for example 
that a higher observed wave-height also creates increments that increase the 
wind speeds and wave-period. Disadvantages of this approach are the need 
to run an ensemble of models; and the large amount of spectral data that 
needs to be adjusted during the analysis. These drawbacks were partially 
countered by the use of parallel computing and the use of a reduced spatial 
resolution. The results are very promising and are currently being considered 
for pre-operational trial runs in the wave forecasting system. Additional 
research is needed to study the impact of various other observation types. 
One interesting experiment would be the assimilation of the scatterometer 
winds into the wave model instead of the meteorological model. This can 
potentially result in a greater impact than in the meteorological model. 

4. HF radar is another observation type that was studied. An innovative data-
assimilation method, based on Neural Networks (NNs), was developed. The 
method uses two steps. In the first step the wave observations are used to 
estimate the boundary condition and wind input. In the second step, the NN-
model predicts the waves at the observation locations with an iterative 
method. Important advantages of the NN-method are that it can in principle be 
applied to a wide range of observations and models, that it is easy to 
implement and the computational efficiency during the operational phase. 
Disadvantages are that the operational phase needs to be preceded by a 
training phase containing sufficient and homogeneous data. Moreover, the 
training phase needs to be updated whenever one wishes to include new 
observations. 
Unfortunately, the HF-RADAR wave observations were of insufficient quality to 
be assimilated. It was decided to continue the experiments with synthetic 
observations. Clear positive impacts of the data-assimilation were shown for 
two stormy periods. These promising results need to be followed up by further 
experiments with real observations in the future, before operational use can be 
contemplated. 

5. Validation of model accuracy against more than one type of observations can 
provide additional information about the accuracy of model and observations. 
Traditionally, models are evaluated against observations that are assumed to 
represent the truth. However, with more and more accurate models, it is 
increasingly useful to account for errors in the observations. The use of 
multiple observation datasets can provide further insight in this. Here the 
triple-collocation technique was applied that assumes that the errors of the 
different observations and the model are uncorrelated and uncorrelated with 
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the signal as well. Results for the Adriatic show marked differences in 
accuracy of significant wave height measured by different satellites, where 
Saral-Altika is more accurate than Jason-2 and Cryosat. Also the error 
estimates for in-situ observations vary per location, which larger relative errors 
for more sheltered locations with on average smaller wave heights. This can 
be explained by larger representativity errors compared to the model and 
satellite or by the smaller signal amplitude. Care must be taken to verify the 
assumption of uncorrelated errors. The altimeter wave height for example 
gave inconsistent results against lead-time, which is an indication that the 
assumptions were violated. 

6. Wind waves undergo large changes when approaching the coast while the 
situation is much more homogeneous in the open ocean. Unstructured grids 
can be adapted in a more flexible manner to provide the right accuracy both 
near the coast as in deep water. One unstructured model was developed for 
the Canary Islands. Although it was possible to create an unstructured grid 
that had higher coastal resolution, sufficient resolution in deep water and still 
fewer grid-cells than the structured grid model, no increase in accuracy or 
computational performance was found. Some possible causes for these 
results are: a larger number of iterations for the unstructured solver, too large 
changes in size between adjacent grid-cells, or too large changes in incidence 
angle of the waves between adjacent grid-cells for the unstructured grid 
model. Further research is needed to identify the real causes and test various 
remedies. 
 

The experiments described above clearly show that a synthesis of a fully three-way 
coupled high-resolution ocean-atmosphere-wave model that can assimilate all 
relevant observations is not within reach. Still, progress has been made on a number 
of aspects working towards this synthesis. Since, it may still take considerable time to 
reach this fully coupled assimilative system; one also has to consider the 
intermediate steps towards this goal. On this path several approaches were studied 
to assimilate new observation types, to speed-up the assimilation process and to 
increase our knowledge of the errors present in todays’ forecasting systems. These 
approaches have varying stages of maturity and are by no means exhaustive. We 
recommend further research to further increase our understanding and eventually 
design fully coupled assimilative forecasting systems. 
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VII DISSEMINATION AND IMPACT 

VII.1 Dissemination 

The results of this workpackage have been disseminated in a number of ways. In this 
and in the previous deliverables a large extent of the work is reported.  Access to the 
project deliverable is, therefore, important and should be supported. 
 
Besides reporting our study in the deliverables our results have been disseminated in 
a number of meetings and conferences and through publication. Currently a number 
of papers are in preparation or have already been submitted to journals. 
 
Besides dissemination of scientific results through publications, it is also important 
that the applied and developed software is made available. All of the software used 
for modelling and data-assimilation in this report is available for other researchers. 
The following list shows where to obtain access to the software: 

1. WAM wave model including OI data-assimilation  
https://github.com/mywave/WAM/ 

2. SWAN wave model  http://swanmodel.sourceforge.net/. 
3. HARMONIE  http://www.hirlam.org/index.php/hirlam-programme-53/access-

to-the-models. 
4. OpenDA data-assimilation toolbox  http://www.openda.org. 
5. Neural Network tools  contact Kathrin Wahle at HZG Germany for a copy. 

VII.2 Impact 

The results of this study have led to a number of new insights and opportunities in 
the forecasts of coastal waves and winds. For instance: 

 The improved processing of the raw Scatterometer data has lead to the 
availability of  valid wind data closer to the coast, which is highly relevant for 
coastal wave forecasting. 

 The EnKF wave assimilation results are very promising and are currently 
being considered for pre-operational trial runs in the wave forecasting system. 
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VIII CONCLUSIONS 

The main goals of this work package have been to explore new methodologies in 
data assimilation, improve the use of near shore remote sensing data and connect 
large-scale forecast to near shore forecasts. 
 
Data-assimilation has seen a strong development of new methods recently. 
Application of these new insights mainly from meteorology and oceanography to 
wave-forecasting can improve the amount of information extracted from 
observations. Furthermore, recently new techniques were developed to improve the 
processing of scatterometer winds near the coast. 
 
Regional wind and wave forecasts for the considered study areas have been 
compared with: scatterometer winds, altimeter wave heights, wave-buoy 
observations and in-situ wind observations to make a realistic assessment of the 
accuracy of each, to identify inconsistencies and to suggest potential improvements. 
Special attention has been given to particularly difficult areas as the Northern Adriatic 
Sea. Here the surrounding mountains make the wind forecast particularly 
challenging, while the proximity of coastlines stresses the satellite capability. 
 
Unstructured grids can be more easily adapted to increase resolution locally than 
structured grids, which makes this approach very attractive for coastal wave-
forecasting. Here the unstructured-grid approach is compared to the more traditional 
nesting of refined local structured-grids. 
 
In the framework of the MyWave project we have applied innovative data-assimilation 
techniques with the aim of improving near shore North Sea wave forecasts. The 
considered approaches were a) 3D-VAR assimilation of coastal scatterometer winds 
in HARMONIE; b) EnKF assimilation of wave observation in SWAN and c) NN 
assimilation of wave observation in WAM. As reported, the results of the first trials 
using mainly synthetic data have led to promising results. In accordance with the 
project planning, we shall now move on to applying these techniques for assimilation 
of real wind and wave data considering a number of relevant North Sea storms. 
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