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1 Introduction 
 
Quantitative precipitation estimation (QPE) from weather radar is of great importance in 
hydrology, urban hydrology, landslide modelling, and infrastructure design, to mention just a few 
in the domain of water management.  
 
For design purposes, return period and more generally extreme analysis is of importance. Such 
analysis is often based on rain gauge data. They are used to estimate rainfall depths for given 
probabilities of exceedance. Extreme values are then fitted to distribution probability function 
such as the Generalized Extreme Value (GEV). Finally, the fitted distribution is used to calculate 
the rainfall depth for a given return period. 
Generally, only rain gauge data are used to obtain statistics of extreme. However, the number 
of rain gauge records of short duration rainfall, i.e. within hourly, is sparse. Besides, the spatial 
density of rain gauge networks is often too low to obtain reliable statistics of extreme areal 
rainfall for sub-hourly durations. 
The potential of utilizing weather radar data for extreme value analyses has been already 
illustrated in several papers: Durrans et al. (2002) estimated rainfall depth-area relationships for 
different exceedance frequencies by fitting a Gumbel distribution to annual radar rainfall maxima 
for durations of 1, 2 and 4 h using an 8-year data set, the largest area size being approximately 
1300 km². Allen and DeGaetano (2005) estimated extreme areal precipitation depths for return 
periods of 2, 5 and 10 years using a 5-year data set of 24-h accumulated rainfall for New Jersey 
and North Carolina (United States) for area sizes up to 20,000 km². Lombardo et al. (2006) 
used radar data to estimate areal reduction factors for durations of 1 to 120 min and return 
periods of 2 to 50 years for area sizes ranging from 1 to 900 km². 
At the Norwegian Meteorological Institute (MET), Dyrrdal, (2012) provided an overview of 
methods for the estimation of extremes in Norway. The author highlights the importance of 
taking into account the spatial distribution of the precipitation. Further, analysis of extreme 
short-term precipitation by Ødemark et al, (2012) highlighted the usefulness of using QPE radar. 
 
One of the main benefits of weather radars is its very dense sampling of precipitating systems in 
time and space, facilitating real-time warning and nowcasting of severe weather which may 
have huge socio-economic impacts. Limitations are the length of available QPE time series and 
sources of error. 
 
Using reflectivity to estimate precipitation is improving given the increasing space-time 
resolution gage observations and weather radars. However, the presence of sources of error 
requires careful design system and sophisticated data processing. Among other source of 
errors, one can have: beam shielding and the vertical profile of reflectivity (Joss and Waldvogel, 
1990; Kitchen, 1995; Joss and Lee, 1995; Pellarin et al., 2002; German and Joss, 2002; Bellon 
et al., 2007), beam smoothing and post-detection integration (Zawadzki, 1982), variability in 
raindrop size distributions and related uncertainty in the relation between reflectivity and rain 
rate (Joss and Gori, 1978; Lee and Zawadzki, 2005), attenuation by water on the radome 
(Germann, 1999), attenuation in heavy rain and hail (Delrieu et al., 2000), and overestimation in 
hail (Austin, 1987). 
At MET, the remote sensing department is continuously working on improving these sources of 
error. A state of the correction in 2012 can be found in Elo (2012).  
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In spite of significant progress, the residual errors are still large and need to be taken into 
account, in particular in the context of operational hydrogeological applications such as issuing 
landslide forecast, river runoff forecasts or flash flood and debris flow warnings. 
As expressed in Germann et al. (2009): “we may think of a probability density function (pdf) that 
describes the range of possible values in space and time for each radar estimate. One single 
pdf per pixel, however, is not sufficient as errors are correlated in space and time, and one 
would need a pdf conditional on the values in the neighbourhood, or alternatively the full error 
variance–covariance matrix, the dimension of which corresponds to the total number of pixels in 
space and time. In practice, neither the conditional pdf nor the full error covariance matrix can 
be directly used in present hydrological models.” 
A solution to express the residual uncertainties in radar estimates is to generate an ensemble of 
precipitation fields, (Krajewski et al., 1985 and Germann et al., 2009). Each ensemble member 
is a possible realization given the reflectivity measurements and knowledge on the radar error 
structure (Germann et al., 2006a; Lee et al., 2007). The original (deterministic) radar 
precipitation field is perturbed with a stochastic component, which has the correct space–time 
covariance structure as defined by the radar error covariance matrix. The advantage of the 
ensemble as opposed to more classical approaches is the simple interface with hydrology: each 
member can directly be fed into the hydrological model. Instead of running the hydrological 
model only once, we run it several times. We thus get an ensemble of possible hydrological 
outputs, the spread of which represents the sensitivity of the hydrological system to the 
uncertainty in the radar precipitation fields on input. The idea to express uncertainty by adding a 
stochastic component has already shown interesting results for radar precipitation nowcasting 
(i.e. forecast lead times of a few hours (0-3 hours)) by Seed (2003) and Bowler et al. (2006), 
and included in a hydrological context by Berenguer et al. (2005).  
 
Quantitative precipitation forecasting (QPF) is an important area of research within hydrology 
where the major aim is to improve the accuracy and increase the useful lead time of flood and 
flash-flood warning systems. As said in Abdella et al. (2013): ”For the flood prediction of large 
catchments with areal extents in the order of several thousands of square kilometers and 
response times in the order of several hours to days, the large scale QPFs by Numerical 
Weather Prediction models are usually sufficient to at least assess general trends. However, 
their probability to fail gets higher when moving to prediction in small urban catchments. The 
smaller sizes of urban catchments combined with the fast and strong sensitivity of their 
responses to the variations of precipitation pose a challenge. A reasonable QPF in such 
catchments requires a precise estimation of the initial states which is normally only achieved by 
direct observation and high spatio-temporal forecast resolution. Even when this requirement is 
fulfilled, an acceptable QPF quality is achieved only for forecast lead times of a few hours (0-3 
hours)”. 
 
Quantitative Precipitation Nowcasting (QPN) approaches estimate a motion vector field over the 
entire radar coverage domain and have shown effectiveness in estimating the translation of a 
variety of precipitation pattern types (Germann and Zawadzki 2002). The use of a pdf to 
express the uncertainty in radar nowcasts was proposed in Germann and Zawadzki (2004). As 
a next step, from the pdf nowcasts one may calculate an ensemble which is in agreement with 
the individual pdfs of all pixels. A prerequisite of these stochastic nowcasting approaches is a 
rigorous study of the sources of uncertainty and their relative importance (e.g. Germann and 
Zawadzki, 2006).  
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Tight collaboration between the Norwegian Water Resources and Energy Directorate (NVE) and 
MET has been strengthen for the improvement of the use of radar into hydrologic and landslide 
model.  
 
This study has two objectives:  
i- to do a preliminary assessment of the use of QPN for the case study of the 23rd of July 2011 
over the area covered by the radar located at Hurum (Norway) 
ii- to identify key issues which should be investigated further in order to establish an ensemble 
QPN 
 
The study hasn’t been focused on correcting reflectivity but on a better estimation of the 
residual QPE error. 
 
The report is organized as follows.  
Section 2 describes the different datasets and the chosen event for our case study. 
Section 3 shows the feasibility study of the Quantitative Precipitation Nowcasting.   
Section 4 presents the temporal filling-in of minute precipitation radar 
Section 5 shows the residual error estimation and the ensemble Quantitative Precipitation 
Estimation radar 
In order to identify the key issues, every section got a discussion 
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2 Data and case study 
2.1 Weather Radar 
The study has been focused on the C-band radar located at Hurum. The radar has a 240km 
radius coverage. QPN and residual error estimation have been based on QPE. Reflectivity 
signal (Z) of the radar provided by the remote sensing department has been transformed into 
precipitation (R) using the Marshall expression 𝑍 = 𝑎𝑅𝑏, where a=200 and b=1.6. 

2.2 Daily precipitation from gauges 
An 84 manual gauges network over Hurum radar coverage has been used (figure 1). Only daily 
manual gauges have been used in order to get a reasonable level of data quality.  Automatic 
gauges provide relevant measurements. Unfortunately their quality control is still not perfect but 
anyway on improvement. In the following of the report, daily precipitation manual gauges may 
be written as RRNSDNUD. 

 
Figure 1: The 84 manual gauges network within the Hurum radar coverage used in the study 

2.3 Case study: Hurum radar on the 23rd of July 2011  
The whole study has been focused on the radar located at Hurum (figure 2) for one case study: 
the event that occurred on the 23rd of July 2011, an event that caused large destructions (figure 
3).  
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It has been chosen because of its convective characteristic over the area. Figure 4 shows at 
around 17:00 a very low areal precipitation occurrence and a very high areal non zero 
precipitation areal mean. On this figure values are averaged over the Hurum radar coverage 
and thus might look low. In order to have an order of magnitude of the event we expressed the 
values over an area: the radar has measured at 17:00 a snapshot of 4524mm over an area of 
120*120 km².  
Among other places over the area, convective precipitation occurred over three municipalities: 
Fredrikstad, Oslo and Drammen. By taking Intensity/Duration/Frequency parameters from key 
gauges inside each municipality, and by computing return period using QPE over these three 
areas, one can have radar based return period values. For the three municipalities (Figure 5, 6 
and 7) return periods reaches values higher than 200 years.  
During this event, estimated precipitation from radar were recorded every 15 min. The current 
measure resolution at Hurum is now of 7.5min.  
 

 
Figure 2 Illustration of Hurum C-band radar coverage with a 240km radius.  Green areas represent the three 
municipalities Fredrikstad, Oslo and Drammen. The larger square represents the area of study. The dashed square 
represents the area of advection detection in order to avoid border effect.  
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Figure 3 : consequence of the event in Notoden. 

 
Figure 4  Areal non-negative precipitation mean (line), areal mean precipitation occurrence (bold line), areal precipitation 
mean (dashed line) 
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Figure 5: return period, municipality of Oslo , based on the IDF parameters from station  #18701 Oslo-Blindern 
illustrated in red 
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Figure 6: Return period, Municipality of Drammen, based on the IDF parameters from station  #26890 Drammen-
Marienlyst illustrated in red 
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Figure 7: Return period, Municipality of Fredrikstad, based on the IDF parameters from station  #3030 Fredrikstad 
illustrated in red 

2.4 Discussion 
It has been chosen to directly convert reflectivity into QPE using Marshall Expression with 
constant coefficient from literature. But the uncertainties in the 𝑍−𝑅 relationships when 
converting 𝑍 into 𝑅 may introduce erroneous spatial patterns of precipitation. Ideally it would 
have been interesting to spend time on estimating spatially distributed parameters a and b. Or 
more practically, to use the Marshall expression very late in the study to keep reflectivity, direct 
measure of radar. 
 
It was first decided to use hourly automatic gauges for QPE correction. Hourly precipitation or 
precipitation at higher time resolution such 10 min or minute is highly noisy. Regular methods 
based on Gaussian distribution are not relevant enough to qualify a value to be either an error 
or an extreme value. It is important then to know the characteristic of the phenomena that 
occurs on Norway or over a radar area at the time of the measure. The remote sensing 
department at MET developed a method to characterize the convectiveness or the 
stratiformness of an event. More information can be found in Yang et al. (2013).  This method 
can be useful as an indicator of the process. Long time series are needed in order to train and 
thus infer the parameters of error models. Long time series of gauges are thus a necessity. 
Grouping similar precipitation phenomena into categories can be done by using neuronal 
network methods or self-organizing map method. These methods will sort, by themselves, 
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precipitation that looks more convective or stratiform. (Liu et al, 2011)  Adapting these remarks 
with stochastic conditioned simulation will enable to highlight erroneous precipitation. 
Besides of the noisy aspect of hourly (or 10 minute, 1 minute...) precipitation, measures are 
affected by wind and/or orography. No linear expression exists between precipitation, elevation 
and wind. An experimental site is established in order with the purpose  to calibrate model of 
correction by using many sensors (Wolff et al., 2013). Results will definitely provide an idea of 
accurate correction to be established on this location. Unfortunately this site is representative 
for only one location. And effect of terrain and wind is highly changing from one location to 
another. Adding simplified physic model into the stochastic correction model would provide 
realism and thus be a great bonus.  
An interesting aspect would be a more user oriented approach. One can first run a 
precipitation/hydrological chain model or a precipitation/landslide chain model using past event 
data. Spatial precipitation data are used as they are (either from radar or from spatial 
interpolation). The output values of the chain model are compared to past data. An error field is 
deduced from this difference. Precipitation fields are corrected according to this difference. The 
stochastic simulation will provide space-time realistic error fields. 
 
Instead of automatic hourly gauge precipitation, it has been preferred to use manual daily 
gauges. Again, daily precipitation measures must be corrected. The method described in  
Førland et al. (1996) has been followed. The correction method takes into account temperature 
and the location of the gauges. Temperature is not always observed at the precipitation 
stations. Spatial interpolation of temperature has been established using the method and 
parameters described in Tveito et al (2000), Tveito et al. (2005) and Mohr (2008). The 
algorithms are summarized in Appendix 1. The temperature interpolation corresponds to the 
approach applied for SeNorge version 1.1. Parameters are based on averaged daily 
temperature over each month of the year in order to get the seasonality of the process. 
Unfortunately both orographic effect and daily fluctuation of the structure are not taken into 
account. The code has been developed in order to facilitate improvement of the correction. 
Ongoing work in part 1 of the NVE-MET common project is focused on improving the spatial 
temperature interpolation. Better temperature interpolation will enable more accurate 
precipitation correction especially at temperatures below 2 degrees. 
 
So far, wind has not been applied for precipitation correction. Further work has to be done in 
providing wind map and to involve this field into the precipitation correction. 
 
Precipitation, snow, temperature and wind must be consistent over time in order to not provide 
incoherent meteorological scenarios over time and space. It is thus important to create a 
weather generator that provides a temporal engine. The temporal engine provides a time series 
of categories whose to each category does correspond a probability of occurrence of one 
category of precipitation, one category of temperature, one category of… etc. The different 
categories related to each variable group the set parameters to be used for their interpolation or 
simulation. 
 
The spatial return period presented in figures 4, 5 and 6 represent QPE values that have been 
expressed into return period by using only one gauge inside the area. These figures provide 
thus an order of magnitude of the event.  A higher accuracy would be achieved by taking into 
account IDF parameters from several gauges. Several methods can be used for this. Spatial 
interpolation of point return period could provide a first idea of which parameters to be used on 
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the QPE. Stochastic simulation conditioned by gauges could provide long time series of realistic 
data in order to estimated IDF parameters on point with no measures. Other methods based on 
extreme simulation can be used as well. 
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3 Quantitative Precipitation Nowcasting 
Nowcasting is defined as very short term forecast, with a lead time from 0 hour (now) to 2 hours. 
This study has focused on the feasibility of a simple nowcasting method, called Lagrangian 
persistence, to provide information relevant for NVE. The estimated precipitation has been 
assumed perfect in order to focus on the nowcasting method. 
The method has been established and assessed on the event that occurred on the 23 of July 
2011.  

3.1 Lagrangian persistence nowcasting 
The radar nowcasting method has been based on a frozen Lagrangian precipitation field, whose 
no dissipation would occur for the future next steps. For each time step t, an advection field has 
been detected from the precipitation field. The advection field has then been used for doing a 
rigid shift (figure 8) of the estimated precipitation to lead times from 15min to 3 hours. The 
advection stays unchanged for the whole nowcasting. The Lagrangian persistence nowcasting 
is summarized in the following expression: 

 𝑅∗(𝑡 + 𝜏, 𝑥⃗) =  𝑅�𝑡, 𝑥⃗ − 𝑈��⃗ . 𝜏� (3.1) 

Where 𝑅∗ is the nowcasted precipitation field, 𝑅 is the observation field,  𝑈��⃗  the advection field, 𝑥⃗ 
the location and 𝜏 the lead time of the nowcast.  

 
Figure 8: Nowcasting method based on the translation of the QPE with a rigid global advection over the area 
represented on figure 2 (dashed square). Yellow area represents dry area under the Hurum radar coverage 
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3.2 Advection detection 
The advection (intensity and direction) has been detected using the non-zero precipitation 
values. It has been detected by using the field at time t and the field on the next time step. 
Either a global or a distributed advection over space can be detected. The advection field is 
determined by its minimization of the Relative Mean Square Error (RMSE) between the shifted 
field from time t to the next time step and the observed field at the next time. So far the 
distribution of the advection has been chosen Uniform. The code has been developed in order 
to let the possibility to add other distribution functions than uniform for a Bayesian detection of 
the advection. In the case of a detection of a distributed advection over space, a second 
estimation has been establish in order to estimate the spatially distributed noise to be added for 
minimizing the RMSE of the shifted field from time t to the next time step and the observed field 
at the next time step. 
Another well-known method to detect advection is called cross-correlation method (Li, et al 
1995). Nonetheless given the computing time for processing the method, the first one has been 
preferred. 

3.3 Assessment and evaluation criteria 
Comparison to observed estimated precipitation has been used to assess the simple 
nowcasting method (figure 9). Several scores exist such as correlation coefficient (CORR), 
probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), equitable 
threat score (ETS) and the conditional mean absolute error (CMAE). They measure the 
agreement between the forecasts (F) and the observations (O) based on a pixel-to-pixel 
comparison. In the case of precipitation forecast the Stable Equitable Error in Probability Space 
score (SEEPS) (Rodwell et al. 2010) has been preferred. The SEEPS score is a combination of 
a 3 by 3 contingency table and a 3 by 3 weight table (figure 10). In the weight table the colour 
red means a high weight and the green colour a light weight. The distribution of the weight 
enables to disqualify method that makes wrong prediction in terms of precipitation occurrence 
and extreme precipitation amount. The lower the value, the better the forecast.  
As expressed in Abdella et al. (2013): “Another factor which adds to the overall reduction of [the 
score] values in this study is the high spatial resolution of the forecasts. The calculation of all 
the performance measures is based on pixel-to-pixel comparisons at the resolution of 1 km. The 
results in stricter evaluation with lower tolerance to errors made due to misplacement of 
predicted features. If a forecast at pixel level does not compare well with the available 
observation, it does not mean that the performance is poor. This is why some studies employ 
other evaluation methods, such as object-based methods, in addition the pixel-to-pixel 
verification (…). In order to analyse the effect of increasing tolerance to error due to 
misplacement, the [score] was calculated for an extended verification area surrounding a 
forecasted pixel. (…) When evaluation over an extended grid, each individual pixel is compared 
against all of the pixels located in the square region surrounding that pixel. For example, a 'hit' is 
registered if the forecast at the pixel of interest and the observation in one of the surrounding 
pixels both exceed the specified threshold.” 
The assessment has thus been done regarding three spatial supports: 
- Every single nowcasted value  has been compared to the observation at the same location. 
- Every single nowcasted value has been compared to the value at the location that fits the best 
the prediction within an area of 9km²  around the predicted location 
- Every single nowcasted value has been compared to the value at the location that fits the best 
the prediction within an area of 25km²  around the predicted location.  
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Figure 11 sums-up the three comparisons.  
 
 

 
Figure 9: Simple illustration of an observed estimated precipitation on the right, and the corresponding nowcasted 
precipitation at the different lead times on the left.  
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Figure 10: The SEEPS score (Rodwell et al. 2010) is a combination of a 3 by 3 contingency table and a 3 by 3 weight 
table. In the weight table the colour red means a high weight and the green colour a light weight. The distribution of the 
weight enables to disqualify method that makes wrong prediction in terms of precipitation occurrence and extreme 
precipitation amount. 

 
 

 
Figure 11: Illustrative overview of the comparison methods… 
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3.4 Results 
Assessment of the radar nowcasting method for the event of the 23rd of July 2011 has been 
represented in figure 12. SEEP scores are represented for nowcasted precipitation for lead 
times going from 15min to 180min. The assessment regarding three spatial supports has been 
represented: the black curve represents the pixel to pixel comparison, the red curve represents 
the pixel to 9 km² comparison, and the green curve represents the pixel to 25 km². The larger 
the area of comparison, the lower SEEP. The left Y-axis has been used in order to catch the 
high value of the SEEP score of the black curve. It did comfort us that the used method is very 
simple and thus without any surprise did not manage to predict the small scales dissipation of 
precipitation. Nonetheless this method has been providing interesting and useful information 
over 9km²-areas. Indeed until two hours (120min) lead-time SEEP stand low enough (below 
0.4). 
 

 
Figure 12: SEEP score for nowcasted precipitation for lead times going from 15min to 180min. The three comparison 
are represented: the black curve represents the pixel to pixel comparison, the red curve represents the pixel to 9 km² 
comparison, the green curve represents the pixel to 25 km². 

3.5 Discussion 
Assessment of the radar nowcasting method for the event of the 23rd of July 2011 has been 
represented in figure 12. A degradation of performance with lead time is obvious from the 
figures and is expected.  The spatial resolution of the nowcast has an influence on the SEEPS 
score. The calculation of all the performance measures is based on pixel-to-pixel comparisons 
at the resolution of 1 km. The results in stricter evaluation with lower tolerance to errors made 
due to misplacement of predicted features. If a nowcast at pixel level does not compare well 
with the available observation, it does not mean that the performance is poor. In order to 
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analyse the effect of increasing tolerance to error due to misplacement, the SEEPS was 
calculated for an extended verification area surrounding a nowcasted pixel. The verification 
areas are square regions with side lengths ranging at 3 and 5 pixels. When evaluation over an 
extended grid, each individual pixel is compared against all of the pixels located in the square 
region surrounding that pixel (Abdella et al., 2013). 
The results of the performance for larger verification area are presented in Figure 12. It 
illustrates the increase in nowcast skill, as quantified by SEEPS, as the verification area is 
increased from a single pixel (1 km2) up to a 5 x 5 pixel area.  
 
In order to make a parallel to what MET and specifically yr.no provide to users, let us look at 
figure 13 and let us assume that the dark blue represent the one pixel value (1 km² spatial 
resolution) and the light the spatial uncertainty based on an a 9 km² area.  So far the simple 
method does not enable to provide relevant information at the pixel resolution but enable to 
provide relevant spatial uncertainty information. 
 
The QPN method used in this study has to be improved on several points: 
 
1- The advection method: 
Many researchers and institutes have been working on this topic. A simple google search 
enables to get an overview of the methods. The improvement would not face any problem. An 
important task will be to make advection having acceleration and an evolving direction. The 
topic is thus not precipitation nowcasting anymore but wind nowcasting. 
Satellite data can be interesting to have prior information of the advection field. NWP can be 
helpful in order to get wind information at larger spatial resolution. 
 
2- Growth and dissipation of precipitation: 
The precipitation nowcasting method is based on a frozen precipitation field. It is obvious that 
temporal precipitation fluctuation occurs over time with as consequence growth or dissipation of 
the precipitation. Methods like dynamic Lagrangian kriging might provide proxies of the rainy 
area fluctuation over time. Conditional stochastic simulation would provide realistic space-time 
precipitation fluctuation within these wet areas.  NWP might be interesting as well. Nonetheless, 
contrarily to remote sensing observation, NWP is a prediction with its own physics that might not 
match the meteorological event that is occurring. 
 
3- Precipitation nowcasting for urban hydrology request a spatial resolution much higher than 
1km². Challenge will be to know the need of the user, for example threshold values with 
accurate and narrow uncertainty, instead of trying to provide map of precise values with wide 
uncertainty. 
 
4-Convective phenomena or orographic effect are the limit of a simple nowcasting method. A 
combination of strong machine learning, high level statistics and light physics based model is 
required. NWP might come later to make the transition between nowcasting and regular 
forecast. 
 
Besides, this part of the study did assume QPE to be perfect. That is not the case in reality. The 
following of the report deal with estimating the residual error. 
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Figure 13: Comparison and similitude to Yr forecast illustration. 
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4 Temporal filling-in of minute precipitation radar  
Radar observations are not continuous over time but discrete with a time resolution of 15 min 
for the event of the 23rd of July 2011 (7.5 min now). Quantitative Precipitation Estimation from 
radar (QPE) does not represent a temporal accumulation over 15 min. Indeed the frequency of 
measurement is different from the measure resolution. As a consequence zebra pattern 
appears when aggregating over time. Figure 14 is an illustration of the daily precipitation mean 
on the 23rd of July 2011. Whatever the correction or residual error estimation, zebra pattern will 
always occur. We assumed that estimated precipitation from radar to be a 1-min time resolution 
measurement. Filling-in the estimated precipitation between every 15 min time step enables to 
make the estimated precipitation field more realistic. 

 
Figure 14: Daily QPE mean 



 

30  

4.1 Lagrangian linear interpolation 
The Lagrangian approach enables a decomposition of the space-time dynamic of the 
precipitation into i-the advection and ii- the inner variability, also called fluctuation or dissipation. 
Several studies (i.e. Amani, et al., 1997) highlighted the importance of analysing precipitation 
fields in the Lagrangian reference in order to improve the accuracy of the geostatistics 
descriptors (spatial and temporal correlation distance). 
We used the Lagrangian linear interpolation to fill-in the lack of information. The linear 
interpolation of each pixel is written:  

 𝑅∗(𝑡 + 𝛼.𝛥𝛥, 𝑥⃗) =  𝛼.𝑅(𝑡, 𝑥⃗) + (1 − 𝛼)𝑅�𝑡 + 𝛥𝛥, 𝑥⃗ − 𝑈��⃗ .𝛥𝛥.𝛼�,𝛼 ∈ [0; 1] (4.1) 

Where 𝑅∗ is the predicted precipitation field at time 𝑡 + 𝛼.𝛥𝛥 and location 𝑥⃗, 𝑅 are the 
observation fields at location (𝑡, 𝑥⃗) and �𝑡 + 𝛥𝛥, 𝑥⃗ − 𝑈��⃗ .𝛥𝛥.𝛼� where 𝑈��⃗  is the advection field.  
It enables to provide quickly values at each minute time resolution. 
 
The process of filling-in the QPE is as follow: 
1-For every hour the spatially distributed advection is either provided by an external source or 
computed from the 1-min precipitation radar itself.  
2-Hourly average of the distributed advection 
3-Transcription of the 1-min estimated precipitation field from the Eulerian reference (the one 
we used to see measurement) to the Lagrangian reference by using the hourly advection. 
4-Linear interpolation 
5-Transcription of the estimated precipitation field from the Lagrangian reference to the Eulerian 
field 
 
An algorithmic overview of the process is shown on figure 15. 
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Figure 15: Algorithmic overview of the filling-in method 

4.2 Results 
As an illustration, advection fields and their corresponding precipitation fields are shown on 
figure 16. Figure 17 shows an hourly aggregated precipitation field on the 23rd of July 2011 
from 07:00 to 07:59 after a filling-in. Figure 18 shows the daily aggregated precipitation on the 
23rd of July 2011. 
 
As an illustration of the improvement, one can see that amount of daily precipitation goes from a 
maximum of 2mm before filling-in (figure14) to a maximum of 25 mm in figure 18. 
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Figure 16: estimated precipitation (a,c, e,g) and distributed advection (b,d,f,h) on the 23rd of July 2011 from 07:00 to 
07:45 
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Figure 17: Hourly aggregated precipitation on the 23rd of July 2011 from 07:00 to 07:59 
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Figure 18: Daily aggregated precipitation on the 23rd of July 2011 

4.3 Discussion 
The temporal Lagrangian linear interpolation is a fast method to fill-in the estimated precipitation 
radar measured every 15minutes. It enables to increase the amount of precipitation on each 
pixel and to provide a realistic pattern of the precipitation field.  
This method can be implemented as “on the fly” to get quickly output to be used into models 
belonging to a chain model. 
 
Nonetheless the method is too coarse to retrieve a quantitatively realistic temporal structure. 
Moreover it does not take into account the spatial variability of the non-zero precipitation field. It 
does not take into account the spatial variability of the precipitation indicator field either. Figure 
19 highlights this artefact. Areal mean and areal standard deviation, for the second hour of the 
case study event, are represented on this figure. Mean and standard deviation have been 
calculated for:  

i-total precipitation, 
ii-non-zero precipitation and  
iii-precipitation occurrence.  

 
We got measures at 0, 15, 30, 45 and 60 minutes. All the curves have a saw like behaviour. 
The two graphs show that the linear Lagrangian method underestimates both the areal mean 
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and standard deviation of the non-zero precipitation and over-estimate both the precipitation 
occurrence mean and standard deviation.  
In other terms, the interpolation method decreases the amount of precipitation and its spatial 
variability and increases the size of wet area.  
Aggregating the minute precipitation fields over an hour would enable to put less weight of this 
artefact. 
 
Using other methods of interpolation such as Lagrangian kriging might help in keeping relevant 
variability and space-time structure. Nonetheless an effort would have to be done when 
interpolating precipitation indicator and its transition structure from dry to wet areas. This aspect 
is of great importance when convective precipitation phenomena occur.  
Kriging is a method that assumes the field to be Gaussian. Anamorphosis, copula or other 
methods of conversion from a Non-Gaussian to a Gaussian field exist already. Some attention 
will have to be point about the correction of the structure due to this distribution transformation. 
Hermitian factors as described in Guillot (1999) or in Lepioufle (2009) can be applied. 
Superimposition of two fields: one binary field and one wet field will result as abrupt transition 
proper to convective. Using the GRF simulation method and filtering positive below a threshold 
representing the probability of intermittency (as used in Vischel et al, 2009) would not get similar 
characteristics. More study has to be done on that method if of use. 
 
Using point gauges as conditioning values or as structure conditioning can be helpful.  
Two approaches might be interesting: 
The first is to use at-site observation as point conditioning for a radar/gage combination. 
However, due to its noisy behaviour, minute observation might not be the best choice as the 
observation to be used. Instead 10-minute, hourly and daily aggregated point values can be an 
alternative for the point conditioning. Combination methods such as Kalman filter and block-
kriging used in Todini (1999) or Lepioufle (2012) might be interesting.   
The second approach is to use a space-time stochastic simulation conditioned by point 
observation in order to extract the space-time structure of minutes, hourly precipitation. It 
provides a proxy of the pattern on location with no gauge observation. This information is then 
used for conditioning the structure of the interpolated the 1-minute QPE values. A Gibbs 
sampler might then be helpful to spread interpolated over space and time values in accordance 
to the proxy pattern. 
 
QPE is an indirect measure of the radar. Spatial uncertainty will occur. An error distance must 
be taken into account in order to minimize this effect. Also point observations are associated 
with uncertainties. Point data must be checked with an efficient quality control implemented in 
order to filter erroneous values 
 
Given the need related above, some specific analysis such as inner drift variogram or transition 
variogram must be calculated in both Eulerian and Lagrangian references. Besides some limit 
might appear in using usual statistics and geostatistics tools due to the size of radar data. 
Appendix 2 presents work and illustration on useful theory and tools on this topic. 
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Figure 19: Areal mean (left) and areal standard deviation (right) of minute QPE retrieved from the linear Lagrangian 
interpolation. Bold lines represent precipitation occurrence, thin line represent non-zero precipitation, and dashed lines 
represent total precipitation. 
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5 Ensemble QPE radar 
In spite of significant progress, QPE radar errors are still large and need to be taken into 
account, in particular in the context of operational hydrogeological applications such as issuing 
landslide forecast, river runoff forecasts or flash flood and debris flow warnings. 
As expressed in Germann et al. (2009): “we may think of a probability density function (pdf) that 
describes the range of possible values in space and time for each radar estimate. One single 
pdf per pixel, however, is not sufficient as errors are correlated in space and time, and one 
would need a pdf conditional on the values in the neighbourhood, or alternatively the full error 
variance–covariance matrix, the dimension of which corresponds to the total number of pixels in 
space and time. In practice, neither the conditional pdf nor the full error covariance matrix can 
be directly used in present hydrological models.” 
A promising solution to express the residual uncertainties in radar estimates is to generate an 
ensemble of precipitation fields, (Krajewski et al., 1985 and Germann et al., 2009). Each 
ensemble member is a possible realization given the reflectivity measurements and knowledge 
on the radar error structure (Germann et al., 2006a; Lee et al., 2007). The original 
(deterministic) radar precipitation field is perturbed with a stochastic component, which has the 
correct space–time covariance structure as defined by the radar error covariance matrix. The 
expression reads:  

 𝜙𝑡,𝑖 =  𝑅𝑅,𝑡 +  𝛿𝑡,𝑖 (5.1) 

Where  𝑅𝑅 is the original unperturbed QPE radar at time t, 𝛿𝑡,𝑖 is the perturbation field for 
ensemble i and 𝜙𝑡,𝑖 the resulting QPE field for ensemble i. 
The advantage of the ensemble compared to more classical approaches is the simple interface 
with hydrology: each member can directly be fed into the hydrological model. 
 
The task of the ensemble generator is to model a number of realistic error perturbation fields, 
and to superimpose these onto the original unperturbed QPE radar field. 
 
There is an important difference between the stochastic ensemble proposed here, and the 
dynamic ensemble used in numerical weather prediction models (Palmer, 2002). Here, each 
ensemble member is the sum of the deterministic radar precipitation field and a stochastic 
perturbation. The stochastic term represents the measurement uncertainty and is generated 
such that it has the correct space–time covariance structure as defined by the radar error 
covariance matrix. In the case of an ensemble system of a numerical weather prediction model, 
on the other hand, we have a highly nonlinear dynamic system of equations, and the initial 
conditions are usually perturbed such that the resulting trajectories exhibit maximum 
perturbation growth in phase space. The size of the ensemble is limited because of limited 
computing time. 

5.1 Residual error 
Assuming true precipitation known, one can write:  

 𝑅𝑇𝑇𝑇𝑇 =  𝑅𝑅 +  𝜀 (5.2) 

Where 𝑅𝑇𝑇𝑇𝑇 represents the true QPE, 𝑅𝑅 the QPE from radar and 𝜀 the error. 
As written in Germann et al. (2009), most radar errors are multiplicative, it is then sensible to 
define the residual error ϵ in dB:  

 𝜀𝑑𝑑 =  10log �
𝑅𝑇𝑇𝑇𝑇
𝑅𝑅

� (5.3) 
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Equation (5.2) is thus replaced by: 
 10𝑙𝑙𝑙 (𝑅𝑇𝑇𝑇𝑇) = 10 𝑙𝑙𝑙(𝑅𝑅)  +  𝜀𝑑𝑑 (5.4) 

And with writing simplification:  
 𝑅𝑇𝑇𝑇𝑇𝑑𝑑 = 𝑅𝑅𝑑𝑑   +  𝜀𝑑𝑑 (5.5) 

As expressed in Germann et al, 2009:  
“There are two fundamentally different approaches to characterize the parameters of the 
residual error in QPE radar: 
1- Comparison with ground reference such as rain-gauge measurement 𝑅𝐺. This method is 
simple and fast and provides a direct estimate of the overall uncertainty in 𝑅𝑅 . The resulting 
parameters may overestimate the real uncertainty 𝜀𝑑𝑑., as the disagreement between 𝑅𝑅 and 
 𝑅𝐺 includes also rain-gauge and representativeness errors. 
2- Systematic analysis of error sources. All relevant sources of residual error in  𝑅𝑅 are identified 
and quantified individually by combining measurement theory, physical concepts, sample data 
and statistical simulation. Second, the results of the individual error analyses are superimposed 
in order to determine the overall residual error parameters.” 
 
We chose the first option. Indeed, i-the amount of daily gauges is dense enough, ii-the study 
focused on one event and iii-given the topography several sources of error in QPE radar makes 
option 2 not obvious to established. The residual error is thus compute using the 
expression 10log( 𝑅𝐺 𝑅𝑅⁄ ). 
Daily residual error has been established using daily QPE radar and the daily manual 
precipitation gauges presented in the Chapter 2. Gauge measurements have been corrected 
following the method presented in Appendix 1 of this report. 

5.2 Residual error estimation 
Residual error in 𝑅𝑅𝑑𝑑 are expected to be correlated both in space and time and having a 
Gaussian distribution. The residual reads:  

 𝜀𝑑𝑑 = 𝑁(𝜇,𝜎, 𝐿,𝑇) (5.6) 

Where 𝑁  represents a Gaussian field characterised by its mean 𝜇, its standard deviation 𝜎, its 
spatial range 𝐿 and its temporal range 𝑇. 
 
One particular case of (5.6) is the Mean Field Bias (MFB) assuming residual error invariant over 
space, expressed as: 

 
𝑀𝑀𝑀 =  

∑ 𝑅𝐺𝑆

∑ 𝑅𝑅𝑆
 

(5.7) 

Where MFB represents the ratio of the sum of values at the gauges ∑ 𝑅𝐺𝑆  over the sum of the 
values of the radar pixel with gage ∑ 𝑅𝑅𝑆   
 
Given the complexity of the residual error structure, multivariate approach is useful. Expression 
(5.6) reads then:  

 𝜀𝑑𝑑 = �𝛽𝑖𝜆𝑖
𝑖

+ 𝑁(0,𝜎, 𝐿,𝑇) (5.8) 

Where the 𝜆’s correspond to covariates such as distance to the radar location (figure 20), 
distance to the coast (figure 21) to tell just a few, and the 𝛽’s correspond to their coefficients. 
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In order to have a similar approach to the Kalman filter, equations (5.6) and (5.8) have been 
computed with the residual error as a difference as well, i.e.:  

 𝜀 = 𝑅𝑇𝑇𝑇𝑇 − 𝑅𝑅 (5.9) 

  
The restricted Maximum likelihood method has been used for the estimation of the parameters. 
 
An algorithmic overview of the process presented in this paragraph is shown on figure 23. 
 

 
Figure 20: Distance to the Hurum radar location 
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Figure 21: Distance to the coast (meters) 

5.3 Ensemble QPE radar 
Ensemble QPE radar at each time step is implemented  by first simulating N runs of the space-
time distributed Gaussian residual error expressed in (5.6) and then by superimposing it to the 
QPE radar in order to fulfilled expression (5.1). 
 
Assuming a long timeseries of both radar and gage, residual error parameters are initialized 
once using radar–rain-gauge data from the past and are then kept constant. By doing this, 
parameters represent the error characteristics averaged over the selected calibration dataset. 
 
For a real-time implementation a Bayesian approach can then be used by adding the recent 
residual error parameters to the a priori information i.e. the error characteristics averaged over 
the selected calibration dataset. 
 
The interpolation of the residual error is an easy way to provide an “average corrected” QPE 
radar into hydrologic models. By using kriging as interpolation method, standard deviation of the 
error prediction provides the uncertainty of the output according to the error model and the 
gauges density.  
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5.4 Spatial classification of the daily precipitation 
The multivariate linear regression error model is highly sensitive to spatial heterogeneity. Daily 
accumulation of convective precipitation provides such a heterogeneous field.  
A clustering method has been used in order to separate the spatial field into two categories: one 
category of area with very high fluctuation over space and time, the second category with 
homogeneous precipitation. The Self-Organizing Map (SOM) approach based on Kohonen 
(2002) algorithm has been used for the categorization. 
Variables used the for doing this categorization have been chosen in order to take into account 
the temporal fluctuation and the spatial fluctuation of the neighbourhood. Each pixel has been 
characterized by the daily coefficient of variation (i.e. ratio of the standard deviation over the 
mean) of non-zero precipitation for every pixel of its neighbourhood, i.e. 8 pixels.  
The result is shown on figure 22. 

 
Figure 22: footprint of precipitation over one day with: in green, very high spatial and temporal fluctuation; in red: 
homogeneous precipitation. 
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Figure 23: Algorithmic overview of the daily QPE correction method  

5.5 Results 
The estimation of the parameters is determined for the event of the 23rd of July 2011 for positive 
values of 𝑅𝑅 and 𝑅𝐺.  The study is based on daily QPE. No temporal dimension has thus been 
taken into account. The multivariate linear model has not been used in this paragraph. 
 
A map of the residual error on pixels with gauges highlights its distribution over space (Figure 
24). The decimal logarithm has been used in order to have the ratio following a Gaussian 
distribution (Figure 25).  
As an introduction we compared daily QPE with daily precipitation measured by gauges. No 
filling-in method has been used here, and measured precipitation has been assumed equivalent 
to a 15-min precipitation field. Figure 26 shows a quantile-quantile comparison, during the event 
23rd of July 2011, of the daily gauges and the related pixel of the QPE. Values are not aligned 
on the black oblique line of slope 1. 
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The Mean Field Bias is represented on Figure 27. On the top left, a qq-plot of daily QPE and 
daily gauges without any correction (black) has been plotted. Corrected daily QPE using Mean 
Field Bias correction is shown in red colour. The top right panel represents the daily QPE with 
gages values described as circle proportional to the precipitation value. The bottom left panel 
represents the QPE after MFB correction. 
 
The residual error has been estimated using the univariate linear model first from equation (5.6) 
and secondly following expression (5.9). Results are shown on figure 28 and figure 29 
respectively. The top left graph represents the qq-plot of daily residual error against theoretical 
Gaussian values.  The top right graph represents the spatial: variogram of the daily residual 
error. The middle left graph represents the daily QPE radar with gages values described as 
circle proportional to the precipitation value. The middle right graph: represents the kriged 
residual error. The bottom left graph represents the corrected QPE radar using the kriged 
residual error. The bottom right graph represents the error predication of the kriged residual 
error. 
 
Bayesian approach has been implemented. Because only working on one event, no a priori 
information has been used. All the priori parameters 𝛽𝑖, 𝜎, 𝐿 have been chosen following uniform 
distribution. Results are based on residual error expressed in (5.6) and shown in figure 30.  The 
top left graph represents the qq-plot of daily residual error against theoretical Gaussian values, 
the top middle graph represents the a posteriori distribution of the average μ (intercept 𝛽0). The 
top-right graph represents the a posteriori distribution of the standard deviation 𝜎. The middle 
left graph represents the a posteriori distribution of the spatial range L. The middle-middle graph 
represents the a posteriori distribution of the nugget. The middle-right graph represents the 
averaged corrected QPE based on a kriged residual error with constant μ, 𝜎, and L choose into 
the a posteriori distributions. The bottom-left graph represents the same as the middle-right 
graph with others parameters μ, 𝜎, and L choose into the a posteriori distributions. The bottom-
right graph represents one run of a Bayesian-based simulation based on non-constant μ 
following the a posteriori distribution, and constant 𝜎, and L choose into the posteriori 
distributions. 
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Figure 24: Ratio daily gauge value over daily QPE on every pixel with a gauge. Unit is in dB 

 
Figure 25: Qq-plot of decimal logarithm of the ratio against theoretical Gaussian distribution 
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Figure 26: Qq-plot of daily QPE and daily gauges. No filling-in method has been used here, and measured precipitation 
has been assumed equivalent to a 15-min precipitation field. 
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Figure 27: Top left: Qq-plot of daily QPE and daily gauges without any correction (black), using a Mean Field Bias 
correction (red).Top right: daily QPE with gages values described as circle proportional to the precipitation value. 
Bottom left: QPE after MFB correction 
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Figure 28: Top left: Qq-plot of daily residual error against theoretical Gaussian values, Top right: spatial variogram of the 
daily residual error, Middle left: daily QPE with gages values described as circle proportional to the precipitation value. 
Middle left: kriged residual error, Bottom left: corrected QPE using the kriged residual error, Bottom right: error 
predication of the kriged residual error. 
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Figure 29: Top left: Qq-plot of daily residual error against theoretical Gaussian values, Top right: spatial variogram of the 
daily residual error, Middle left: daily QPE with gages values described as circle proportional to the precipitation value. 
Middle left: kriged residual error, Bottom left: corrected QPE using the kriged residual error, Bottom right: error 
predication of the kriged residual error. 
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Figure 30: Top left: Qq-plot of daily residual error against theoretical Gaussian values, Top middle: a posteriori 
distribution of the average μ (intercept 𝛽0), Top-right: a posteriori distribution of the standard deviation 𝜎, Middle left: a 
posteriori distribution of the spatial range L, Middle-middle: a posteriori distribution of  the nugget, Middle-right: averaged 
corrected QPE based on a kriged residual error with constant μ, 𝜎, and L choose into the a posteriori distributions, 
Bottom-left: same as middle-right with others parameters  μ, 𝜎, and L choose into the a posteriori distributions. Bottom-
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right: one run of a Bayesian-based simulation based on non-constant  μ following the a posteriori distribution, and 
constant 𝜎, and L choose into the posteriori distributions. 

 

5.6 Discussion 
Estimation of residual error parameters are based only on the event of the 23rd of July 2011 with 
the C-band radar located at Hurum.   
 
At daily time resolution residual error, whatever taken as a ratio or a difference between gages 
measurements and QPE radar, follows a Gaussian distribution.  
 
Corrected QPE radar by MFB, as shown on figure 27, does not fit to the straight line of slope 1. 
This method is nonetheless interesting in order to improve areal amount of precipitation over a 
catchment. 
 
The averaged corrected QPE radar shown on figures 28 and 29 is similar to QPE radar/ gauges 
combination. It provides easily computable input into hydrologic models, landslide forecast, river 
runoff forecasts or flash flood and debris flow warnings. Error prediction of the averaged 
corrected QPE radar (figures 28 and 29) enable to get the uncertainty of the corrected values. 
Attention must be taken when dealing with sub-daily difference between QPE radar and 
precipitation gauge measurements. A residual error based on a difference might not be 
Gaussian anymore. 
 
Although results presented on figures 28 and 29 are interesting, the limited size of the dataset is 
not sufficient for a good estimation of the parameters. As an example, parameters of the spatial 
variogram (figures 28 and 29) are not correct. 
More accuracy in the estimation of the parameters of residual error model can be obtained by 
taking into account longer timeseries or, better, several events with similar precipitation 
phenomena. The remark refers then to the discussion done in the Chapter 2 of this report. 
 
Regarding the multivariate method presented in this Chapter no result has been shown. Not 
surprisingly, results with covariates such as distance to the coast and distance to the centre of 
the radar does not provide good results enough to be presented here.  As said previously the 
short timeseries does not enable to catch the average signal of the precipitation phenomenon.  
Further, this convective event has been chosen because of its convective and extreme 
characteristics. The event is thus far away from an average convective phenomenon. 
 
The daily time resolution did not enable the estimation a time dimension of the residual error. 
Sub-daily dataset timeseries will see the possibility of including a time dimension into the error 
model as expressed in (5.6) 
 
Even though this chapter has been entitled “ensemble QPE, no ensemble based on the 
description given in paragraph 5.3 has been simulated. Nonetheless, method to get ensemble 
QPE radar is now known and ready to be used. Focus will now be on estimating residual error 
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from a long QPE radar timeseries.  The simulation method is not a problem. Many R-package 
enable space-time simulation of Gaussian field. 
 
A Bayesian approach has been developed in order to test adaptability to a real-time ensemble 
QPE. The residual error parameters estimated for the studied event has been constraint by an a 
priori information of the averaged signal.  Given the averaged signal is unknown in our case, a 
uniform distribution has been used to determine the pdf’s of the parameters μ, 𝜎, and L.  The 
implementation of a posteriori distribution is quick.  A posteriori distribution provide parameter 
values for QPE radar simulation. Simulation outputs are highly similar to ensemble QPE. 
Nonetheless average behaviour of the residual error is needed in order to avoid irrelevant 
samples erroneously having large influence.  Simulation output shown on figure 30 is an 
example of this case. The parameter μ value is high and characterised by a non-spatially 
correlated distribution. As a consequence it thus alters the whole field by producing a noisy 
spatial field. Instead, multivariate analysis over a long timeseries would have helped in 
estimating a spatially distributed trend driven by covariates.  
 
Ungauged areas such as mountainous area might need some other work for a better accuracy 
of the ensemble QPE. In the absence of ground reference in such areas, one would need a 
simplified physical-statistical model that allows the estimate of the residual error for any given 
location. A systematic analysis of error sources mentioned above in Paragraph 5.1 would help 
substantially to construct the physical-statistical error model.  Atmospheric information such as 
vertical instability, moisture flux convergence and other atmospheric characteristics can also be 
used for better modelling of the residual error.   
 
 
Ensemble QPE can be used to provide input into hydrological model. In the case of urban 
hydrology, QPE radar must be relevant at 200m² spatial resolution, and 5 minute time 
resolution. C-band radar in polar reference has a non-constant spatial resolution that can be 
interesting in urban area next to the radar location. An X-band radar will provide data at higher 
spatial resolution. An adaptation of the QPE ensemble to X-band radar might then be useful.  
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6 Summary and conclusions 
6.1 Data and case study 
The whole study has been focused on the radar located at Hurum for the event that occurred on 
the 23rd of July 2011. A gauge network of 84 manual daily stations has been used for this study. 
It has been chosen to directly transcript reflectivity into Quantitative Precipitation Estimation 
(QPE) using Marshall Expression with constant coefficient from literature.  The reflectivity signal 
(Z) of the radar has been transformed into precipitation (R) using the Marshall expression 𝑍 =
𝑎𝑅𝑏, where a=200 and b=1.6. 
The uncertainties in the 𝑍−𝑅 relationships when converting 𝑍 into 𝑅 may introduce erroneous 
spatial patterns of precipitation. Ideally it would have been interesting to spend time on 
estimating spatially distributed parameters a and b. Or more practically, to use the Marshall 
expression very late in the study to keep reflectivity, and thereby direct measure of radar. 
An important point is the quality of the data. Statistical methods must be developed in order to 
know the weight to put on each value. Quality control of hourly values will need use of non-
Gaussian statistics or machine learning method such as neuronal network or self-organizing 
map. 

6.2 Quantitative Precipitation Nowcasting (QPN) 
Quantitative Precipitation Nowcasting (QPN) is defined as very short term forecast, with a lead 
time from 0 hour (now) to 2 hours. 
This study has focused on the feasibility of a simple nowcasting method, called Lagrangian 
persistence, to provide information relevant for NVE. The estimated precipitation has been 
assumed perfect in order to focus on the nowcasting method. 
Assessment of the radar nowcasting method has been established using the SEEPS score. A 
degradation of performance with lead time is obvious from the figures and is expected.  The 
spatial resolution of the nowcast has an influence on the SEEPS score. If a nowcast at pixel 
level does not compare well with the available observation, it does not mean that the 
performance is poor. In order to analyse the effect of increasing tolerance to error due to 
misplacement, the SEEPS was calculated for an extended verification area surrounding a 
nowcasted pixel. The results of the performance for larger verification area illustrates the 
increase in nowcast skill, as quantified by SEEPS, as the verification area is increased from a 
single pixel (1 km2) up to an 5 x 5 pixel area. So far the simple method does not enable to 
provide relevant information at the pixel resolution but enable to provide relevant spatial 
uncertainty information. 
The QPN method used in this study can gain in improving several points: 
1- The advection method 
2- Growth and dissipation of precipitation 
3- Precipitation nowcasting for urban hydrology 
4-Convective phenomena or orographic effect modelling 

6.3 Temporal filling-in of minute precipitation radar 
Radar measurements are not continuous over time but occurred every 15 min for the event of 
the 23rd of July 2011 (7.5 min now). QPE radar does not represent a temporal accumulation 
over 15 min. Indeed the frequency of measurement is different from the measure resolution. As 
a consequence zebra pattern appears when aggregating over time. We assumed that estimated 
precipitation from radar to be a 1-min time resolution measurement. Filling-in the estimated 
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precipitation between every 15 min time step make the estimated precipitation field more 
realistic. 
The temporal Lagrangian linear interpolation is a fast method to fill-in the estimated precipitation 
radar measured every 15 minutes. It enables to increase the amount of precipitation on each 
pixel and to provide a realistic pattern of the precipitation field.  
This method can be implemented as “on the fly” to get quickly output to be used into models 
belonging to a chain model. 
Nonetheless is the method too coarse to retrieve a quantitatively realistic temporal structure. 
Moreover it does not take into account the spatial variability of the non-zero precipitation field. It 
does not take into account the spatial variability of the precipitation indicator field either. 
Using other methods of interpolation such as Lagrangian kriging might help in keeping relevant 
variability and space-time structure. Nonetheless an effort would have to be done when 
interpolating precipitation indicator and its transition structure from dry to wet areas. This aspect 
is of great importance when convective precipitation phenomena occur.  

6.4 Ensemble QPE radar 
In spite of significant progress, QPE radar errors are still large and need to be taken into 
account, in particular in the context of operational hydrogeological applications such as issuing 
landslide forecast, river runoff forecasts or flash flood and debris flow warnings. 
The task of the ensemble generator is to model a number of realistic error perturbation fields, 
and to superimpose these onto the original unperturbed QPE radar field. 
The advantage of the ensemble as opposed to more classical approaches is the simple 
interface with hydrology: each member can directly be fed into the hydrological model. 
At daily time resolution residual error, whatever taken as a ratio or a difference between gauges 
measurements and QPE radar, follows a Gaussian distribution.  
Applying corrected QPE radar by the easy method MFB is interesting for improving areal 
amount of precipitation over small catchment for example 
The interpolation of the residual error is an easy way to provide an “average corrected” QPE 
radar into hydrologic models and is similar to radar/gages combination. By using kriging as 
interpolation method, standard deviation of the error prediction provides the uncertainty of the 
output according to the error model and the gauges density. The averaged corrected QPE radar 
provides easily computable input into hydrologic models, landslide forecast, river runoff 
forecasts or flash flood and debris flow warnings. 
Attention must be taken when dealing with sub-daily difference between QPE radar and 
precipitation gauge measurements. A residual error based on a difference might not be 
Gaussian anymore. 
More accuracy in the estimation of the parameters of residual error model will be reached by 
taking into account longer timeseries or, better, several events with similar precipitation 
phenomena. 
Regarding the multivariate method presented in this Chapter 5 no result has been shown. Not 
surprisingly, results with covariates such as distance to the coast and distance to the centre of 
the radar have not provide good results enough to be presented here.  As said previously the 
short timeseries does not enable to catch the average signal of the precipitation phenomenon.  
Further, this convective event has been chosen because of its convective and extreme 
characteristics. The event is thus far away from an average convective phenomenon. 
Even though the chapter has been entitled “ensemble QPE, no ensemble based on the 
description given in paragraph 5.3 has been simulated. Nonetheless, method to get ensemble 
QPE radar is now known and ready to be used. Focus will be done now on estimating residual 
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error from a long QPE radar timeseries.  Simulation method is not a problem. Many R-package 
enable space-time simulation of Gaussian field. 
A Bayesian approach has been developed in order to test adaptability to a real-time ensemble 
QPE. The residual error parameters estimated for the studied event has been constraint by an a 
priori information of the averaged signal.  Given the averaged signal unknown in our case, 
uniform distribution has been used to determine the pdf’s of the parameters μ, 𝜎, and L.  
Implementation of a posteriori distribution is quick.  A posteriori distributions provide set of 
parameter values for QPE radar simulation. Simulation outputs are highly similar to ensemble 
QPE. Nonetheless average behaviour of the residual error is of need in order to avoid irrelevant 
samples erroneously having large influence.  Simulation output shown on figure 30 is an 
example of this case. The parameter μ value is high and characterised by a non-spatially 
correlated distribution. It thus alters the whole field by producing, as a consequence, a noisy 
spatial field. Instead, multivariate analysis over a long timeseries would have helped in 
estimating a spatially distributed trend driven by covariates.  
Ungauged areas such as mountainous area might need some other work for a better accuracy 
of the ensemble QPE. In the absence of ground reference in such areas, one would need a 
simplified physical-statistical model that allows the estimate of the residual error for any given 
location. A systematic analysis of error sources mentioned in Paragraph 5.1 would help 
substantially to construct the physical-statistical error model.  Atmospheric information such as 
vertical instability, moisture flux convergence and other atmospheric characteristics must be 
used for a better modelling of the residual error.   

6.5 Conclusion 
The report presents methods and examples to provide QPN and ensemble QPE radar. Tools 
have been developed for an easy access, and further developments (Appendix 3). 
Further work can be focused on using longer timeseries of QPE radar at sub-daily time 
resolution.  
 
Simple operational tools can be built easily in the next few years for the whole Norway. 
More attention would have to be put on areas with no reference sensor such as mountainous 
areas. Physic-statistic model based on the physics of the radar will be of a great help for these 
cases. Description of convective events might gain from these physic-statistic models as well. 
Analyses of the extremes and of the Intensity/duration/Area/frequency can gain of the ensemble 
QPE. 
 
Incorporating ensemble QPE into a hydrologic model or landslide model will enable to analyze 
the propagation of the uncertainties through chain models. The chain can first be applied for 
hindcasting and then for forecasting (Rossa et al, 2011).  
 
A robust Bayesian framework can be settled by following Renard et al. (2011). 
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Appendix 1: Daily correction of manual 
precipitation gauges 

 

 
Figure A1.1: Algorithmic sum-up of the daily precipitation correction method for manual gauges 
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Appendix 2: Geostatistics modelling and tools 

Statistic and geostatistic tools have been developed in order to get all needed information for 
analysis, modelling, interpolation and simulation. Codes enable omni-directional and directional 
analysis of spatial fields on regular or irregular grids. Variogram, co and cross-variograms 
enable the study of fields like non-zero precipitation, precipitation occurrence, inner drift 
variability and transition variability following Barancourt (1990, 1992) and Lepioufle (2009) for 
the modelling of various precipitation phenomena as convective or stratiform. 
Appendix 2 presents a synthesis of useful theory. 
Illustrations will be presented in the tutorial reports. 

Precipitation space-time structure 

Spatial structure of QPE is expressed as a variogram, 
 𝛾(ℎ) =

1
2
𝐸 ��𝑍(𝑥) − 𝑍(𝑥 + ℎ)�2� (A2.1) 

Where Z represents a random variable at the space-time location x 
 
According to Lepioufle (2009) and following Barancourt, 1990, the variogram for precipitation 
field can be decomposed into variogram of precipitation intermittency (𝛾𝐼), variogram of non-
zero precipitation (𝛾𝐹) and the transition variogram 𝛾𝑇𝑇: 

 𝛾(ℎ) = �𝑚𝐼
2 − 𝛾𝐼(ℎ)�. 𝛾𝐹(ℎ) + 2𝛾𝐼(ℎ). 𝛾𝑇𝑇(ℎ) (A2.2) 

Intermittency  

Intermittency characterized the presence or absence of precipitation. It results in a binary 
variable where I = 1 for Z > 0 and I = 0 for Z = 0. The intermittency variogram indicates the 
length of wet areas. Sample variogram is calculated as:  

 
𝑔𝐼(ℎ) =

1
2𝑛
��𝐼𝑖(𝑥) − 𝐼𝑖(𝑥 + ℎ)�2
𝑛

𝑖=1

 
(A2.3) 

 
The variance of the precipitation intermittency is given as 𝜎𝐼2 = 𝑚𝐼(1 − 𝑚𝐼) where 𝑚𝐼 is the 
probability of having precipitation..  
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Inner variability 

The variogram of the non-zero precipitation describes the inner variability and is calculated as: 
 

𝑔𝐹(ℎ) =
1

2𝑛𝐹
��𝐹𝑖 (𝑥) − 𝐹𝑖 (𝑥 + ℎ)�

2
𝑛𝐹

𝑖=1

 
(A2.4) 

where 𝐹 is the precipitation values were z > 0. The variance of the precipitation is given as 𝜎𝐹2  

Transition dry/wet areas 

The transition variogram describes the smoothness of transition from dry to wet areas and is 
calculated as:    

 
𝑔𝑇𝑇(ℎ) =

1
2𝑛𝑇𝑇

��𝐹𝑖 (𝑥) − 𝐼𝑖0(𝑥 + ℎ)�
2

𝑛𝑇𝑇

𝑖=1

 
(A2.5) 

 
where  𝐼0  is the binary data where I=0. 
 
The dependency between intermittency and inner variability is of importance when modelling 
precipitation.  
Barancourt (1990), then Barancourt et al (1992) highlights the importance of investigating the 
inner drift, i.e. the shape of precipitation values within wet areas. The inner drift is expressed as:  

 𝛾𝑍𝑍(ℎ)/𝛾𝐼(ℎ) (A2.6) 

In the case where the shape of precipitation within wet area is constant, then the inner drift is 
equal to 𝑚𝐹. 
 
Barancourt (1990), then Lepioufle (2009) highlights the importance of investigating the transition 
from between wet areas to dry areas: 

 𝛾𝑇𝑇(ℎ) =
1
2
𝛾𝑍2𝐼(ℎ)/𝛾𝐼(ℎ) (A2.7) 

In the case where transition between dry and wet area is abrupt, the transition is equal 
to (𝑚𝐹

2 + 𝜎𝐹2)/2. 
 

Use of this theory overview 

Results based on Appendix2.1 to Appendix2.3 enable to provide parameters for interpolation or 
simulation. 
Results in Appendix2.4 enable to know the error as the consequence of a superposition of a 
field F with a field I. In case of a non-convective phenomenon, the transition will be smooth. The 
transition variogram gives an indicator of the temporal aggregation you need to apply on your 
assume elemental structure to get a realistic variogram that represents this phenomena. 
Non-stationary methods and temporal aggregation methods of original model should enable to 
pass by some potential artefact.   
This theory can be used for both space and time dimension. In the case of a temporal analysis, 
it is important to work in the Lagrangian reference in order to catch the dissipation fluctuation. In 
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Eulerian reference, fluctuation can appear lower because of a ration fluctuation/advection 
(Lepioufle, 2012) to low.  
In order to compute sample variogram and their estimation on big size fields, sub-sampling of 
the fields, with respect of the wet/non-wet area ratio, has been applied. This method provides 
robust results with low cpu demanding. This subsampling method is used among other at 
MeteoSwiss. 
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Appendix 3: Tools development 
 
All the tools applied in this feasibility study have been developed under R. Open-source R-
packages have been developed to be used for the different tasks presented in this report (figure 
A3.1). All of these R-packages will be put on GitHub for a free use. For an easy use of these 
packages and in order to ease a continuous development of the R-packages, “holding R-
packages”, scripts and procedures have been created (figure A3.2).  

 

 

 

Figure A3.1: illustration of R-packages developed for this project 
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FigureA3.2: architecture of the packages, scripts and procedures according to the need of the users 
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