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1 Product chain

The operational radar processing chain at met.no uses ProRad (available as GPL, Q2-2012) for pro-
cessing radar data. There are currently eight weather radars in Norway, most of them located along the
coast. These radars provides real-time weather observation used by the meteorologists, the industry,
scientists and the public. In order to deliver radar data and products, the data goes through extensive
quality control and data transformations, all handled by the ProRad system.

Prorad XML

Process volume data

sea- og ground-clutter
speckle noise
sun-flare

Process 2d data

seaclutter

Products to ftp://radar.met.no

Accumulated products

  - 1t, 3t, 6t og 24t

VPR identification and
correction

Rain rate products (2d)

Input data to Harmonie
(FORTRAN wrapper)

Input data to
hydrological modeling

Classified products
  - rain, sleet and snow

Figure 1: Product chain of ProRad.

The diagram above describe two parallell lines in the processing chain, volume data and 2d-data.
Rainbow generates the 2d products before they are imported into the production chain by ProRad,
where the data is �agged for sea clutter and the phase of precipitation, which the latter is decided
by using data from numerical weather prediction model. Resulting products are used in rain rate
accumulations, visualisation (Diana, met.no) and veri�cation.

Volume data is the raw data that contains the full data set from Rainbow, these datasets have
only been processed by the signal processor where e.g the Doppler �lter has removed static noise.
The data is placed in a polar mesh with range to 240.0 km and discretized into 960 bins where each
bin has a size of 0.25 km. Processing the raw data is useful for several things, �rstly the data is not
corrupted by converting to Cartesian coordinates, and secondly the spatial resolution is intact from
the signal processor, i.e 0.25 km for bin size compared to 1.0km that are received from Rainbow. The
most important reason for using the raw data is that the data consists of elevations that gives the
vertical variability of the precipitation, this is useful for estimating rain rate and to identify clutter.

The polar volume data goes through extensive processing before the data is corrected for range-
dependent error and converted into rain rate products or used as input for a numerical weather pre-
diction model (NWP) or hydrological modelling. This insures that the delivered product is virtually
free from clutter. Today, processed polar volume products are sent pre-operationally to the HAR-
MONIE model as observation input to the data assimilation[13, 12], while derived 2d-products are
distributed to ftp://radar.met.no and used in hydrological modelling, this includes 3h, 6h, 12h
and 24h accumulated products and precipitation phase products. The delivered 2d products are in
UTM-32 projection, and consists of a mosaic with the radars Rissa, Stad, Bømblo, Hegebostad and
Hurum.
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2 Processing

The radar re�ectivity data are often corrupted by ground and sea clutter, anormal propagation, birds
and other non-meteorological echos. Ground clutter is usually easily removed with Doppler �lter, i.e
re�ectivity with radial velocity close to zero. The clutter generated by the sea waves are more di�cult
to identify, since it has similar velocities as precipitation. Thus, other kind of methods are needed to
separate residual sea clutter from precipitation. There are several proposals in the literature, mostly
based on statistical approaches, such as fuzzy logic[9] and neural networking[14]. Other methods analys
texture features such as in the DMI report [6] by Gill or make use of other datatypes and sources such
as satelitte data described in [3].

Figure 2: An example on various non-meteorological echos.

2.1 Processing in polar mesh

ProRad reveives the raw data that are presented in polar coordinates, which is natural due to the scan-
ning of the atmosphere. The radars in southern Norway scans 12 elevations, ranging non-equidistant
from 0.5◦ to 15.0◦. The radial spatial resolution for re�ectivity is set to 0.25 km and has a range
that goes out to 240.0 km, i.e 960 data bins in each azimuth ray. The radar scans 360.0◦ azimuth,
with a 1.0◦ �xed angel step, this results in a increasing scanned volume with respect to distance. At
longer ranges, the measurement can be underestimated since the possibility of partially �lled volume is
increased. ProRad stores the data in an XML formatted �le and announces that the dataset is ready
for further processing.

The volume processing picks up the message and starts to process the product, starting from the
highest elevation and looping through the slices. Each elevation is processed according to an XML
con�guration that describes which �lters are activated. Each �lter has a set of parameters that is
dependent on elevation and radar site, this gives the �exibility to �ne tune the �lters for special needs.
E.g radar Stad has more sea and ground clutter than Hegebostad, and therefore needs a more carefully
adjusted parameter setting.

The next subsections will describe each �lter method and give an explanation on how the XML
con�guration is set up.

2.2 FoO � Frequency of Occurrence

Frequency of occurrence is a useful tool to determine where time-independent clutter is located. The
FoO information is stored in binary �les and needs to be generated based on seasons. The information
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in the �le is given in percent, such that the clutter can be identi�ed by a simple threshold argument.
Because of the varying radar propagation based on winter and summer time, the need to re-generate
the �les at the beginning of each season is important to use this information properly.

The �les contains a bu�er where each pixel represent the frequency of occurrence for a range of
dates that are determined when the �le was generated. The occurrence can be limited by giving a
dBZ threshold. Generating the FoO �les are easily done by calling the following command

Listing 1: Generate FoO �les from command-line

$ prorad_generate_foo --storage-dir <path> --dbz-thres <dbz-value>
--slices <number-of-slices> <input-files>

It is also important to use data sets that have not been Doppler �ltered by the signal processor, since
the location of high occurenace pixels are often removed by the Doppler �lter. The residual ground
clutter from the doppler signal processor can be identi�ed by the FoO map as a percent of probability.

The program will generate a static map of frequency of occcurrence saved in a binary format given
by the <path> argument. The second argument <dbz-value> thresholds the input �les and only
count values higher than <dbz-value>, this is more accurate for ground clutter if e.g the value is set
to zero. The third argument <number-of-slices> is given if the user wants to reduced the number
of slices. <input-files> are Rainbow5 XML �les. Typically the �les are taken from one or two
months in the current season, and �les from the previous year in the begninning of the seasons.

2.2.1 Con�guration

The following con�guration gives an example where 80.0% of the occurrences are identi�ed as ground
clutter. The second con�guration option <foo-vpr> is used by the VPR method to exclude a larger
range of lower occurrence, since higher quality, 50.0% in this example, is needed to generate vertical
pro�les but less important for e.g visualisation. Note that this �lter can remove real precipitation.

Listing 2: XML con�guration for foo clutter �ltering

<foo-clutter-filter module="enabled">
<foo_ground>80.0</foo_ground>
<foo_vpr>50.0</foo_vpr>

</foo-clutter-filter>

2.3 Sea clutter

Identifying sea clutter has proven to be a di�cult task. This is mainly because of the high horisontal
variability and strong echos. The radar community has suggested several promising methods, but
most of the people in the community are waiting for dual polarization to tackle the problem. Dual
polarization can discriminate di�erent types of precipitation, and therefore also give a falsi�cation on
sea clutter. In Norway (2012), only one of nine radars that can take advantage of dual polarisation,
hence we need other methods to be able to distinguish between clutter and precipitation.

The goal of separating data into regions has been an ongoing development in computer graphics
for some decades. An overview of several basic and well-known segmenting methods can be found in
the book on image processing[8], here the author discusses segmentation methods based on statistics,
edge detection and region growing. These techniques can be hard to implement, due to heavy data
mining and parameter training that can be very time consuming depending on the scanning strategy
and radar location.

A more sophisticated method is the level set method that uses curve evolution based on a numerical
minimization problem for tracking interfaces and shapes. The drawback for this method is the speed,
since it allows the curve to go either forward or backward, thus easily getting trapped in a piecewise
continous image.
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Sethian proposed the Fast Marching Method[17], which is a stationary approach, i.e the region
propagates only outwards and the arrival time for the problem is computed. We have implemented
this popular method to segment our raw re�ectivity data, and this has proven to be a fast and precise
method, and easy to implement.

2.3.1 The Fast Marching Method

The Fast Marching Method is an approach for �nding the evolution of a front, in our case, the front
is the boundary of the clutter region. The method is using the radar re�ectivity as input, and then
propagates in the normal direction towards the boundary of the clutter region from a given initial seed
point. If the radar site is chosen as the seed point, then the fastest way to the clutter boundary is
one solution, as this is the minimum energy. It turns out that this �path� describes the clutter near
the radar, hence segmenting the precipitation from the clutter. Note that this does not depend on the
variance between pixels, but the minimum energy, also called the shortest distance. The evolution of
the front is described by the Eikonal equation for a point x ∈ R2 and the speed F (x) of the front

‖∇T (x)‖F (x) = 1, (1)

where T (x) is the arrival time and ‖x‖ =
√
y21 + y22 is the Euclidean norm. If the speed function F (x)

is equal to one everywhere, then the solution is simply the signed function T (x) = |x|, i.e the front
has equal speed in all direction and the solution is circular.

2.3.2 Implementation and numerical results

The results are obtained by giving the algorithm multiple seed points with low re�ectivity near the
radar. Each pixel that the algorithm passes is then assigned a �ag that sets a bit value for sea clutter
and an integer(0-100) value for percent of clutter probability (example in �gure 4). The set of �ags is
then used as a quality check for further use of the radar re�ectivity data. Other clutter types such as
ground and sun-�are are also �agged.

Figure 3: An example of radar Bømblo with sea clutter combined with precipitation. The image to
the right is the result where sea clutter infected pixels are removed.

Figure 3 on page 9 are processed with the Fast Marching Method to identify sea clutter, no other
processing has been done to mark other clutter. The image on the left in the �gure shows the radar
site at Bømblo, and the right image shows the same data, except that pixels �agged as clutter have
been removed. Thus, illustrating how the method has propagated from the radar site and covered the
sea clutter region. The �gure also illustrates that the method does not a�ect the precipitation echos.
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Algorithm 1: Fast marching method.

// Initialization
foreach pixel ∈ seed do

Put pixel in freeze;
foreach neighbour v ∈ frozen pixel do

Compute value dist(v) = eikonal_equation(mat) for v;
if v ∈ heap then

replace value dist(v) in heap

else
Put (dist(v)) in heap

end

end

end

// Evolve
while heap is not empty do

Extract v from heap;
Put v in freeze;
foreach neighbour vn ∈ v do

if vn /∈ freeze then
Compute value dist(vn) = eikonal_equation(mat) for v;
if vn ∈ heap then

replace value dist(vn) in heap

else
insert dist(vn) into heap

end

end

end

end
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Figure 4: Probability for clutter, where the color bar is indicating probability (0-100).

Running the fast marching method is easily done by calling the function fmm_evolve with a few
structures that needs to be initialized �rst, the algorithm itself are psuedo-coded in algorithm 1 on
page 10.

Listing 3: fmm_evolve prototype in fmm.h

void fmm_evolve( const fmm_info_t fmm_info, const seed_t *seed, const matrix_t

*mat,
matrix_t *dist, matrix_uint8_t *narrow_band, matrix_uint8_t *freeze);

The �rst structure fmm_info_t contains two options: (i) fmm_info_t.max_dist_value that de-
scribes the time arrival T (x) in equation (1), i.e the stopping criteria. The best value for this option
is found by trail-and-error. The next option (ii) fmm_info_t.speed_func is a pointer to the speed
function F (x) in equation (1), this just the function F (g(x)) = 1/g(x) for minimum energy where
g(x) is the input image (�gure 5(a)) given in the matrix structure matrix_t *mat. The output struc-
tures are de�ned in the last three arguments matrix_t *dist, matrix_uint8_t *narrow_band,

matrix_uint8_t *freeze where matrix_t *dist holds the distance function T (x) shown in �gure
5(c). Figure 5(b) shows the clean dataset, where pixels identi�ed from �gure 5(c) are removed.

2.3.3 Con�guration

Listing 4 shows an XML con�guration for the sea clutter �ltering method. The �rst option in this
example, <seed-min-thres>-8.0</seed-min-thres>, sets the threshold for maximum dBZ value
that are allowed for seed points, all pixels with dBZ value below this threshold is marked as seed
points. The next option describes how far from the radar site the seed point algorithm are allowed to
search. In this case (listing 4) all values under −8.0 dBZ within 50.0 km should be given as seed points
to the FMM algorithm. The important stopping criteria <fmm-max-dist-value> is a value that is
found by trial-and-error, and this example the value 4.3 is chosen high since the sea clutter near the
Bømblo radar is much stronger than at any of the other sites. The �gure 5(c) shows how the forward
marching in the algorithm has stopped at 4.3.

The last option <fmm-otherclutter> indicates if the method is constrained to data over sea,
which is decided by a sea and land mask. If the argument is 1 the method will march at pixels over
ground and �ag re�ectivity data as other clutter, this is useful for inland radars such as Hegebostad,
where a lot of the clutter near the radar is caused by ground clutter and clear-air return. Figure 6(a)
and the clean result in �gure 6(b) is an example where pixels are a�ected by various clutter.

Listing 4: XML con�guration for sea clutter �ltering. First polar slice at the Bømblo site
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(a) Original sample (b) Cleaned with FMM

(c) The resulting distance function T (x)

Figure 5: The same dataset as in �gure 3 in polar coordinates.

<sea-clutter-filter module="enabled">
<seed-min-thres>-8.0</seed-min-thres>
<seed-range>50.0</seed-range>
<fmm-max-dist-value>4.3</fmm-max-dist-value>
<fmm-otherclutter>0</fmm-otherclutter>

</sea-clutter-filter>

2.4 Sun �are

Sun �are contains microwave radiation that matches the wavelength of the radar, and the sensitive
receiver in the radar and will detect the sun �are. The straight ray is easily visually detected, but for
accumulation, data assimilation and other use, can mistake it for precipitation. This particular clutter
a�ects all the elevations, but often seen in 2d-products during sunrise and sunset that has not been
qualiy controlled. The sunlight a�ects one or two rays in the polar volume, and the line segment is
varying highly with respect to the dBZ value, this can be exploited by calculating the total variation
(TV) for each line segment

TV =
k<bins∑
k=1

|f(k)− f(k − 1)|, (2)

and set a threshold for the TV value. When the TV value is over the given threshold, each pixel
in the line segment is �agged as �other-clutter� if the azimuth neighbours are zero. The sun �are in
�gure 6(a) removed in �gure 6(b) by this method and the last image shows the probability of clutter,
where the sun �are clutter has high probability while the clear-air return and ground clutter has low
probability.
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(a) Lowest PPI elevation (b) Sun �are and ground clutter removed.
Ground clutter is identi�ed by FMM and static
map

(c) Probability function

Figure 6: An example of sun �are at the Hegebostad radar.

2.4.1 Con�guration

The con�guration holds two arguemnt for two di�erent norms to calculate if a line segment is a�ected
by sun �are. The �rst option tv-radio-thres refers to equation (2) and the second option is simply
a L2 norm.

Listing 5: XML con�guration for sun �are �ltering

<sun-flare-filter module="enabled">
<tv-ratio-thres>7.0</tv-ratio-thres>
<l2-ratio-thres>75.0</l2-ratio-thres>

</sun-flare-filter>

2.5 Speckles

This �lter removes speckle noise such as ships tra�c and other small clusters in the data.

2.5.1 Con�guration

The option <cluster-count-thres> is a threshold of how many pixels a cluster can hold before
�agged as other-clutter. In this case all cluster sizes under 4 pixels are �agged.

Listing 6: XML con�guration for speckle �ltering
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<speckle-filter module="enabled">
<cluster-count-thres>4</cluster-count-thres>

</speckle-filter>

2.6 Classi�cation

The classi�cation of precipitation is obtained by calculating the �probability of rain�[10] equation, and
the work is based on a previous article[7] by Gjertsen et. al. A new method that interpolates gridded
model data onto the radar grid has been implemented in C++ and integrated into ProRad for cartesian
products such as CAPPI and PPI. The method uses the 2m temperatur and humidity from numerical
model (in this case UM 4 km), where the grid from the numerical model is interpolated to the radar
spatial resolution, i.e 1. km for cartesian products. The classes of precipitation, snow, sleet and rain,
are separated by setting a threshold for the obtained probability value. Figure 7 shows a mosaic of
the southern radars in Norway, red colour scale for snow, yellow colour scale for sleet and blue colour
scale for rain.

Figure 7: An example on phase classi�cation of a mosaic consisting of the southern radars in Norway.
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3 Products

The next step in the production chain, after the processing with all the methods for �agging clutter and
noisy data, is to output products according to the user requirements. These are the �nal products that
will be used for hydrological modelling, NWP and visualisation. After processing, ProRad announces
that the �ltered volume is ready, and this triggers the modules that generates di�erent products
according to a given XML con�guration.

3.1 Polar to Cartesian coordinates

Figure 8: Polar and Cartesian grid for radar data.

The raw volume data are organised in polar coordinates, and these coordinates needs to be trans-
formed into Cartesian coordinates for visualisation. This is done by the aid of inverse polar to Cartesian
algorithm, looping through all the Cartesian pixels and �nding the corresponding polar coordinates
with trigonometric functions. A calculation based on bilinear interpolation with respect to range and
azimuth is then used to �nd the corresponding polar dBZ data and �ags.

In free space (no atmosphere) the radar beam would propagate as a straight line. However, the
center of the beam is not following a straight line, but propagates as a curved line that is slightly bent
towards the surface of the earth. A simple correction for this is to assume �normal atmosphere� and
set the curvature to a constant value, normally 4/3 of the actual curvature of earth.

3.2 PPI � Plan Position Indicator

A PPI is an elevation from a polar volume displayed as a Cartesian grid, like �gure 8, and a PPI of
the lowest elevation from the polar volume is often used to visualise precipitation near to the ground.
The drawback of using the lower elevations as PPI is that they are often corrupted by sea and ground
clutter, even after extensive quality control. The thin arc west for the radar in the processed product
in �gure 10(b) is residual clutter that the sea clutter method failed to identify.

3.2.1 Con�guration

The following con�guration example generates a PPI product with spatial resolution 1.0 km for both
x and y direction. The number of pixel is set to 480× 480 and only the �rst elevation is generated.
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Figure 9: A scan strategy that illustrates the height of the beam center with respect to range after the
curvature correction. The elevation angles and scan range for each elevation, are according to radar
Stad scanning strategy.

Listing 7: XML con�guration for the lowest PPI product

<ppi module="enabled">
<slice no="0">
<x-size>480</x-size>
<y-size>480</y-size>
<dx>1.0</dx>
<dy>1.0</dy>

</slice>
</ppi>

3.3 CAPPI � Constant Altitude Plan Position Indicator

One way to solve the residual sea clutter from the processing near the radar is to use CAPPI levels, this
means a horizontal cross-section of constant height above the radar, taken from the volume, i.e higher
elevations near the radar and avoiding corrupted data. However, choosing a constant height limits
the range when the lowest elevation are higher than the constant level, e.g a CAPPI level of 1.5 km
above mean sea level only goes out to ca. 150.0 km in range. If the CAPPI product uses the lowest
PPI after the limited range as the examples in �gure 11, the product is called �Pseudo-CAPPI�, or
PCAPPI. A CAPPI product with a constant height level at e.g 1.5 km will give a product with much
less clutter before processing, this is illustrated in 11(a) where the low re�ectivity is residual clutter
from the lower elevations. Making a horizontal cross-section of the �ltered volume data results in a
product that is almost completely free of clutter compared to the �ltered PPI product in �gure 10(b).

3.3.1 Con�guration

This CAPPI product has the same spatial resolution as the PPI con�guration in section 3.2.1. The
cappi level is set to 1.5 km above mean sea level and the last option <pseudo-cappi> indicates that
this is a Pseudo-CAPPI product.

Listing 8: XML con�guration for CAPPI products

16



(a) A�ected by strong clutter (b) After quality control

Figure 10: Lowest PPI product from the Bømblo radar.

(a) Small rings of sea clutter (b) After processing

Figure 11: PCAPPI product, cappi height at 1.5km.

<cappi module="enabled">
<x-size>480</x-size>
<y-size>480</y-size>
<dx>1.0</dx>
<dy>1.0</dy>
<cappi-level>1.5</cappi-level>
<pseudo-cappi>1</pseudo-cappi>

</cappi>

3.4 SRI � Surface Rainfall Intensity

This is a product that uses the lowest PPI and project the aloft re�ectivity data down to a reference
height near to the ground 1.0km. The projection method is the so-called vertical pro�le of re�ectivity
correction (VPR), more details and examples can be found in section 4.

3.4.1 Con�guration

The main ingredient for SRI products is the VPR corrected volume data, and the following con�g-
uration sets up the parameters for this method that is called by the SRI product generator. The
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(a) Improved re�ectivity (b) After processing

Figure 12: SRI product, VPR reference height at 1.0km.

�rst parameter <h-size> describes the dimension of the height, together with the spatial resolution
parameter <dz> given in km, which in this case is set to 0.2 km, results in a pro�le that has height
equal to 10.0 km. The rest of the parameters describe Upper Bound (UB) and Lower Bound (LB)
thresholds with respect to height(km), range(km) and dBZ values.

Listing 9: XML con�guration for VPR correction

<vpr module="enabled">
<h-size>50</h-size>
<h-UB>10.0</h-UB>
<h-LB>0.0</h-LB>
<r-UB>120.0</r-UB>
<r-LB>1.0</r-LB>
<dbz-UB>50.0</dbz-UB>
<dbz-LB>-10.0</dbz-LB>
<dz>0.2</dz>
<dr>0.25</dr>

</vpr>

After the pro�le is calculated, ProRad generates a SRI product with the following con�guration.
The resolution is the same as the PPI and CAPPI, and the last option <h-ref> is a height reference
parameter for the VPR correction.

Listing 10: XML con�guration for SRI products

<sri module="enabled">
<x-size>480</x-size>
<y-size>480</y-size>
<dx>1.0</dx>
<dy>1.0</dy>
<h-ref>1.0</h-ref>

</sri>
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3.5 Accumulation

Radar rainfall accumulation products are available at ftp://ftp.met.no/projects/radar/radar/,
derived from PCAPPI(example �gure 13(a)) and SRI(�gure 13(b)) products. These products are geo-
referenced GeoTIFF images in UTM32-projection, and represent the total estimated rainfall over a
particular time period, this case in 1 hour, 3 hours, 12 hours and 24 hours.

These products are useful for hydrologists for accurate in�ow forecasting and for meteorologists in
weather forecasting, the products are also important in �ood warnings.

(a) PCAPPI mosaic product, cappi height at
1.5 km

(b) VPR corrected SRI mosaic product, VPR
reference height at 1.0 km

Figure 13: Mosaic product of the southern radars in Norway.

Figure 13(a) shows an enhanced total rainfall near radar Bømblo and radar Stad, and this is
typically a bright band e�ect that can be mistaken for heavy precipitation. The image to the right
in the �gure shows the same situation, but corrected with VPR (Vertical Pro�le of Re�ectivity, see
section 4), this clearly results in a diminishing of the bright band e�ect, while increasing the lower
rainfall at longer ranges.

Comparing accumulations with rain gauges gives an indication o� the performance of converting
re�ectivity to rainfall. The quality di�ers from precipitation type, and the current system is �rst
and foremost optimised for stratiform summer precipitation. Figure 14-15 shows two examples of
PPI(upper-left) and SRI(upper-right) from August and September where gauge data are also plotted
in a combination with the accumulated precipitation products. The plots in �gure 14 shows two
scatter plots where the radar rainfall is plotted against gauge data, and the VPR method clearly gives
an improvement of the estimated rainfall for this precipitation event.

The accumulations shows an improvement in the estimation of total rainfall, the scatter plots shows
that low precipitation values are increased and the values are more linear. The gauge values without
a corresponding radar pixel are left out of the plots and are probably missing due to radar coverage
or overshooting.

Figure 15 unveils some unwanted artifacts by combining VPR correction and clutter identi�cation.
The sea clutter in this product is correctly identi�ed, and the clutter is not corrected by the VPR
method, this is seen as the area with lower rainfall intensity in �gure 15(b) at the south coast. Another
artifact is the ship tra�c that has not been detected by the quality control algorithms, this is seen in

19



(a) 24 hours PPI accumulation from the Rissa
radar

(b) VPR corrected accumulation, VPR refer-
ence height at 1.0 km
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(c) RMS = 21.2
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(d) RMS = 5.0

Figure 14: 24 hours radar accumulation from 17. August, plotted with gauge

both �gures as a strong straight line in the upper right of the scanning area, and the VPR method
has increased this particular clutter.

Convective rainfall as in �gure 16(a) is normally estimated quite well when correcting with a VPR
method. The problem in this case is insu�cient data near the radar, as the images show. This gives
an incomplete vertical pro�le which has not been detected by the methods that control the quality
of the pro�le before doing a correction. The scatter plots shows that the non-corrected (�gure 16(c))
product is a reasonable estimate of the last 24 hour rainfall, while the corrected (�gure 16(d)) product
is clearly overestimating the precipitation.

The rainfall data from gauges are downloaded from eKlima (http://eklima.met.no), and is
considered to be accurate point measurements consisting of both manual and automatic stations. The
manual 24 hour measurements are reported each day at 06:00 UTC.
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(a) PPI accumulation showing reduced re�ec-
tivity with respect to distance from the radar

(b) VPR corrected accumulation, shows a more
uniform accumulation
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(c) RMS for PPI is equal to 28.0
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(d) Slightly improved scatter plot. RMS for SRI
is equal to 18.5

Figure 15: 24 hours radar accumulation from 7. September, plotted with gauge data.
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(a) 24 hours PPI accumulation from Hege-
bostad radar

(b) VPR corrected accumulation, VPR refer-
ence height at 1.0 km
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(d) RMS = 19.4

Figure 16: Insu�cient data near the radar gives an overestimation of the rainfall for this particular
example.
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4 Rain rate estimation

One of the main reason for errors in rainfall estimations from radar data is the vertical variability of
the radar signal. The vertical variability is due to the di�erent phase and type precipitation, this is
clearly seen at the height of bright band where the precipitation changes phase from ice to droplets and
resulting in an overestimation of the ground precipitation. Above the bright band the precipitation is
dry, and therefore has a lower re�ectivity.

The scan illustration in �gure 9 on page 16 show how the beam changes height with respect to
range, this means that the re�ected signal near the radar can be drizzle or rain, while at longer ranges
the re�ected signal can be sleet, snow, graupel or hail. The scan strategy �gure also shows that at long
ranges from the radar, the center of the lowest beam is 5 km above ground level, and the measurement
at this height will most likely be di�erent from ground measurement.

There are several methods to overcome the di�erence between point measurements at ground level
and measurements aloft, and the most promising method is to incorporate the vertical variability in
the radar equation. This pro�le of vertical variability can be used to convert measurement aloft to a
given reference level, thus making it independent of height and correct for the range-dependent error.

The authors of [1] gives a formulation on how to identify the so-called Vertical Pro�le of Re�ectivity
(VPR), which is an approach that takes the vertical variability into account. In short terms it assumes
independent horizontal variability, such that

Z(x, h) = Z(x, h0)z(h) (3)

where z(h) is the vertical pro�le of re�ectivity that needs to be estimated and Z(x, h0) is the estimated
�ground truth� referred to by a reference level h0. The pro�le can be estimated by calculating the mean
in the horizontal space, i.e

z(h) =

ffl
h
Z(x, h)dxffl

h0
Z(x, hh0)dx

. (4)

Once the estimated vertical pro�le of re�ectivity is calculated, the correction factor

Zcorr = 1/z(h), (5)

can be applied to Z(x, h) to achieve a VPR corrected product.
Clearly, the pro�les need re�etivity data near the radar, preferably within 80 − 100 km in range

according the scanning strategy in �gure 9, this gives the pro�le generation su�cient data near the
ground and aloft.

4.1 Examples

The following three examples (�gure 17-19) show how the VPR method behave with di�erent pre-
cipitation types. The �rst one gives an example on how the pro�le is decaying with height during a
winter event, the precipitation is most likely snow since the pro�le has a negative gradient. The next
example shows a strong convective event near the Oslo and Akershus area, and same with the previous
example the pro�le is decaying this time, indicating that the precipitation is convective which is a
typical situation in the summer. The last example shows a stratiform front with a bright band near
1.5 km in height.

The correction factor (dBZ-scale) illustrated in �gure 17(d) and �gure 18(d) where one clearly
sees that the factor increases by range, hence correcting the distance-dependent error where lower
measurement is increased up to a factor of 20 for snow and 10 for the convective case. For the stratiform
precipitation case in �gure 19, the bright band is the strong peak �gure 19(c) located at 1.5 km in
height, the correction factor shows how the correction is mitigating the signal within 60−70 km, hence
correcting for the bright band, and increasing the signal further away from the radar.
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(a) 0.5◦ elevation at Rissa during the winter (b) Corrected re�ectivity by the vertical pro�le
of re�ectivity
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Figure 17: Winter event from the Rissa radar, 3.2.2011-00:00.

The last example is a VPR corrected radar datasets accumulated into a 24 hour product, shown in
�gure 20 on page 28. Each radar product (PPI and SRI) has been converted to mm by the classical
Z-R relationship

Z = ARb (6)

where A is equal to 200.0 and b is equal to 1.6. The �gure also includes a plot of gauges within the
radar cover area, showing the di�erence between gauges and the rain rate deduced by the ProRad
software. The discontinuities in rate rate, in particular over the sea for this example, is due to the
15min time resolution and strong precipitation velocity.

Tables 1 and 2 gives an error analysis of PPI and SRI products vs. rain gauge for 24 hour accu-
mulation from both summer and winter precipitation. The errors are given as root mean square

RMS =

√√√√( 1

n

n∑
k=0

(RRk −RGk)2

)
, (7)

where the value k refers to the di�erent similtanious measurements between the rain rate pixel from a
radar and a rain gauge. The correlation factor ρ

ρRR,RG =
cov(RR,RG)

σRRσRG

, (8)

where cov(RR,RG) is the covariance between RR and RG, and σ the respectively expected value.
The ρRR,RG factor varies from −1 to 1, where the latter is perfect correlation and −1 the opposite.
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(a) 0.5◦ elevation at Hurum during the summer,
convective precipitation

(b) Removed clutter and corrected the re�ectiv-
ity with the VPR method
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Figure 18: Strong convective cells captured by the Hurum radar.

When ρ is approaching zero, the radar and gauge are more uncorrelated, this is often seen when the
number of observations is small. The last error estimate, Mean Error (ME), gives and indication if the
derived rain rate is over- or underestimating compared to the rain gauge. This is given as

ME =
1

n

n∑
k=0

(RGk −RRk). (9)
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Date PPI RMSE SRI RMSE ρPPI ρSRI PPI ME SRI ME No. of obs
2011-06-02 21.7614 17.9617 0.5789 0.6761 -15.2153 -12.6487 31
2011-06-03 Missing data
2011-06-04 Missing data
2011-06-05 Missing data
2011-06-06 7.4341 7.2096 0.1820 0.2300 -2.5079 -1.9884 20
2011-06-07 15.4060 12.5429 0.4794 0.3689 -11.7208 -5.4548 81
2011-06-08 3.7329 2.7066 -0.1808 0.4604 -2.3201 -2.6145 4
2011-06-09 4.7090 7.2992 0.4875 0.1333 -3.0566 0.7754 76
2011-06-10 12.8595 9.0646 0.5791 0.7375 -7.5326 -3.2855 67
2011-06-11 5.4172 4.0647 0.6264 0.7339 -2.4526 -0.4160 20
2011-06-12 1.5614 1.2427 0.4430 0.6970 -0.1020 0.2397 24
2011-06-13 1.1616 1.9797 0.5754 0.1288 -0.4041 -0.8505 15
2011-06-14 4.3611 4.0046 0.5357 0.2406 -3.5573 -2.8265 60
2011-06-15 25.9501 19.9826 0.3272 0.5679 -15.8776 -10.4400 27
2011-06-16 8.3261 8.0122 -0.2591 -0.2815 -4.5958 -5.0431 9
2011-06-17 10.7822 11.9353 0.7768 0.4466 -8.0453 4.2630 77
2011-06-18 10.0589 7.1628 0.1004 0.3754 -7.6834 -2.6584 67
2011-06-19 6.3160 5.3954 0.0950 0.2200 -3.7970 -1.4047 40
2011-06-20 4.5165 5.9834 0.3254 0.3615 -2.1460 0.8424 60
2011-06-21 5.3887 5.6287 0.5044 0.7366 -2.2645 2.6327 25
2011-06-22 Missing data
2011-06-23 4.3273 7.5170 0.7686 0.7293 -1.8028 2.9193 51
2011-06-24 3.4178 18.6777 0.0609 -0.1210 -1.3807 9.4402 48
2011-06-25 7.1774 15.2042 0.3019 0.6955 -4.1587 9.1353 42
2011-06-26 Missing data
2011-06-27 11.2078 7.5785 0.6855 0.8438 -5.2443 -2.1060 74
2011-06-28 7.2444 5.2718 0.3701 0.6774 -3.2466 -0.1949 67
2011-06-29 Missing data
2011-06-30 Missing data

Table 1: RMS (radar rainfall vs. gauge) for summer precipitation from the Hegebostad radar. The
radar accumulation is derived from 24 hour radar rainfall intensity.
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Date PPI RMSE SRI RMSE ρPPI ρSRI PPI ME SRI ME No. of obs
012-01-02 6.1673 5.8298 0.6149 0.6291 -4.3873 -4.3134 87
2012-01-03 2.4093 1.9013 0.7096 0.6904 -1.4681 -0.9597 21
2012-01-04 12.7897 11.6537 0.5426 0.4887 -11.3393 -10.3186 98
2012-01-05 4.0699 3.6601 0.1238 0.5634 -2.6013 -2.3909 25
2012-01-06 No data
2012-01-07 1.0797 1.0407 0.5378 0.5250 -0.7327 -0.7060 62
2012-01-08 2.0464 1.7893 0.5479 0.5040 -1.6413 -1.4963 56
2012-01-09 1.3738 1.2523 0.0961 0.1971 -0.9377 -0.7952 40
2012-01-10 No data
2012-01-11 No data
2012-01-12 5.1791 4.6620 0.4184 0.5134 -3.2616 -3.5905 41
2012-01-13 1.7654 1.6204 0.3612 0.4262 -0.8564 -0.8663 13
2012-01-14 1.5845 1.4440 -0.3606 0.0779 -1.0699 -0.6404 20
2012-01-15 0.3468 0.2691 -0.5071 0.0324 0.0700 0.1137 3
2012-01-16 Missing data
2012-01-17 Missing data
2012-01-18 Missing data
2012-01-19 3.3607 3.0342 0.1801 0.2565 -2.8536 -2.4832 91
2012-01-20 Missing data
2012-01-21 2.9680 2.6439 0.3987 0.2767 -2.2596 -2.0002 35
2012-01-22 12.4528 10.6382 0.7001 0.6387 -10.5221 -8.8406 69
2012-01-23 1.0013 0.9576 0.2542 0.2359 -0.5363 -0.3003 27
2012-01-24 2.3826 2.1612 -0.2093 0.0459 -1.0832 -0.9009 35
2012-01-25 Missing data
2012-01-26 Missing data
2012-01-27 4.9421 4.2461 -0.0962 0.1261 -2.8584 -2.4163 80
2012-01-28 6.3253 6.2310 -0.0962 0.0687 -3.2336 -3.1539 84
2012-01-29 3.4139 2.9224 0.0820 0.1319 0.9847 0.9612 27
2012-01-30 4.3615 3.6105 -0.2384 -0.1202 -2.0271 -2.1514 22
2012-01-31 Missing data

Table 2: RMS (radar rainfall vs. gauge) for winter precipitation from the Hurum radar. The radar
accumulation is derived from 24 hour radar rainfall intensity.
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(a) 0.5◦ elevation at Hegebostad during the fall,
stratiform precipitation

(b) Corrected the re�ectivity with the VPR
method

(c) The vertical pro�le of re�ectivity
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Figure 19: Stratiform precipitation.

(a) Lowest elevation (b) VPR corrected

Figure 20: 24 hour of accumulation from the Rissa radar.
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A Radar propagation paths in ProRad

List of Symbols

s Ground range
k Section index number
rk Slant range
θk Elevation angle
hk The height between to rays
ψr Angle at the center of the earth
ae E�ective earth radius

Figure 21: Radar paths and the variables describing the geometry

Figure 21 illustrates the radar geometry with earth curvature and how the variables relates. The
angles θk where k = 0, . . . , n is the elevation angles relative to the horizontally straight line. The
straight lines hk is the height which is slightly o�set to the striped line, note that in the real world the
angle ψr is very small compared to the �gure. Note also that the skew lines is orthogonal to the earth
curvature, such that the height above ground for a given point at ray k is the sum ‖hk‖ =

∑n
k=0 |hk|.

The height between the horizontally straight line (θ = 0) and the ground range is found by solving

s2 + (h0 − ae)2 = ae. (10)

explicitly for h0 assuming h0 � ae such that

h0 =
s2

2ae
. (11)
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Two important equations are stated here from Doviak and Zrni¢ [4] that relate ground range s and
height h to the known parameters that are stored in the meta stuctures; slant range r and elevation
angle θ

h = ae

(
cos θ

cos θ + s/ae
− 1

)
, (12)

h =
(
r2 + a2e + 2rae sin θ

)1/2 − ae, (13)

s = ae sin
−1

(
r cos θ

ae + h

)
. (14)

A.1 Functions

The C prototype functions below will calculate di�erent lengths depending on the input parameters.

Listing 11: prop_calc.h: Calculate slant range from height and ground range

double calc_r_from_h_s( const double h, const double s );

This function calculates the slant range from height h and ground range s.
Here r is calculated with the aid from the cosine law

r =
√
r20 + h2k − 2r0hk sin ξr (15)

where r0 = sin ξr(h0 + ae) and hk = h− h0.

Listing 12: prop_calc.h: Calculate height from ground range and elevation angle

double calc_r_from_s_theta( const double s, const double theta );

This function calculates the slant range from ground range s and elevation angle θ.
r is solved from (14) where h is calculated by calc_h_from_s_theta.

Listing 13: prop_calc.h: Calculate slang range from height and elevation angle

double calc_r_from_h_theta( const double h, const double theta );

This function calculate the slant range from height h and elevation angle θ. It solves (13) explicitly
for r, extracting the positive root,

r+ =
−2a2 sin θ −

√
(2ae sin θ)2 − 4(a2e − (h+ ae)2)

2
(16)

Listing 14: prop_calc.h: Calculate elevation angle from height and ground range

double calc_theta_from_h_s( const double h, const double s );

This function calculate the elevation angle θ from height h and ground range s.
The calculation is based on �nding the three lengths hk, rk, r0 such that θk is achieved by the cosine

law

θk = cos−1

(
r2k + r20 −

h2k
2rkr0

)
, (17)

ro is calculated by sin ξr(h0 + ae), hk = h− h0 and r by the calc_r_from_h_s function.

Listing 15: prop_calc.h: Calculate height from ground range and elevation angle

double calc_h_from_s_theta( const double s, const double theta );

This function calculate the height h from ground range s and elevation angle θ. Uses (12) directly.
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A.2 Interpolation

A vertical cut V ∈ R2 is simply a hyperbolic section through the conic volume for a given azimuth
degree. A value Z(P ) = Z(s, h) ∈ V in the �gure 22 needs to be interpolated from surrounding values.
The data are given by Z(r, θ) in the original volume is composed by Z(r(s, h), θ(s, h) where r(s, h)
and θ(s, h) are given functions in the Geometry section.

The grid (si, hk) is discretized by e.g si = s/ds and hk = h/dh for i = 0, . . . ,m and k = 0, . . . , k.
Thus the vertical cut is created by looping through the discrete points with interpolated values.

The linear interpolation is calculated by a convex combination of 2 or more points, e.g for 2 points
the distance is calculated for the 2 closest points in slant range d1 = ‖r − rk‖ and d2 = ‖r − rk+1‖.
The weight factor ω = d1

d1+d2
gives the convex combination

Z(r, θ) = ωZ(rk, θ) + (1− ω)Z(rk+1, θ). (18)

A.2.1 Functions

Listing 16: prop_calc.h: Interpolate Z data from nearest slant range

double interp_Z_rnearest( const td_radarprod_meta_st *meta, const double r,
const size_t k );

This function gives the Z value for the nearest slant range r and elevation k (here k is an integer).

Listing 17: prop_calc.h: Interpolate Z data with linear distance combination

double interp_Z_rlinear( const td_radarprod_meta_st *meta, const double r,
const size_t k );

This function gives the Z value with linear distance interpolation between the two closest slant ranges
with (18).

Listing 18: prop_calc.h: Interpolate Z data with nearest point in space

double interp_Z_4nearest( const td_radarprod_meta_st *meta, const double s,
const double theta );

This function will �nd the nearest point in the radar polar space within the given meta structure for
the given parameters ground_range and theta (θ).

Listing 19: prop_calc.h: Interpolate Z value with bilinear combination

double interp_Z_bilinear( const td_radarprod_meta_st *meta, const double s,
const double theta );

This function use a convex bilinear interpolation for the parameters ground_range and theta (θ) to
calculate the point in the radar polar space.

Listing 20: prop_calc.h: Interpolate Z value with gaussian beam distribution

double interp_Z_gauss( const td_radarprod_meta_st *meta, const double
r, const double theta );

Not yet implemented.
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Figure 22: Bilinear interpolation. The green point is calulated by distance interpolation by the four
blue points.
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