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1 Introduction

Global Climate Models (GCM) and Regional Climate Models (RCM) resolve atmospheric processes
on relatively coarse grids, usually covering hundreds or thousands of square kilometres. Consequently
these models cannot resolve local weather phenomena such as high precipitation rates due to orographic
effects, temperature changes with altitude, or inversions that are confined to narrow valleys. This coarse
resolution is contrasted by the need to assess the effects of climate change locally, for example with
respect to hydrological applications or crop production. One approach to solve these issues would be to
increase the resolution of GCMs or RCMs. Unfortunately such an increase in resolution is to date often
not feasible due to limited computational resources.

A popular approach to bridge the gap between the coarse resolution of climate models and the need
for local interpretation of climate change is the use of statistical downscaling methods. Statistical down-
scaling refers to a broad class of methods that are used to approximate local weather and climate as a
function of large-scale atmospheric characteristics (e.g. pressure fields which are resolved by GCM) us-
ing statistical techniques. These techniques are described by a large body of literature, which has been
summarised with respect to theoretical considerations and end user needs in a series of comprehensive
reviews (Fowler et al., 2007; Maraun et al., 2010; Winkler et al., 2011b,a).

Conditional weather generators are receiving increasing attention as downscaling tools that can re-
solve day to day variability of near surface variables such as precipitation and temperature (e.g. Maraun
et al., 2010; Wilks and Wilby, 1999). Weather generators are statistical simulators that produce random
numbers with properties resembling those of observed atmospheric variables (Wilks and Wilby, 1999). In
their basic form, weather generators do not have any connection to large-scale predictors and are thus not
suitable for downscaling. However, weather generators can be constructed to take the temporal variability
of large-scale predictors into account, in which case they are referred to conditional weather generators.
Conditional weather generators differ from many other statistical downscaling techniques by the use of
statistical simulations. The simulation procedure implies that the target variable is not described by one
single realisation, but by a large number of possible realisations. Each of these has to be assumed to
be highly uncertain, but collectively the simulations can provide robust estimates of the target variables.
A large number of conditional weather generators have been proposed, differing in their assumptions as
well as in their theoretical and technical complexity (see Maraun et al., 2010; Wilks and Wilby, 1999,
and references therein). Among the most popular approaches are simple weather generators that assume
that the variable of interest can be described by a linear (regression) model including a first order au-
toregressive (Markov) component (e.g. Furrer and Katz, 2007; Wilby et al., 1999; Hessami et al., 2008;
Wilks and Wilby, 1999). These have been recently extended to incorporate modern statistical estimation
techniques, including ridge regression (Hessami et al., 2008) and generalised linear models (Furrer and
Katz, 2007; Fealy and Sweeney, 2007).

This study aims at assessing the potential of Generalised Linear Models (GLM) based weather gen-
erators to downscale free atmosphere variables to daily precipitation and temperature. After introducing
the technical details, the models are trained using observation based estimates of surface variables and
free-atmosphere predictors originating from the NCEP/NCAR reanalysis data set. This is followed by a
careful assessment of the weather generators ability to capture the variability of observed precipitation
and temperature. Finally, the weather generator is used to assess climate change as projected by the
HadCM3 climate model. Here the HadCM3 is used as an typical example for the many climate scenarios
that require downscaling for climate impact assessment at the local scale.
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2 A weather generator based on generalised linear models

(glm)

The formulation of the weather generators for precipitation and temperature follows closely the work of
Furrer and Katz (2007) and Fealy and Sweeney (2007). In a first step the expected value of the variables of
interest is modelled as a function of free-atmospheric variables using Generalised Linear Models (GLM).
GLM are an extension of linear regression models that incorporate a nonlinear transformation of the
response variable. The GLM is identified using maximum likelihood methods, incorporating assumptions
on the distribution of the variable of interest. In this study, variable selection is done using stepwise
regression, optimising Akaike Information Criterion (AIC). After model identification the GLM can be
used to provide daily varying parameters to weather generators.

2.1 Precipitation

Daily precipitation is modelled using two independent processes, one for the probability of precipitation
occurrence (i.e. whether it rains on a day or not) and one for the precipitation intensity (i.e. the amount
of water precipitated).

2.1.1 Precipitation Occurrence

Precipitation occurrence at time t is described using an indicator variable, It, where It = 1 denotes
rainfall and It = 0 denotes a dry day. Precipitation occurrence is assumed to depend on the precipitation
occurrence of the previous day (It−1) i.e. it is a Markov process. Assuming that It follows a Bernoulli
process, the probability of precipitation occurrence (pt) can be modelled using logistic regression as

ln

(
pt

1− pt

)
= α1 + α2It−1 +

N∑
i=1

βiYt,i, (1)

where α1 is the intercept and α2 the coefficient of the first order autoregressive component, Yt,i are the N
free atmosphere variables and βi are the corresponding parameters.

After the occurrence model (Eq. 1) is identified, it can be used to simulate precipitation occurrence
as

Ĩt ∼ B(p = pt), (2)

where B is the Bernoulli distribution with probability p and Ĩt denotes simulated precipitation occurrence.
The occurrence probability for each time step, pt, is obtained by solving Eq. 1.

2.1.2 Precipitation Intensity

Precipitation intensity, µt, is only defined for wet days (It = 1) and assumed to be Gamma distributed.
The expected value of the logarithm of µt is modelled as

ln(µt) = α1 +
N∑
i=1

βiYt,i. (3)

Once identified, the intensity model can be used to simulate the precipitation intensity as

µ̃t ∼ Γ(κ = k, θ = µt/κ), (4)

where Γ is the Gamma distribution with shape parameter κ and scale parameter θ. The shape parameter is
estimated from observed precipitation intensities using maximum likelihood methods (Furrer and Katz,
2007). The scale parameter is used to account for the expected precipitation intensity µt, exploiting the
fact that the mean of gamma distributed variables is defined as µ = θκ.
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2.2 Temperature

Temperature, Tt, is assumed to follow a first order autoregressive process with normal distributed residu-
als. The deterministic component is modelled as

Tt = α1 + α2Tt−1 +
N∑
i=1

βiYt,i. (5)

Daily temperature is finally simulated as

T̃t ∼ Tt +N (µ = 0, σ = σR), (6)

where N is the normal distribution with zero mean. The standard deviation σ is set to σR, the standard
deviation of the residuals of Eq. 5.

3 Data

3.1 Near surface variables

Daily precipitation and temperature for the 1/1/1961 - 31/12/1989 control period where obtained from
high resolution (1 km grids) interpolations of observations, which are available for entire Norway at
www.eklima.no. The variables where obtained for all grid-points in seven selected catchments in western
Norway (Figure 1) and their spatial average was used to construct representative time series.

3.2 Atmospheric forcing variables

The atmospheric forcing variables (Table 1) where obtained from the SDSM data archive1 (Wilby and
Dawson, 2007), which provides easy access to atmospheric reanalysis and climate model simulations. In
this study the NCEP/NCAR atmospheric reanalysis and model simulations of the HadCM3 climate model
(A2 and B2 scenarios) where used. All data in the SDSM data archive are normalised over the 1961-1990
period. The atmospheric fields of the SDSM data archive originate from different data sources and are
interpolated to the same grid with 2.5◦ latitude× 3.75◦ longitude resolution. Only data from the grid-cell
at 77.5◦N and 11.25◦E, which covers the selected catchments (Figure 1) were considered in this study.
All data where considered for the 1/1/1961 - 31/12/1989 control period. In addition, the simulations of
the HadCM3 model where analysed for the 1/1/2071 - 31/12/2099 scenario period.

To assure that HadCM3 model reproduces the climate of the considered grid-cell reliably, the monthly
climatology of the HadCM3 simulations were correlated to the climatology of the NCEP/NCAR reanal-
ysis (Table 2), using the square of Pearson’s correlation coefficient (r2). The model reproduces the
grid-cell climatology well in most instances. In some cases, however, the correlations are low, indicating
considerable uncertainties in the HadCM3 simulations. To reduce the impact of such uncertainties, only
variables with r2 ≥ 0.5 where considered for further analysis.

1http://cccsn.ca/?page=dst-sdi, last accessed 31/12/2011
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Figure 1: Catchments considered in this study

Table 1: Candidate predictor variables available from the SDSM data archive (Wilby and Dawson, 2007). Italics

indicates that the variables have been estimated using geostrophic approximation (** is substituted with p5 for
500 hPa and with p8 for 850 hPa). Bold indicates that the variables have not been normalised. (See also http:

//cccsn.ca/?page=pred-help (last accessed: 2/1/2012), for more details.)

Variable Code

Mean temperature at 2m temp
Mean sea level pressure mslp
500 hPa geopotential height p500
850 hPa geopotential height p850
Near surface relative humidity rhum
Relative humidity at 500 hPa height r500
Relative humidity at 850 hPa height r850
Near surface speci�c humidity shum
Geostrophic air �ow velocity **_f
Vorticity **_z
Zonal velocity component **_u
Meridional velocity component **_v
Divergence **zh
Wind direction **th
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Table 2: The squared Pearson correlation coe�cient (r2) between the monthly climatology of the NCEP/NCAR
reanalysis and the HadCM3 climate model for the 77.5◦N and 11.25◦E grid-cell. Variables with r2 ≥ 0.5 are
highlighted bold and are used for downscaling. See Table 1 for more details on the variable.

Variable r2 Variable r2

mslp 0.33 p8_z 0.28
p500 0.96 p8zh 0.07
p5_f 0.69 p5_f 0.95
p5th 0.59 p5_th 0.24
p5_u 0.67 p5_u 0.20
p5_v 0.75 p5_v 0.82
p5_z 0.01 p5_z 0.75
p5zh 0.77 p_zh 0.79
p850 0.86 r500 0.11
p8_f 0.90 r850 0.23
p8th 0.55 rhum 0.38
p8_u 0.71 shum 0.94
p8_v 0.03 temp 0.94

4 Results

4.1 Model Identi�cation

The following sections summarise the results of the stepwise regression, used for model identification.
For each variable (precipitation occurrence, precipitation intensity and temperature) a table showing the
coefficients of the final model as well as the corresponding AIC is presented in combination with a figure
illustrating the success of the best fit.

Table 3 shows the coefficients of the precipitation occurrence models (Eq. 1) for all catchments
under consideration. Figure 2 compares the best estimate of the probability of precipitation occurrence
to observed precipitation occurrences.

Table 4 shows the results of the stepwise regression used to identify the model for precipitation
intensities (Eq. 3). Figure 3 compares the best fit predictions of precipitation intensities to the observed
values. Note that the observations are limited to a resolution of 0.01 mm day−1 which underlies the lined
patterns.

Table 5 shows the coefficients of the daily temperature models (Equation 5) for all catchments under
consideration and Figure 4 compares observed and fitted values.

4.2 Performance of weather generator

The following section assesses the ability of the conditional weather generator to capture important as-
pects of observed precipitation and temperature. For each variable in each catchment 1000 realisations
where drawn, conditioned on the NCEP/NCAR reanalysis for the control period. The temporal evolu-
tion of these replicates corresponds to the observations and the spread of the simulations quantifies the
uncertainty of the estimate.

The quality of the simulations is primarily assessed with focus on the mean annual cycle (i.e. the
climatology), the monthly residuals (time series aggregated to monthly values with the longterm mean of
each month removed) and the inter-annual variability. In addition, some attention is payed to the return
periods of annual maxima and the autocorrelation function, both being relevant aspects of data that are
available in daily resolution.

Beside visual comparisons, the performance of the weather generators is also assessed quantitatively.
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Table 3: Coe�cients of the best models for precipitation occurrence (Eq. 1) and the corresponding AIC for all
considered catchments

Borgai Eggedal Holen Langsima Myrkdal NoreEn Sysima

Intercept -0.51 -0.45 0.06 0.21 0.24 0.40 0.28
occurrence lag 1.41 1.54 1.80 1.68 1.70 1.59 1.70
p500 -0.46 -0.37 -0.47 -0.94 -0.76 -0.82 -1.00
p5_f 0.30 0.27 0.35 0.40 0.47 0.35 0.45
p5th >0.01 >0.01 >0.01 >0.01 >0.01
p5_u -0.27 -0.24 0.13 0.22 0.12
p5_v 0.51 0.49
p5zh 0.39 0.43 0.43 0.51 0.46
p850 -0.40 -0.41 -0.30 -0.23
p8_f -0.23 -0.19 0.16 0.14
p8th <-0.01 >0.01 >0.01 >0.01 >0.01
p8_u -0.25 -0.32 0.85 0.78 1.32 0.36 0.61
p5_f 0.46 0.42 0.17 0.27 0.19 0.46 0.47
p5_v -0.79 -0.74 -0.20 0.36 -0.22 -0.54
p_z 0.45 0.43 0.50 0.35 0.44 0.36 0.39
p5_zh 0.86 0.76 -0.52 0.37
shum 0.75 0.63 0.71 0.75 0.77 0.88 0.84
temp -0.38 -0.28 -0.33 -0.28 -0.28 -0.47 -0.39
AIC 10702 10667 8023 7860 7680 7936 7805

Figure 2: Best �t of the precipitation occurrence models. The x-axis shows the values predicted by Equation 1
(logistic transformation of the occurrence probability) and the y-axis shows observed precipitation occurrence (1
indicates a wet day). The red line is the inverse of the logistic transformation, mapping the predicted values onto
the probability of precipitation occurrence (inverse of Equation 1).
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Table 4: Coe�cients of the best models for precipitation intensity (Eq. 3) and the corresponding AIC for all
catchments considered

Borgai Eggedal Holen Langsima Myrkdal NoreEn Sysima

Intercept 1.46 1.55 1.55 1.54 1.71 1.01 1.27
p500
p5_f 0.10 0.05 0.19 0.16 0.17 0.15 0.20
p5th <0.01 <0.01 <0.01 <0.01
p5_u -0.26 -0.28 0.14 0.17 0.16 0.07
p5_v 0.29 0.33 0.13 0.13
p5zh 0.18 0.22 0.30
p850 -0.27 -0.30 -0.32 -0.28 -0.21 -0.35 -0.31
p8_f -0.07
p8th >-0.01 >-0.01
p8_u -0.08 -0.07 0.43 0.42 0.52 0.31
p5_f 0.12 0.11 0.05 0.03 0.16 0.06
p5_v -0.44 -0.51 -0.20 -0.21 -0.21 -0.12 -0.18
p5_z 0.25 0.28 0.23 0.17 0.20 0.30 0.23
p5_zh 0.34 0.46
shum 0.31 0.39 0.55 0.46 0.61 0.38 0.41
temp -0.18 -0.29 -0.49 -0.32 -0.53 -0.29 -0.33
AIC 29429 30940 43101 44484 44392 36806 41286

Figure 3: Best �t of the daily precipitation intensity model (Equation 3). The x-axis shows the best �t and the
y-axis the observed intensities. The red line indicates equality.
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Table 5: Coe�cients of the best models for temperature (Eq. 5) and the corresponding AIC for all catchments
considered

Borgai Eggedal Holen Langsima Myrkdal NoreEn Sysima

Intercept -0.25 0.04 -0.15 -0.51 0.15 -0.57 -0.53
temperature lag 0.70 0.72 0.70 0.65 0.69 0.66 0.63
p500 1.99 1.85 1.71 2.17 1.70 2.21 2.28
p5_f 0.11 0.11 0.04 0.05
p5th <0.01 <0.01
p5_u -0.07 -0.17 -0.08 -0.14 -0.15
p5_v 0.58 0.60 0.74 0.46
p5zh 0.36 0.49 0.43 -0.22
p850 -1.26 -1.20 -1.02 -1.26 -1.05 -1.31 -1.34
p8_f 0.45 0.43 0.34 0.42 0.34 0.48 0.46
p8th <0.01 <0.01 <0.01
p8_u -0.16 -0.31 -0.15 0.10 -0.08 0.07
p_f -0.21 -0.19 -0.05 -0.16 -0.33 -0.26
p_v -1.78 -1.97 -0.49 -0.28 -0.53 -1.56 -0.73
p_z 0.23 0.18 0.26 0.36 0.28 0.31 0.35
p_zh 1.01 1.17 0.21 0.37 0.88 0.28
shum -0.37 -0.36 -0.16 -0.23 -0.33 -0.38 -0.24
temp 1.37 1.34 0.92 1.12 1.26 1.63 1.33
AIC 42380 42638 35232 37670 37182 39579 37836

Figure 4: Best �t of the daily temperature model (Equation 5). The x-axis shows the best �t and the y-axis the
observed temperatures. The red line indicates equality.
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The bias is quantified using the mean difference between observed and simulated values (BIAS). The
weather generators ability to capture different aspects of the temporal variability is quantified using the
square of Pearson’s correlation coefficient between the observed and the simulated mean annual cycle
(r2Seas), monthly residuals (r2Resid) and annual values (r2Annual). The correlations are in every instance
computed using the median of all simulations.

4.2.1 Precipitation

Table 6 quantifies the performance of the precipitation generator, i.e. the combined effect of simulated
precipitation occurrence and precipitation intensity. For all catchments the model is almost unbiased with
absolute value of the BIAS being well below 1 mm day−1. The precipitation generator also captures the
seasonality of precipitation reasonably well with all correlations ranging from r2Seas = 0.85 to r2Seas =
0.96. There is, however, a considerable spread in the simulated monthly climatology (Figure 5). The
correlation between the observed and the simulated monthly precipitation residuals is lower ranging
from r2Resid = 0.56 to r2Resid = 0.85. Notably, the spread of the simulations (indicated by the shaded
areas in Figure 6) is small, compared to the magnitude of the variations in the median value. The lowest
correlations are found for annual time series (Figure 7). Especially the large spread in the correlation
coefficients, ranging from r2Annual = 0.34 to r2Annual = 0.81, is noteworthy and likely related to the fact
that inter annual variability of precipitation is a weak signal.

Figure 8 compares the autocorrelation functions of observed and simulated daily precipitation for
time lags up to 30 days. The autocorrelation of the simulated time series decays somewhat quicker than
the autocorrelation of observed precipitation. This indicates that the weather generator underestimates
the persistence of daily precipitation, despite the fact that the model for precipitation occurrence (Eq. 1)
incorporates an autoregressive component.

Figure 9 compares the return periods of the annual maxima of simulated and observed precipitation.
The weather generator dramatically overestimates the most extreme values, reaching unrealistic magni-
tudes.

Table 6: Performance of the precipitation generator forced with the NCEP/NCAR reanalysis

Borgai Eggedal Holen Langsima Myrkdal NoreEn Sysima

BIAS [mm day−1] <0.01 0.03 0.23 0.17 0.34 0.08 0.09
r2Seas 0.85 0.86 0.92 0.95 0.92 0.92 0.96
r2Resid 0.56 0.60 0.78 0.85 0.83 0.56 0.75
r2Annual 0.38 0.53 0.67 0.81 0.80 0.34 0.53

4.2.2 Temperature

Table 7 summarises the performance of the weather generator for daily temperature on different time
scales. The temperature simulations are effectively unbiased and the absolute values of the differences
in mean and simulated temperatures are smaller than 0.01◦C. The conditional weather generator captures
the seasonality of precipitation very well with almost perfect correlations (r2Seas ≥ 0.97). Further, the
seasonality of the temperature simulations do have a very small spread (Figure 10). The weather generator
also accurately simulates the monthly residuals of temperature. This is reflected by the relatively high
correlation coefficients, which have a remarkably small spread, ranging from r2Resid = 0.80 to r2Resid =
0.86. The high degree of correlations is also reflected by the relatively small spread of the simulation
around their median (Figure 11). The correlations of the observed and the simulated annual time series
are only marginally lower than those found for the monthly residuals. Correlation coefficients range
from r2Annual = 0.76 to r2Annual = 0.84. The spread of the model simulations is, comparatively large if
compared to the magnitude of the inter-annual variability.
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Figure 5: Observed (red lines) and simulated (boxplot) monthly precipitation climatologies. Boxes cover the inter-
quartile range of the simulated monthly climatologies. The horizontal bar indicates the median. The whiskers range
from the 10% to the 90% percentile. The dots indicate the lowest and the highest value of the simulations. The
simulations where forced with the NCEP/NCAR reanalysis.

Figure 6: Comparison between observed and simulated monthly precipitation anomalies. Red line: observed value.
The shaded areas are percentiles (10%, 20%, ..., 90%) of the simulation. The black line is the median (50% -
percentile) of the simulation. The simulations where forced with the NCEP/NCAR reanalysis.
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Figure 7: Comparing annual means of daily precipitation. Red line: observed value. The shaded areas are the
percentiles (10%, 20%, ..., 90%) of the simulations forced with the NCEP/NCAR reanalysis. The black line is the
median (50% - percentile) of the simulation.

Figure 8: Autocorrelation function of daily precipitation. Red line: observed value. The shaded areas are the
percentiles (10%, 20%, ..., 90%) of the simulations, forced with the NCEP/NCAR reanalysis. The black line is the
median (50% - percentile) of the simulation.
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Figure 9: Return periods of annual maxima of observed and simulated precipitation. Red line: observed value. The
shaded areas are percentiles (10%, 20%, ..., 90%) of the simulations, forced with the NCEP/NCAR reanalysis. The
black line is the median (50% - percentile) of the simulation.

Figure 13 compares the autocorrelation functions of observed and simulated daily temperatures. The
autocorrelation of both observed and simulated temperature exhibit a large degree of similarity and decay
at approximately the same rate. The quality of the estimate is further supported by its comparatively
small spread.

The return periods of the annual maxima of observed and simulated precipitation are compared in
Figure 14. There is an overall tendency of the model to overestimate the magnitude of the most extreme
values. In general, however, the estimated values maintain in a realistic range.

Table 7: Performance of the weather generator for daily temperature forced with the NCEP/NCAR reanalysis.

Borgai Eggedal Holen Langsima Myrkdal NoreEn Sysima

BIAS [◦C] >-0.01 <0.01 >-0.01 <0.01 >-0.01 >-0.01 >-0.01
r2Seas 0.98 0.97 0.97 0.98 0.98 0.99 0.99
r2Resid 0.81 0.80 0.82 0.86 0.84 0.85 0.86
r2Annual 0.79 0.76 0.82 0.79 0.71 0.82 0.84

4.3 Climate Scenarios

The weather generators for precipitation and temperature have been used to downscale simulations of the
HadCM3 climate model for the control and the scenario period. In the following the downscaled results
of the HadCM3 model are first compared to observations and the downscaled NCEP/NCAR reanalysis
with focus on the monthly climatology. Finally, the change in precipitation and temperature between the
control and the scenario period is evaluated.

4.3.1 Perfromance of the downscaled Climate Model

Table 8 quantifies the skill of the downscaled HadCM3 model to capture the monthly precipitation cli-
matology. The bias does not exceed 0.17 mm day−1 and has an order of magnitude that is comparable
to the simulations forced with the NCEP/NCAR reanalysis (Table 6). The correlation between the ob-
served precipitation climatology and the climatology of the simulations forced with the HadCM3 model
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Figure 10: Observed (red lines) and simulated (boxplot) monthly temperature climatologies. Boxes cover the inter-
quartile range of the simulated monthly climatologies. The horizontal bar indicates the median. The whiskers
range from the 10 to the 90 percentile. The points indicate the lowest and the highest value of the simulations. The
simulations where forced with the NCEP/NCAR reanalysis.

Figure 11: Comparison between observed and simulated monthly temperature anomalies. Red line: observed
value. The shaded areas are the percentiles (10%, 20%, ..., 90%) of the simulations, forced with the NCEP/NCAR
reanalysis. The black line is the median (50% - percentile) of the simulation.
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Figure 12: Comparing time series of annual mean temperature. Red line: observed value. The shaded area are the
percentiles (10%, 20%, ..., 90%) of the simulations, forced with the NCEP/NCAR reanalysis. The black line is the
median (50% - percentile) of the simulation.

Figure 13: Autocorrelation function of daily temperature. Red line: observed value. The shaded areas are the
percentiles (10%, 20%, ..., 90%) of the simulations, forced with the NCEP/NCAR reanalysis. The black line is the
median (50% - percentile) of the simulation.
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Figure 14: Return periods annual maxima of observed and simulated daily temperature. Red line: observed
value. The shaded areas are the percentiles (10%, 20%, ..., 90%) of the simulations, forced with the NCEP/NCAR
reanalysis. The black line is the median (50% - percentile) of the simulation.

ranges from r2Seas = 0.16 to r2Seas = 0.55, which is substantially lower than the correlations found for
the simulations forced with the NCEP/NCAR reanalysis. Figure 15 compares the observed precipitation
climatology with the climatologies resulting from downscaling the NCEP/NCAR and the HadCM3 re-
analysis. This illustration suggests that some of the largest deviations between the simulations forced
with NCEP/NCAR and the simulations forced with the HadCM3 occur during the autumn and winter
months. The error can be characterised by an underestimation of the HadCM3 simulations in the late
autumn which is subsequently followed by an overestimation in early spring.

Table 9 quantifies the skill of the downscaled HadCM3 model to capture the mean annual cycle of
temperature. The bias is never exceeding 0.1◦C but is slightly larger than the bias of the NCEP/NCAR
based simulations (Table 7). The correlations between the mean annual cycle of observed temperature
and the HadCM3 based temperature simulations is very high and comparable to the ones found for the
simulations forced with NCEP/NCAR. Figure 16 compares the observed mean annual cycles of tem-
perature with the NCEP/NCAR as well as the HadCM3 based simulations. The similarity of all three
quantities visually supports the results of the correlation analysis.

Table 8: Performance of the precipitation generator forced with the HadCM3 model in the control 1961 - 1990
period.

Borgai Eggedal Holen Langsima Myrkdal NoreEn Sysima

BIAS [mm day−1] 0.11 0.13 0.02 0.11 0.17 0.17 0.04
r2Seas 0.33 0.20 0.52 0.57 0.55 0.16 0.51

Table 9: Performance of the weather generator for temperature forced with the HadCM3 model in the 1961 - 1990
control period

Borgai Eggedal Holen Langsima Myrkdal NoreEn Sysima

BIAS [mm day−1] 0.07 0.08 0.09 0.09 0.10 0.07 0.06
r2Seas 0.99 0.99 0.97 0.96 0.98 >0.99 0.98
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Figure 15: Observed precipitation climatology compared to downscaled results based on the NCEP/NCAR reanal-
ysis and the HadCM3 climate model for the 1961 - 1990 control period. Boxes cover the inter-quartile range of the
simulated monthly climatologies. The horizontal bar indicates the median. The whiskers range from the 10% to
the 90% percentile.

Figure 16: Observed temperature climatology compared to downscaled results based on the NCEP/NCAR reanalysis
and the HadCM3 climate model for the 1960 - 1990 control period. Boxes cover the inter-quartile range of the
simulated monthly climatologies. The horizontal bar indicates the median. The whiskers range from the 10% to
the 90% percentile.

18



4.3.2 Projected Changes in Precipitation and Temperature

To assess the effects of climate change on precipitation and temperature the difference of the monthly
climatology between the scenario (1971 - 2100) and the control period (1961 - 1990) has been evaluated.
To judge upon the reliability of the projections the absolute change was compared to the median absolute
error (MAE) for each month. The MAE is defined as the median of the absolute values of the difference
between the observed climatology and the climatology of each of the 1000 simulations. The projected
changes are considered reliable only if 75% of the simulations have changes with absolute values larger
than the MAE (i.e. the boxes in Figure 17 and 18 have to be completely outside the area covered by
±MAE).

Figure 17 shows the projected changes in precipitation for both the A2 and the B2 emission scenario.
In Holen, Langsmia, Myrkedal and Sysmia an increase in precipitation is projected for the late summer
and early autumn months, which is more pronounced for the A2 emission scenario. Notably these catch-
ments are also the catchments where the simulations forced with HadCM3 exhibit the highest skill in the
control period (see Table 8). This, together with a tendency of decreasing precipitation in spring, suggests
a change in the seasonality of precipitation with dryer conditions in late winter and spring opposed by
increasingly wet conditions in late summer and early autumn.

Figure 18 illustrates the changes in temperature. In contrast to precipitation, the projected changes are
in most cases larger than the MAE and point toward warming condition. The projections that are based
on the A2 scenario are consistently about two degrees warmer than the ones that are based on the B2
scenario. The systematic increase in temperature implies in combination with the observed climatology
(Figure 10 and 16) a considerably shorter frost season for both emission scenarios.

Figure 17: Projected changes in mean precipitation rate, quanti�ed as the di�erence in the monthly climatology
between the scenario (1961 - 1990) and the control period (2071 - 2100). H3A2a: HadCM3 model forced with the
A2 emission scenario. H3B2a: HadCM3 model forced with the B2 emission scenario. MAE: median absolute error
between the observed and the simulated climatology for each month.
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Figure 18: Projected changes in mean temperature, quanti�ed as the di�erence in the monthly climatology between
the scenario (1961 - 1990) and the control period (2071 - 2100). H3A2a: HadCM3 model forced with the A2 emission
scenario. H3B2a: HadCM3 model forced with the B2 emission scenario. MAE: median absolute error between the
observed and the simulated climatology for each month.
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5 Summary and Conclusions

5.1 Verdict of the GLM based weather generator

The primary aim of this study was to assess the ability of conditional weather generators to capture
important aspect of precipitation and temperature variability. The chosen approach was based on using
relatively simple stochastic simulators with time varying parameters (e.g. the probability of precipitation
occurrence). The value of these time varying parameters is dependent on free-atmosphere variables
and was modelled on a day to day basis using Generalised Linear Models (GLM). The use of GLM
allowed for an effective model identification using stepwise multiple regression in a maximum likelihood
framework.

The GLM based weather generators for precipitation and temperature proved to be powerful tools,
that successfully captured many aspects of precipitation and temperature variability. Most relevant are
the ability to capture the mean annual cycle as well as monthly variability. Both aspects where described
well for both precipitation and temperature. The fact that the temperature simulations had the edge
over the precipitation simulations is most likely related to the more complex temporal structure of daily
precipitation.

The situation differs slightly for the annual variability. Here, the temperature simulations clearly
outperform the precipitation simulations. The reasons for this are not fully understood, but may be
related to the fact that the inter-annual variability of precipitation is weak if compared to the inter-annual
variability of temperature.

One of the most important aspects of daily precipitation and temperature is the degree of dependence
between adjacent days. Both the precipitation and the temperature model explicitly account for this, by
incorporating a first order autoregressive (Markov) component. Further, some degree if temporal depen-
dence is introduced implicitly by the atmospheric forcing variables. The fact that both the precipitation
and the temperature simulations captured the autocorrelation functions of the observations reasonably
well proves the capability of the weather generators to describe short term persistence of the observed
time series.

Extremely high values of precipitation and temperature regularly gain a lot of attention, for example
with respect to floods and heat waves. As weather generators produce estimates of both variables with a
daily resolution it is natural to check whether the magnitude and the return periods of the most extreme
events is captured. Unfortunately, the weather generators used in this study overestimate the magnitude of
the annual maxima. Especially for precipitation, where unrealistically high values are reached. Therefore,
the present approach should not be used to assess the influence of climate change on extreme events.
This is not completely unexpected. Similar issues of comparable downscaling techniques with respect to
extremes have been previously reported and solutions to this issue, based on extreme value theory have
been suggested. The review of Maraun et al. (2010) comments on this issue and provides references to
guide further reading.

5.2 Suitability for climate projections

In the context of climate projections, the reliability of conditional weather generators does not only
depend on the weather generator it self but also on the ability of the forcing model to capture the observed
climatology. Therefore, it is not surprising that the performance of the weather generator decreased once
it was forced with the HadCM3 model, despite the fact that forcing variables with a low skill where
excluded form the analysis. (It should be noted that a more rigorous criterion for preselecting the forcing
variables did not lead to increased skill of the weather generator if forced with the HadCM3 model,
although this is not shown in this report.)

This issue highlights the secondary role of statistical weather-generators as post-processing (or down-
scaling) tools in climate impact research. The climate signal is computed by global climate models, which
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consequently have the strongest impact on the reliability of the estimated change. This issue can in prin-
ciple be approached by exploiting the fact that climate models are often more skillful with respect to
specific variables. This knowledge can in principle be considered by more advanced data preprocessing
or be incorporated into the procedure used to identify the statistical model.

5.3 Considerations for hydrological modelling

Conditional weather generators are often used to provide hydrological models with estimates of daily
precipitation and temperature for climate impact assessment. Therefore it is important that weather gen-
erators do not only provide reliable estimates of the precipitation and temperature climatology, but also
produce a realistic day to day variability. The stochastic nature of weather generators, however, renders a
direct interpretation of simulated daily values unreliable. Hence, statistical summaries that give insights
to selected aspects of the daily variability were used to asses the realism of the simulations. In the context
of hydrological modelling the persistence, i.e. the degree of dependence between consecutive days, is
often considered to be crucial. The close proximity between the autocorrelation function of observations
and simulations for both precipitation and temperature (Figure 8 and Figure 13) indicated that this cri-
terion was met. However, a series of issues regarding the daily variability of precipitation arose in this
particular study. The relatively low predictive skill of daily precipitation intensity (Figure 3) and the fact
that annual maxima are overestimated (Figure 9) may compromise hydrological applications. Therefore
the suitability of conditional weather generators for hydrological modelling requires further investigation
and will most likely depend on the needs of each specific study.

A possibly practical limitation of conditional weather generators in hydrological modelling is related
to computational resources. The stochastic nature of weather generators implies that single realisations
should not be interpreted and reliable applications always depend on a large number (> 1000) of repli-
cates. However, the computational effort to process these with hydrological models may be unfeasible in
many instances.

5.4 Hydrological implications of projected change

The uniform increase in temperature found for the A2 and the B2 emission scenario, irrespective the
considered catchment, is likely to systematically alter the seasonality of hydrological phenomena. In the
summer months, the increasing temperature will lead to increasing evapotranspiration rates, which may
lead to dryer conditions. However, increasing evapotranspiration can trigger more convective rainfall - a
phenomenon that cannot be resolved by the statistical model underlying this study. More dramatic may be
the impact of the increasing temperature in the cold season. In all catchments considered mean monthly
temperature is below zero for six months in the cold half of the year. Precipitation falling in these months
is stored as snow, leading to low availability of liquid water during winter and an pronounced spring flood
during snow melt. Increasing temperatures will shorten the snow period considerably and consequently
alter the seasonality of most hydrological variables including river flow. The effects of temperature of the
seasonality of hydrological variables is supplemented with weak changes in the seasonality of precipita-
tion. The tendency for increasing precipitation in the late summer months with a simultaneous decrease
in precipitation during late winter implies that less precipitation is stored as snow in the shortening frost
season.
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