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1 Introduction

The chaotic nature of the atmosphere means that there is inherent unpredictability. The ability of deterministic

models to forecast the weather is therefore limited to how well it can model predictable scales and phenomena.

Moreover, small errors will grow with increasing lead time (Lorenz 1963). In order to provide a complete

forecast, estimates of the uncertainty must also be included. These estimates of uncertainty will help decision

makers to make better informed decisions where the future is uncertain. In weather forecasting, ensemble

prediction systems (EPS) have been developed in an attempt to model the uncertainty. Initially these systems

were developed for the global scale with relatively low spatial resolution and long time horizons (Toth

and Kalnay 1993; Molteni et al. 1996), but advances in computing power mean that EPSs are now being

developed for convection permitting scales for short range forecasts (Hacker et al. 2011; Bouttier et al. 2012;

Marsigli et al. 2014; Hagelin et al. 2017; Frogner et al. 2019).

There are many sources of uncertainty that are modelled by EPSs, chief among these are uncertainties in

the model initial conditions. At the global scale, the EPS developed by the European Centre for Medium

Range Weather Forecasts (ECMWF) uses a combination of singular vectors that identify perturbations

that maximize error growth (Buizza and Palmer 1995) and ensembles of data assimilation (EDA) whereby

observations used in the data assimilation are perturbed based on known error statistics (Buizza et al. 2008).

Other methods for initial conditions perturbations exist, such as error breeding (Toth and Kalnay 1993)

and the ensemble transform Kalman filter (Bowler et al. 2008). Convection permitting ensembles were

initially made by simply downscaling selected members of a global EPS using a convection permitting model

(e.g. Molteni et al. 2001), but more recent developments have included perturbations to the surface boundary

conditions and EDA (Bouttier et al. 2016; Frogner et al. 2019).

Another significant source of uncertainty is errors due to the parameterization of sub grid scale physical

processes, which are often based on empirical relationships - this is known as model uncertainty. One of

the most used methods to model this uncertainty is to perturb the tendencies that come from the physics

parameterizations, a process known as stochastically perturbed parameterization tendencies (SPPT). SPPT

can be used at both global (Buizza et al. 1999) and convection permitting (Bouttier et al. 2012; Frogner et al.

2019) scales. SPPT is a very indirect way of accounting for the uncertainties in the model parameterization

schemes and a new method has been developed whereby uncertain parameters within the parameterization

schemes themselves are perturbed. This method is known as stochastically perturbed parameterizations

(SPP) and has shown promising results (Ollinaho et al. 2017).

In the Arctic, the observing system is relatively sparse and parameterization schemes are typically more

uncertain since they are often based on empirical relationships obtained for less extreme climates. Further-

more, it has been shown that sea surface temperature (SST) products derived from satellite are particularly

uncertain in the polar regions (Liu and Minnett 2016), and that modelling the atmospheric boundary layer

is very sensitive to uncertainties in sea ice concentration (Seo and Yang 2013). All of this means that

uncertainties in the Arctic region are likely to be considerable and that it is vitally important to model them

as well as possible in order to provide forecasts with uncertainty estimates that allow forecast users to take

the uncertainty into account. Indeed it has been shown that a simple downscaling of a global ensemble in
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the Arctic region can provide better warnings than the global EPS in the case of a severe polar low event

(Kristiansen et al. 2011).

Work Package 4 in ALERTNESS is dedicated to the development of a convection permitting EPS for

the Arctic. The purpose of this report is to provide a reference for an EPS implementation of the the

AROME-Arctic model against which the outcomes of model developments within the work package can be

measured.

2 Reference model description

The model used in ALERTNESS is based on the operational implementation of the AROME-Arctic model

(Müller et al. 2017), which is an implementation of the Harmonie-AROME model (Bengtsson et al. 2017) for

the Arctic region around Norway. This model is put into the Harmonie EPS system (HarmonEPS: Frogner et

al. 2019) to make ensemble forecasts. In addition to the features described in the aforementioned references,

we have taken advantage of recent developments in the operational implementation of the AROME-Arctic

model, such as the inclusion of modelling of snow on ice surfaces.

For ALERTNESS, we run the AROME-Arctic EPS with a horizontal grid length of 2.5 km on the domain

shown in Fig 1 and use one control member and ten perturbed members. The setup of the EPS is very much

as described in Frogner et al. (2019), though the salient features are described below.

Perturbations to the initial and lateral boundary conditions are provided using the scaled lagged average

forecast (SLAF) approach, whereby differences between lagged forecasts with the same validity time taken

from the operational integrated forecasting system (IFS) of ECMWF are added to, and subtracted from,

the AROME-Arctic control member. The perturbations are scaled using the total energy norm (Keller et al.

2008) to ensure that each perturbation has roughly the same impact on the forecast. Upper air observations

are assimilated for the control member only using 3DVAR - this includes radiosonde observations and

all available satellite observations. Surface processes are modelled using SURFEX (Masson et al. 2013),

which divides the surface into 4 tiles - nature, town, sea and inland water bodies, each with their own

physics. Sea ice is modelled using a simple thermodynamic scheme (Batrak et al. 2018). Observations of

2m temperature and 2m relative humidity are assimilated in SURFEX for both the control and perturbed

members using optimal interpolation. Perturbations of spatially correlated noise, with a specified standard

deviation that depends on the parameter and a correlation length scale of 150 km, are applied to a number

of surface variables. The spatially correlated noise perturbations are either added to the control member or

multiplicatively scaled. The surface perturbations are summarised in Table 1.

Forecasts were run during the reference periods described in the next section to a lead time of 48 hours every

24 hours initialized at 00:00 UTC. Short forecasts to a lead time of 3 hours were run every 3 hours for the

data assimilation cycling. For the purposes of this report, the model setup described here is referred to as

ALERTNESS_ref.
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Figure 1: The domain used for ALERTNESS

Table 1: The magnitude and type of perturbation applied to the surface parameters. For type, × means that

the perturbations are multiplicative and + means that the perturbations are additive.

Parameter Standard deviation Type

Vegetation fraction 0.1 x

Leaf area index 0.1 x

Thermal coefficient of vegetation 0.1 x

Surface roughness length over land 0.2 x

Albedo 0.1 x

Sea surface temperature 0.25 +

Soil temperature 1.5 +

Soil moisture 0.1 x

Snow depth 0.5 x

Surface fluxes over sea 0.2 x
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3 Reference periods

Periods of 3 weeks during the The Year Of Polar Prediction (YOPP) Special Observing Periods (SOP) 1

and 2 were used to assess the performance of ALERTNESS_ref. The period used in SOP 1 was from 8 -

31 March 2018 and gives information about the performance of the model during the winter / transitioning

into spring season, and the period used for SOP 2 was 10 July - 1 August 2018, thus providing details of the

model performance during the summer season.

Time series of the mean, minimum and maximum values of 2m temperature, 10m wind speed, 2m relative

humidity and 12 hour accumulated precipitation, taken from all of the available observations stations in the

AROME-Arctic domain, were made to give an indication of the prevailing weather conditions during the

two reference periods. SOP 1 (Fig. 2) was characterized by generally cold temperatures with the mean 2m

temperature not going above 0◦C, the minimum as low as −35◦C and the maximum being close to 0◦C for

much of the period. Mean wind speeds were generally around 5 m/s, with the maximum typically around

15 m/s. There was a period around 17 - 19 March 2018 when the wind speed was at its maximum and this

coincided with the time at which the maximum rainfall occurred.

During SOP 2 (Fig. 3), temperatures were particularly warm with day time mean temperatures in excess of

20◦C and day time maximum temperatures higher than 30◦C. The wind speed was generally low with the

maximum rarely above 15 m/s and the mean generally below 5 m/s. There were a number of heavy rain

events observed during the period with largest maximum 12h precipitation accumulation of around 60mm

observed on 29 July.

7



2m Relative Humidity

10m Wind Speed

2m Temperature

−30
−20
−10

0
10

0

10

20

30

25

50

75

100

O
bs

er
va

tio
n

Max

Mean

Min

12h Accumulated Precipitation

Mar 12 Mar 19 Mar 26
0
5

10
15
20

Date

Max

Mean

Min

Figure 2: Time series of mean, maximum and minimum values of selected obseravations during SOP 1
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Figure 3: Time series of mean, maximum and minimum values of selected obseravations during SOP 2
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4 Verification methodology

The performance of ALERTNESS_ref is measured against that obtained from the global EPS from ECMWF,

IFSENS, using the same time period and observation stations. Model performance is measured using the

following objective verification scores, which are described briefly here, but in more detail in Wilks (2011).

• The root-mean-square error (RMSE) of the ensemble mean of the forecast compared with observations.

• The ensemble spread, which is the standard deviation of the ensemble members around the ensemble

mean. This reflects the uncertainty in the forecast that the ensemble is able to model. For a well

calibrated ensemble, the ensemble spread should be equal to the RMSE.

• The continuous rank probability score (CRPS), which measures the distance of a continuous distribu-

tion function constructed from the ensemble forecast to the observed value. For a single ensemble

member the CRPS reduces to the mean absolute error of the forecast. It is therefore negatively oriented

with a perfect score being zero.

• Rank histograms (sometimes referred to as Talagrand diagrams), which show the distribution of

observations into bins of ranked ensemble members. The shape of the rank histogram gives an

indication of under (u shaped) or over (convex shaped) spread, or negative (weighted toward the right)

or positive (weighted toward the left) bias. Here, the count of observations in each bin is given as the

normalized frequency such that an ensemble with perfect spread would have a normalized frequency

of 1, and the rank is given relative to the number of members in the ensemble, such that the rank is

always between 0 and 1. Using the relative rank means that ensembles with different numbers of

members can easily be compared.

• The Brier Score integrates the probabilistic distance, for a given threshold, between each member of

the ensemble forecast and the binary probability of the observation. Its skill score, the Brier Skill

Score, compares the Brier Score of the forecast with that of a reference forecast. Here we use the

sample climatology as the reference forecast. A Perfect Brier Skill Score has a value of 1 and a value

less than zero indicates no skill compared with the reference.

• The reliability measures the accuracy of the forecast probability for a threshold by comparing the

forecast probability with the observed frequency. For a perfectly reliable forecast the observed

frequency will be equal to the forecast probability. Note that reliability is conditioned on the forecast

probability.

• The Relative Operating Characteristics (ROC) compare the hit rate and the false alarm rate for observed

events for each probability. For a skillful forecast the ROC curve will be well above the diagonal

with a high hit rate and a low false alarm rate. Note that the ROC is conditioned on the occurrence of

events.

• The economic value of the forecast shows the increase in economic value, for a given threshold, over a

reference forecast, here we use the sample climatology as with the Brier Skill Score, for users with a

range of cost-loss ratios between 0 and 1. It is predicated on the fact that users will take protective

action when the probability of the event is higher than or equal to the cost-loss ratio.
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5 Results

5.1 SOP1

5.1.1 2m temperature

Forecasts of 2m temperature are verified against all available stations within the AROME-Arctic domain.

These stations are shown in Fig. 4. Forecasted 2m temperatures are adjusted for differences in height between

the model elevation and the station elevation (shown in Fig. 4) using a simple lapse rate of 6.5◦C/km.

0

300

600

900

1200

Station
elevation
[m]

Figure 4: Stations used for 2m temperature verification.

Summary scores for SOP1 are shown in Fig. 5, comparing scores obtained from ALERTNESS_ref with

those from IFSENS. Since each model run was started at 00 UTC, the time of day can be inferred from the

lead time on the x-axis. It is immediately apparent that both ALERTNESS_ref and IFSENS have a distinct

diurnal cycle in the forecast skill for 2m temperature. Both have larger RMSE (Fig. 5(a)) and CRPS (Fig.

5(b)) during the night time compared with the day time. ALERTNESS_ref has a larger spread, that remains

broadly constant, throughout the forecast, while the spread for IFSENS slowly increases throughout the

forecast (Fig. 5(a)). The CRPS for ALERTNESS_ref is lower than for IFSENS up to approximately hour 27

of the forecast, and is clearly lower during the day time (Fig. 5(b)). The superior skill for ALERTNESS_ref

over IFSENS during the day time is also reflected in the RMSE (Fig. 5(a)). The bias of the ensemble mean

(Fig. 5(c)) suggests a much stronger diurnal cycle in the 2m temperature forecast errors for IFSENS than

for ALERTNESS_ref, with IFSENS showing a warm bias during the night and a cold bias during the day,
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and ALERTNESS_ref showing a warm bias throughout that becomes weaker during the day time. The rank

histogram (Fig. 5(d)) adds weight to the suggestion from Fig. 5(a) that ALERTNESS_ref has better spread

for 2m temperature than IFSENS, with many of the observation ranks having a normalized count close to 1.

Note that the logarithmic scale in 5(d)) under-emphasises the differences between ALERTNESS_ref and

IFSENS.
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Figure 5: Summary verification scores for 2m temperature during SOP 1: (a) RMSE and spread, (b) CRPS,

(c) Bias of the ensemble mean and (d) Normalized relative rank histogram.

To obtain further insight into the performance of the models for different temperatures, categorical scores

were computed for different 2m temperature thresholds. In order to maintain a relatively consistent number

of observations for each lead time, the thresholds were chosen to be the 5th, 10th, 25th, 50th, 75th, 90th and

95th percentiles of the observed 2m temperatures that were available for each lead time. The thresholds used

for each lead time are shown in Fig. 6. It is clear that there is a strong diurnal cycle on the coldest threshold

that becomes weaker as the thresholds become warmer.

Fig. 7 shows the Brier Skill Score for each of the thresholds. The reference climatology used to compute

the Brier Skill Score is the sample climatology obtained from the observations. For all thresholds, ALERT-

NESS_ref has a higher Brier Skill Score than IFSENS, particularly during the day. The strong diurnal cycles

seen in the Brier Skill Score for both models for the lower percentiles is likely reflective of the diurnal cycles

in the thresholds obtained for those percentiles.

The reliability and ROC are perhaps more useful for forecast users in helping to understand the quality of

EPS forecasts. Fig. 8 shows the forecast reliability and ROC at 12 hours lead time and Fig. 9 the reliability

and ROC at 24 hours lead time for ALERTNESS_ref and IFSENS for all percentiles. Results are only shown

for lead times of 12 and 24 hours to be representative of day time and night time. Note that the results for
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Figure 7: Brier Skill Score for 2m temperature during SOP 1 for the 5th, 10th, 25th, 50th, 75th, 90th and

95th percentiles of the observed values. The sample climatology is used as the reference forecast.
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lead times of 36 and 48 hours are broadly similar to those for 12 and 24 hours.

At 12 hours lead time, ALETRNESS_ref typically over forecasts the probabilities related to the colder

percentiles, while IFSENS under forecasts the probabilities 8(a). Note that the probabilities are for forecasts

greater than the threshold and thus over forecasting probabilities for 2m temperatures greater than the

threshold means that temperatures colder than the threshold are being forecasted with probabilities that are

too low. As the thresholds become warmer, ALERTNESS_ref becomes more reliable (closer to the diagonal),

while IFSENS continues to under forecast the probabilities. The ROC 8(b) suggests that ALERTNESS_ref

produces more false alarms than IFSENS, especially for the lower percentiles. Conversely this means fewer

false alarms for events colder than the lower percentiles. As the thresholds become warmer, the hit rate for

ALERTNESS_ref is considerably better than for IFSENS.

For 24 hours lead time, both ALERTNESS_ref and IFSENS struggle to be reliable for the lowest percentiles

(9(a)), with noisy plots suggesting few forecasts below the thresholds. As temperatures become warmer,

both models are similarly reliable, though in general ALERTNESS_ref forecasts lower probabilities than

IFSENS. The ROC (9(b)) suggests a very large false alarm rate for both models for the colder thresholds.

This means that when cooler temperatures occur, the models are typically forecasting temperatures higher

than the threshold. It could be argued that, for the 5th and 10th percentiles, neither model has skill since the

ROC curves are very close to the diagonal. As the thresholds become warmer the false alarm rate decreases

along with the hit rate, with ALERTNESS_ref having a slightly higher hit rate than IFSENS.

The verification score that may be of most use to end users of probabilistic forecasts is the economic value.

10 shows the economic value for 2m temperature for forecast from ALERTNESS_ref and IFSENS during

SOP 1 for lead times of 12 and 24 hours. It is clear that at a lead time of 12 hours (10(a)), ALERTNESS_ref

offers more value to end users than IFSENS where decisions are based on 2m temperature. Most striking, is

that for all percentiles, ALERTNESS_ref can provide more value for users with lower cost-loss ratios. For a

lead time of 24 hours (10(b)), both models offer a similar level of value to users with all cost-loss ratios,

while neither model provides much value for the lowest percentiles.
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Figure 8: Verification for 2m temperature during SOP 1 at a lead time of 12 hours and for the 5th, 10th, 25th,

50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 9: Verification for 2m temperature during SOP 1 at a lead time of 24 hours and for the 5th, 10th, 25th,

50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 10: Economic value for 2m temperature forecasts during SOP 1 for the 5th, 10th, 25th, 50th, 75th,

90th and 95th percentiles of the observed values at lead times of (a) 12 hours (b) 24 hours.
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5.1.2 10m Wind Speed

Forecasts for 10m wind speed are verified for all available stations with observations inside the AROME-

Arctic domain. These stations are shown in Fig. 11. No adjustments are made for differences between

model elevation and station elevation. While the vast majority of stations are over land, there are also a large

number of coastal stations and some offshore stations. Further verification against satellite derived winds

over the sea will be possible in the future following developments from WP1.
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Figure 11: Stations used for 10m wind speed verification.

Summary scores for SOP1 are shown in 12, comparing scores obtained from ALERTNESS_ref with those

from IFSENS. Unlike for 2m temperature, the diurnal cycle in the verification is not so pronounced except

for the bias of the ensemble mean for IFSENS 12(c). ALERTNESS_ref has lower RMSE (12(a)) and CRPS

(12(b)) than IFSENS throughout the 48 hours of the forecasts, though these differences become smaller

with increasing lead time. Most striking is that the spread for 10m wind speed is considerably larger for

ALERTNESS_ref than for IFSENS (12(a)) throughout the forecast. While the spread for ALERTNESS_ref

grows slowly through the forecast, there is a much more pronounced, almost linear, growth in spread for

IFSENS. The bias of the ensemble mean (12(c)) suggests that ALERTNESS_ref has a tendency to over

forecast 10m wind speeds that becomes slightly weaker during the day, and IFSENS has a strong diurnal cycle

in the bias, slightly over forecasting 10m wind speeds during the night time and strongly under forecasting

wind speeds during the day time. The rank histogram (12(d)) shows that both ALERTNESS_ref and and

IFSENS do not posses sufficient spread, with the normalized observation counts generally being closer to 1

for ALERTNESS_ref.
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Figure 12: Summary verification scores for 10m wind speed during SOP 1: (a) RMSE and spread, (b) CRPS,

(c) Bias of the ensemble mean and (d) Normalized relative rank histogram.

As for 2m temperature, the performance of the models is assessed for different thresholds using percentiles

of the wind speed observations available for each lead time. However, only the 50th, 75th, 90th and 95th

percentiles are considered. The values of these thresholds are shown in Fig. 13. The obtained thresholds

were rounded to the nearest ms−1, which meant that in some cases, for percentiles lower than the 50th, this

resulted in the same value for different percentiles. There is an indication of a weak diurnal cycle in the

thresholds with slightly stronger 10m wind speeds during the day for the 50th and 75th percentiles, and the

opposite for the 95th percentile. This approach using percentiles means that we do not verify any extreme

wind speed cases (the 95th percentile is around 10 ms−1), but it also means that there are not a sufficient

number of cases to obtain meaningful verification scores for those extreme wind speeds.

3

6

9

0 6 12 18 24 30 36 42 48

Lead time [h]

W
in

d 
S

pe
ed

 [m
s−

1 ] Percentile

95%

90%

75%

50%

Figure 13: Thresholds used for categorical scores for 10m wind speed during SOP 1 derived from the 50th,

75th, 90th and 95th percentiles of the observed values valid at each lead time.
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Fig. 14 shows the Brier Skill Score for each of the thresholds using the sample climatology as reference.

For the 50th percentile the Brier Skill Score appears, to some extent, to be influenced by the diurnal cycle

in the value of the 50th percentile of 10m wind speed, dropping to close to zero for both ALERTESS_ref

and IFSENS for the lowest values of the threshold. For the higher thresholds, both models have lower Brier

Skill Scores as the wind speed threshold increases from the 75th to the 95th percentile. IFSENS has a

relatively consistent Brier Skill Score throughout the 48 hours of the forecasts, while the Brier Skill Score

for ALERTNESS_ref is higher at the beginning of the forecast and drops as the lead time increases. For the

75th percentile the Brier Skill Score for ALERTNESS_ref converges with that for IFSENS at around the

30th hour of the forecast, but for the 95th percentile this convergence occurs at around the 12th hour.
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Figure 14: Brier Skill Score for 10m wind speed during SOP 1 for the 50th, 75th, 90th and 95th percentiles

of the observed values The sample climatology is used as the reference forecast.

The reliability and ROC for 10m wind speed for the 50th, 75th, 90th and 95th percentiles of observed 10m

wind speed at a lead time of 12 hours are shown in Fig. 15. ALERTNESS_ref tends to forecast the lower

probabilities for all thresholds reliably, but over forecast the higher probabilities (Fig. 15(a)). IFSENS

under forecasts the lower probabilities for the 50th, 75th and 95th percentiles, but for the 90th percentile

is reliable up to 40% probability. Overall there is little systematic difference between the reliabilities of

ALERTNESS_ref and IFSENS. For the ROC, ALERTNESS_ref has higher hit rates than IFSENS for all

percentiles (Fig. 15(b)), with the difference between them least pronounced for the 50th percentile. There

is drop in both hit rate and false alarm rates for both models as the percentile of the threshold is increased.

Similar results were seen for 24, 36 and 48 hour lead times and are thus not shown here.

The economic value for the same thresholds is shown in Fig. 16 for lead times of 12, 24, 36 and 48 hours. For

most percentiles at most lead times, ALERTNESS_ref offers more value than IFSENS to users with a larger

range of cost-loss ratios. As lead time increases, the difference in the value curves between ALERTNES_ref

and IFSENS becomes smaller as the value offered by ALERTNESS_ref becomes smaller and that offered

by IFSENS remains broadly unchanged. This is most notable for users with the lower cost-loss ratios for

decisions related to the higher 10m wind speed thresholds, where ALERTNESS_ref offers considerably

more value than IFSENS during the first day of the forecast.
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Figure 15: Verification for 10m wind speed during SOP 1 at a lead time of 12 hours and for the 50th, 75th,

90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 16: Economic value for 10m wind speed forecasts forecasts during SOP 1 for the 50th, 75th, 90th and

95th percentiles of the observed values at lead times of (a) 12 hours, (b) 24 hours, (c) 36 hours and (d) 48

hours.
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5.1.3 2m Relative Humidity

Forecasts for 2m relative humidity are verified for all available stations with observations inside the AROME-

Arctic domain. These stations are shown in Fig. 17. No adjustments are made for differences between model

elevation and station elevation.
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Figure 17: Stations used for 2m relative humidity verification.

Summary scores for SOP1 are shown in 18, comparing scores obtained from ALERTNESS_ref with those

from IFSENS. Unlike for both 2m temperature and 10m wind speed, ALERTNESS_ref is not clearly superior

to IFSENS. There is a clear diurnal cycle in the RMSE (Fig. 18(a)) and CRPS (Fig. 18(b)), though there

is a 3 - 6 hour offset between IFSENS and ALERTNTESS_ref. There is no systematic difference between

ALERTNESS_ref and IFSENS in terms of RMSE (Fig. 18(a)) and CRPS (Fig. 18(b)). The spread for

ALERTNESS_ref has a clear diurnal cycle and is larger than that for IFSENS, which increases almost

linearly throughout the length of the forecast. The ensemble mean of ALERTNESS_ref shows a moist bias

throughout the forecast with maxima during the afternoon / early evening hours, whereas IFSENS initially

has a dry bias that is quickly removed resulting in a close to zero bias for the rest of the forecast (Fig. 18(c)).

The rank histogram suggests that ALERTNESS_ref is slightly better dispersed than IFSENS for 2m relative

humidity, though there is a signal of the moist bias in ALERTNESS_ref with more observations having

lower ranks (Fig. 18(d)).

The performance of the models is further assessed for the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles

of the observed 2m relative humidity for each lead time. The evolution of the thresholds for these percentiles

with lead time is shown in Fig. 19, where a clear diurnal cycle can be seen in the thresholds, with lower

22



0

5

10

0 6 12 18 24 30 36 42 48

Lead time [h]

S
pr

ea
d 

; S
ki

ll 
[%

]
(a)

0.0

2.5

5.0

7.5

0 6 12 18 24 30 36 42 48

Lead time [h]

C
R

P
S

 [%
]

(b)

−2.5

0.0

2.5

5.0

0 6 12 18 24 30 36 42 48

Lead time [h]

M
ea

n 
bi

as
 [%

]

(c)

0.1

1.0

10.0

0.00 0.25 0.50 0.75 1.00

Relative Rank
N

or
m

al
iz

ed
 C

ou
nt

(d)

rmse spread ALERTNESS_ref IFSENS

Figure 18: Summary verification scores for 2m relative humidity during SOP 1: (a) RMSE and spread, (b)

CRPS, (c) Bias of the ensemble mean and (d) Normalized relative rank histogram.

relative humidity in the day time hours than the night time hours. The diurnal cycle becomes less pronounced

for the higher percentiles.

Fig. 20 shows the Brier Skill Score for each of the thresholds using the sample climatology as reference. It is

clear that both ALERTNESS_ref and IFSENS score poorly for all percentiles, though day time scores are

better than those for the night time. For the the 90th and 95th percentiles, ALERTNESS_ref has no skill

compared to the sample climatology, whereas IFSENS is able to maintain a Brier Skill Score of just above

zero for most of the forecast. It is only really for the 75th percentile that ALERTNESS_ref is clearly superior

to IFSENS in terms of the Brier Skill Score, and that is only between lead times 9 - 15 hours and 33 - 39

hours.

Fig. 21 shows reliability and ROC at 12h. In terms of reliability at 12 hours lead time (Fig. 22(a)),

ALERTNESS_ref is slightly more reliable than IFSENS for the lower percentiles, but the reliability curves

for both models become flatter and move towards no skill for the 90th and 95th percentiles. The ROC

performance suggests that ALERTNESS_ref is superior to IFSENS for all percentiles (Fig. 22(b)) with lower

false alarm rates for the lower percentiles and higher hit rates for the higher percentiles. However, the hit

rate for ALERTNESS_ref does not exceed 50% for the 95th percentile. At 24 hours lead time (Fig. 22)

the reliability curves for both models are fairly flat (Fig. 22(a)) with under forecasted probabilities for the

lower percentiles and severely over forecasted probabilities for the higher percentiles. For the 75th and 90th

percentiles IFSENS shows some reliability while the curves for ALERTNESS_ref are almost flat. The ROC

curves (Fig. 22(b)) suggest very similar abilities to discriminate between events and non events for both

ALERTNESS_ref and IFSENS, though for the 75th and higher percentiles, ALETRNESS_ref has a higher
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Figure 19: Thresholds used for categorical scores for 2m relative humidity during SOP 1 derived from the

5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values valid at each lead time.
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Figure 20: Brier Skill Score for 2m relative humidity during SOP 1 for the 5th, 10th, 25th, 50th, 75th, 90th

and 95th percentiles of the observed values The sample climatology is used as the reference forecast.
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rate than IFSENS that is also accompanied with a higher false alarm rate.

In terms of economic value (Fig. 23), ALERTNESS_ref and IFSENS perform mostly similarly for both

12 (Fig. 23(a)) and 24 hour (Fig. 23(b)) lead times. At 12 hours lead time (Fig. 23(a)), ALERTNESS_ref

provides marginal value for cost-loss ratios lower than about 30% for the 5th and 10th percentiles, whereas

IFSENS provides zero value for those low cost-loss ratios. For the 75th percentile at 12 hours lead time

ALERTNESS_ref offers more value for a large range of cost-loss ratios than IFSENS, and for the 90th and

especially the 95th percentiles, ALERTNESS_ref provides more value than IFSENS for only the lowest

cost-loss ratios. At 24 hours lead time (Fig. 23(b)), IFSENS has similar economic value to that provided at

12 hours lead time. For ALERTNESS_ref, however, the value provided is greatly reduced, especially for

thresholds higher than the 75% percentile.
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Figure 21: Verification for 2m relative humidity during SOP 1 at a lead time of 12 hours and for the 5th,

10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 22: Verification for 2m relative humidity during SOP 1 at a lead time of 24 hours and for the 5th,

10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 23: Economic value for 2m relative humidity forecasts during SOP 1 for the 5th, 10th, 25th, 50th,

75th, 90th and 95th percentiles of the observed values at lead times of (a) 12 hours (b) 24 hours.
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5.1.4 12 hour precipitation

Forecasts for 12 hour accumulated precipitation are verified at 06 and 18 UTC each day - this roughly

separates the precipitation into day time and night time components. Furthermore, the largest number of

stations is available for 12h precipitation at these hours. These stations are shown in Fig. 24. It should be

noted that about half of the stations only have observations for 18 UTC (i.e. lead times of 18 and 42 hours).

Observation
times

18 only

06 and 18

Figure 24: Stations used for 12 hour accumulated precipitation verification.

Summary scores for 12 hour accumulated precipitation at lead times 18, 30 and 42 hours for SOP1 are shown

in Fig. 25. The 18 hour lead time can be considered to be 12 hour lead time on the first day of the forecast,

the 30 hour lead time can be considered to be the night time precipitation and the 42 hour lead time the day

time accumulated precipitation on the second day of the forecast. IFSENS clearly has lower RMSE (Fig.

25(a)) and CRPS (Fig. 25(b)) then ALERTNESS_ref for night time precipitation and day time precipitation

on the second day of the forecast. On the first day of the forecast ALERTNESS_ref and IFSENS have similar

RMSE and CRPS. The spread for ALERTNESS_ref is larger than that for IFSENS throughout the forecast,

though the difference is much smaller on the second day of the forecast (Fig. 25(a)). IFSENS has a positive

bias throughout the forecast that is slightly lower for the night time, while ALERTNESS_ref has a small

negative bias on the first day of the forecast that becomes a small positive bias on the second day of the

forecast, with a large positive bias for the night time precipitation (Fig. 25(c)). The rank histogram suggests

that the ALERTTNESS_ref ensemble is slightly better dispersed than IFSENS (Fig. 25(d)).

The performance of the models is further assessed for the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles

of the observed 12h accumulated precipitation, where it is greater than zero, for each lead time. The evolution
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Figure 25: Summary verification scores for 12 hour accumulated precipitation during SOP 1: (a) RMSE and

spread, (b) CRPS, (c) Bias of the ensemble mean and (d) Normalized relative rank histogram.

of the thresholds for these percentiles with lead time is shown in Fig. 26. Note that the 5th and 10th

percentiles had almost exactly the same values so from hereon in, the 10th percentile is not shown for 12h

accumulated precipitation verification. A diurnal cycle, with slightly lower precipitation during the night, is

only apparent for the 90th and 95th percentiles.

The Brier Skill Score, using the sample climatology as reference, suggest that in general IFSENS is superior

to ALERTNESS_ref for all percentiles (Fig. 27). On the first day of the forecast (18 hours lead time),

ALERTNESS_ref and IFSENS have very similar Brier Skill Scores for all percentiles, with ALERTNESS_ref

slightly higher than IFSENS for the 95th percentile. For all percentiles, except for the 75th and 90th, the

Brier Skill Score is clearly higher for IFSENS for night time precipitation - for the 5th and 25th percentiles

in particular there is a large drop in the Brier Skill Score at the 30 hour lead time. For the second day of the

forecast, the Brier Skill Score for IFSENS is higher than that for ALERTNESS_ref for all percentiles except

for the 95th, where the Brier Skill Score for ALERTNESS_ref is marginally higher

The reliability for the first day of the forecast suggests that ALERTNESS_ref and IFSENS perform broadly

similarly (Fig. 28(a)), generally over forecasting the higher probabilities. The ROC curves, however, suggest

that IFSENS performs better than ALERTNESS_ref with both higher hit rates and lower false alarm rates

(Fig. 28(b)). For the night time precipitation, the reliability for both ALERTNESS_ref and IFSENS is

similar (Fig. 29(a)), whereas the ROC suggests that the difference between IFSENS and ALERTNESS_ref

is larger for the night time than for the day time ((Fig. 29(a) cf Fig. 28(b)), mostly due to lower hit rates

for ALERTNESS_ref. The reliability and ROC performance for day time precipitation on the second day is

comparable to that on the first day.
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Figure 26: Thresholds used for categorical scores for 12 hour accumulated precipitation during SOP 1

derived from the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values that were

greater than zero valid at each lead time.
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Figure 27: Brier Skill Score for 12 hour accumulated precipitation during SOP 1 for the 5th, 10th, 25th, 50th,

75th, 90th and 95th percentiles of the observed 12h accumulated precipitation greater than zero. The sample

climatology is used as the reference forecast.
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Figure 28: Verification for 12 hour accumulated precipitation during SOP 1 at a lead time of 18 hours and for

the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed 12 hour accumulated precipitation

greater than zero for (a) reliability and (b) ROC.
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Figure 29: Verification for 12 hour accumulated precipitation during SOP 1 at a lead time of 30 hours and for

the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed 12 hour accumulated precipitation

greater than zero for (a) reliability and (b) ROC.
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The economic value (Fig. 30) of IFSENS is better than that for ALERTNESS_ref for all percentiles for both

day time (Fig. 30(a)) and night time (Fig. 30(b)) precipitation. The exceptions are for cost-loss ratios greater

than about 0.7 on the first day of the forecast for thresholds larger than the 75th percentile. For the night

time precipitation, particularly for thresholds lower than the 50th percentile, IFSENS provides more value to

users with a wider range of cost-loss ratios (Fig. 30(b)). For the second day of the forecast (not shown), the

economic value for both ALERTNESS_ref and IFSENS is similar to that on the first day of the forecast,

except that the extra economic value ALERTNESS_ref provides over IFSENS for users with high cost loss

ratios for the higher percentiles is no longer apparent.
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Figure 30: Economic value for 12 hour accumulated precipitation forecasts during SOP 1 for the 5th, 10th,

25th, 50th, 75th, 90th and 95th percentiles of the observed 12 hour accumulated precipitation gretaer than

zero at lead times of (a) 18 hours (b) 30 hours.
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5.2 SOP 2

5.2.1 2m temperature

As for SOP 1, forecasts of 2m temperature for SOP 2 are verified against all available stations within the

AROME-Arctic domain (Fig. 4), with the forecasted 2m temperatures adjusted for differences in height

between the model elevation and the station elevation using a lapse rate of 6.5◦C/km.

Summary scores for SOP 2 are shown in Fig. 31, comparing scores for 2m temperature from ALERT-

NESS_ref with those from IFSENS. As in SOP 1, there is a distinct diurnal cycle in the RMSE (Fig. 31(a)),

CRPS (Fig. 31(b)) and bias of the ensemble mean (Fig. 31(c)), with the scores better in the day time

than the night time, though the magnitude of the errors are slightly smaller for SOP 2 than for SOP 1.

ALERTNESS_ref is clearly superior to IFSENS on the first day of the forecast with lower RMSE (Fig. 31(a))

and CRPS (Fig. 31(b)) and close to zero bias in the ensemble mean between lead times of 6 and 18 hours

(Fig. 31(c)). Furthermore, the spread for ALERTNESS_ref is larger than for IFSENS throughout the forecast

(Fig. 31(a)), and the rank histogram suggests that ALERTNESS_ref is better dispersed than IFSENS, with

the relative ranks having a normalized count close to 1 (Fig. 31(d)).
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Figure 31: Summary verification scores for 2m temperature during SOP 2: (a) RMSE and spread, (b) CRPS,

(c) Bias of the ensemble mean and (d) Normalized relative rank histogram.

Taking the performance of the model for different percentiles of 2m temperature into account resulted in the

thresholds shown in Fig. 32. SOP 2 was an extremely warm period and this is reflected in high temperature

thresholds, with the 95th percentile being close to 30◦C during the day and around 21◦C during the night.

The diurnal cycle in the thresholds is much stronger for the higher percentiles than for the lower percentiles.
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Figure 32: Thresholds used for categorical scores for 2m temperature during SOP 2 derived from the 5th,

10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values valid at each lead time.

The Brier Skill Scores for the thresholds shown in Fig. 32 can be seen in Fig. 33. In general ALERTNESS_ref

has slightly higher Brier Skill Scores during the day time for all percentiles, but during the night time the

Brier Skill Score for ALERTNESS_ref drops below that obtained from IFSENS for the higher percentiles. In

fact, for the 90th and 95th percentiles, the Brier Skill Score for ALERTNESS_ref drops below zero indicating

no skill in comparison to the sample climatology.
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Figure 33: Brier Skill Score for 2m temperature during SOP 2 for the 5th, 10th, 25th, 50th, 75th, 90th and

95th percentiles of the observed values. The sample climatology is used as the reference forecast.

The reliability for 2m temperature at 12 hours lead time suggests that ALERTNESS_ref and IFSENS perform

similarly for the lower percentiles, but for the 75th and 90th percentiles ALERTNESS_ref is more reliable,

with IFSENS tending to under forecast the probabilities (Fig. 34(a)). For the 95th percentile ALERT-
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NESS_ref tends to over forecast the probabilities while IFSENS continues to under forecast. However for

ROC at 12 hours lead time, the superiority of ALERTNESS_ref over IFSENS grows with increasing thresh-

olds for 2m temperature (Fig. 34(b)). This is due to ALERTNESS_ref achieving much higher hit rates than

IFSENS whilst maintaining a low false alarm rate. At 24 hours lead time both ALERTNESS_ref and IFSENS

have similarly poor reliability, with ALERTNESS_ref especially having a tendency towards over forecasting

of probabilities for the higher thresholds (Fig. 35(a)). Like at 12 hours lead time, ALERTNESS_ref performs

increasingly better than IFSENS as the thresholds increase, but in this case the higher hit rates are also

accompanied by higher false alarm rates (Fig. 35(b)).

The comparison of economic value provided ALERTNESS_ref and IFSENS (Fig. 36) suggests that ALERT-

NESS_ref is provides more value to users with a wider range of cost-loss ratios for the majority of thresholds

of 2m temperature at both 12 hours lead time (Fig. 36(a)) and 24 hours lead time (Fig. 36(b)). The difference

is most pronounced for users with lower cost-loss ratios.
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Figure 34: Verification for 2m temperature during SOP 2 at a lead time of 12 hours and for the 5th, 10th,

25th, 50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 35: Verification for 2m temperature during SOP 2 at a lead time of 24 hours and for the 5th, 10th,

25th, 50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 36: Economic value for 2m temperature forecasts during SOP 2 for the 5th, 10th, 25th, 50th, 75th,

90th and 95th percentiles of the observed values at lead times of (a) 12 hours (b) 24 hours.
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5.2.2 10m Wind Speed

Forecasts for 10m wind speed are verified for all available stations with observations inside the AROME-

Arctic domain. These stations are shown in Fig. 11. No adjustments are made for differences between

model elevation and station elevation. While the vast majority of stations are over land, there are also a large

number of coastal stations and some offshore stations. Further verification against satellite derived winds

over the sea will be possible in the future following developments from WP1.

Summary scores for 10m wind speed during SOP 2 are shown in Fig. 37, and are similar to those for SOP 1.

The RMSE (Fig. 37(a)) and CRPS (Fig. 37(b)) are lower for ALERTNESS_ref throughout the forecast and

the spread for IFSENS grows while that for ALERTNESS_ref remains at the same level if the diurnal cycle

is not taken into account (Fig. 37(a)). Furthermore, the rank histogram suggests that ALERTNESS_ref is

more evenly dispersed than IFSENS (Fig. 37(d)). Unlike for SOP 1, which suggested a positive bias in the

ensemble mean of ALERTNESS_ref, there is a small positive bias during the night time and a negative bias

during the day time (Fig. 37(c)). However, the diurnal cycle of the bias of the ensemble mean is stronger for

IFSENS than for ALERTNESS_ref.
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Figure 37: Summary verification scores for 10m wind speed during SOP 2: (a) RMSE and spread, (b) CRPS,

(c) Bias of the ensemble mean and (d) Normalized relative rank histogram.

The thresholds obtained from the observed 10m wind speed for the 50th, 75th, 90th and 95th percentiles are

shown in Fig. 38. The values obtained from these percentiles result in a maximum of threshold of 8 ms−1 for

the the 95th percentile, which is lower than the maximum considered during SOP 1 (10.5 ms−1). A weak

diurnal cycle in the percentiles is apparent with higher 10m wind speeds in the day time than the night time,

and is strongest for the 75th percentile.
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Figure 38: Thresholds used for categorical scores for 10m wind speed during SOP 2 derived from the 50th,

75th, 90th and 95th percentiles of the observed values valid at each lead time.

The Brier Skill Score suggests that ALERTNESS_ref is better than IFSENS throughout the forecast for

the 50th and 75th percentiles, but only up to about 15 hours lead time for the 95th percentile (Fig. 39). In

fact, for the 50th percentile, IFSENS has a negative Brier Skill Score between lead times 21 and 27 hours

inclusive. There is a general increase in the Brier Skill Score for both model from the 50th to the 90th

percentile, though there is a small decrease again for the 95th percentile.
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Figure 39: Brier Skill Score for 10m wind speed during SOP 1 for the 50th, 75th, 90th and 95th percentiles

of the observed values. The sample climatology is used as the reference forecast.

Both ALERTNESS_ref and IFSENS have similar reliability curves for all percentiles at both 12 hours

(Fig. 40(a)) and 24 hours (Fig. 41(a)) lead time, although there is an indication that ALERTNESS_ref is

more reliable than IFSENS for the 50th and 75th percentiles when higher probabilities are forecasted. The

ROC for 12 hours lead time (Fig. 40(b)) suggests that for the 50th percentile both ALERTNESS_ref and

IFSENS perform similarly, but as the percentile increases, the hit rate for IFSENS falls more quickly than for

ALERTTNESS_ref. At 24 hours lead time, however, ALERTNESS_ref clearly has better ROC than IFSENS

for the 50th percentile as a result of a lower false alarm rate. Although that superiority of ALERTNESS_ref

is maintained for all percentiles, mostly due to a higher rate, the difference between the two models doesn’t

really grow.

The economic value (Fig. 42) suggests that at the 12 hour lead time, ALERTNESS_ref provides slightly
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Figure 40: Verification for 10m wind speed during SOP 2 at a lead time of 12 hours and for the 50th, 75th,

90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 41: Verification for 10m wind speed during SOP 2 at a lead time of 24 hours and for the 50th, 75th,

90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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more value than IFSENS (Fig. 42(a)), but at 24 hours lead time (Fig. 42(b)), ALETRNESS_ref clearly

provides more value for the 50th percentile, but as the threshold increases, the difference between the two

models becomes almost undetectable.
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Figure 42: Economic value for 10m wind speed forecasts during SOP 2 for the 50th, 75th, 90th and 95th

percentiles of the observed values at lead times of (a) 12 hours (b) 24 hours.

5.2.3 2m Relative Humidity

Forecasts for 2m relative humidity are verified for all available stations with observations inside the AROME-

Arctic domain. These stations are shown in Fig. 17. No adjustments are made for differences between model

elevation and station elevation.

Summary scores for SOP 2 are shown in Fig. 43, comparing scores obtained from ALERTNESS_ref with

those from IFSENS. As for SOP 1, ALERTNESS_ref is not clearly superior to IFSENS. The diurnal cycles

in the RMSE (Fig. 43(a)) and CRPS (Fig. 43(b)) are similar to those seen in the 2m temperature (Fig.

31(a), Fig. 31(b)), suggesting that it may be the temperature component of the relative humidity that is

driving the diurnal cycle. The RMSE ion 2m relative humidity for ALERTNESS_ref is comparable to that

for IFSENS during the day time but is larger during the night time (Fig. 43(a)), with the same seen in the

CRPS (Fig. 43(b)). It appears that on the first day of the forecast the spread for ALERTNESS_ref exceeds

the RMSE, while on the second day it is roughly equal (Fig. 43(a)), suggesting that the ensemble may be

slightly over dispersed, though the rank histogram shows more signs of a slight negative bias with higher

normalized counts for higher relative ranks (Fig. 43(d)). The diurnal cycle of the bias of the ensemble mean
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for ALERTNESS_ref suggests strong negative biases during the night time, with close to zero bias during

the day time (Fig. 43(c)), and it is likely that the night time negative biases are contributing to the negative

bias signal in the rank histogram. IFSENS, has a weaker diurnal cycle and the bias of the ensemble mean is

mostly positive throughout the forecast.
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Figure 43: Summary verification scores for 2m relative humidity during SOP 2: (a) RMSE and spread, (b)

CRPS, (c) Bias of the ensemble mean and (d) Normalized relative rank histogram.

The performance of the models is further assessed for the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles

of the observed 2m relative humidity for each lead time. The evolution of the thresholds for these percentiles

with lead time is shown in Fig. 44, where a clear diurnal cycle can be seen in the thresholds, with lower

relative humidity in the day time hours than the night time hours. Like for SOP 1, the diurnal cycle becomes

less pronounced for the higher percentiles.

Fig. 45 shows the Brier Skill Score for each of the thresholds using the sample climatology as reference. For

the 5th percentile, only IFSENS has skill, and as the percentile increases ALERTNESS_ref begins to have

skill during the day time and a diurnal cycle in the score develops for IFSENS. The maximum Brier Skill

Score for both models is achieved during the day time for the 50th percentile before beginning to drop. On

the first day of the forecast, ALERTNESS_ref has a slightly higher Brier Skill Score than IFSENS for the

25th percentile and above.

The reliability plots for the 12 hour forecasts of 2m relative humidity (Fig. 46(a)) suggest that both models

under forecast the probabilities for the lowest percentiles and begin to become reliable for the higher

percentiles. The ROC plots suggest a high false alarm rate for the lower percentiles for IFSENS compared

with ALERTNESS_ref, and for the 90th and 95th percentiles ALERTNESS_ref tends to have a higher hit

rate than IFSENS, although this is accompanied by a slightly higher false alarm rate (Fig. 46(b)). For
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Figure 44: Thresholds used for categorical scores for 2m relative humidity during SOP 2 derived from the
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Figure 45: Brier Skill Score for 2m relative humidity during SOP 1 for the 5th, 10th, 25th, 50th, 75th, 90th

and 95th percentiles of the observed values. The sample climatology is used as the reference forecast.
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24 hours lead time, both models tend to under forecast the probabilities for the lower percentiles, with

ALERTNESS_ref under forecasting more than IFSENS, but for the 90th and 95th percentiles both models

over forecast the probabilities (Fig. 47(a)). The ROC at 24 hours lead time is similar to that at 12 hours

lead time for the lower percentiles with ALERTNESS_ref having a lower false alarm rate than IFSENS (Fig.

47(b)), but for the 90th and 95th percentiles the ROC curves for both models get quite close to the diagonal,

with IFSENS slightly better than ALERTNESS_ref due to a higher (thought still less than 50%) hit rate.

In terms of economic value (Fig. 48), both ALERTNESS_ref and IFSENS perform better at 12 hours lead

time (Fig. 48(a)) than at 24 hours lead time (Fig. 48(b)). ALETRNESS_ref provides more value than

IFSENS to users with very high cost-loss ratios for all percentiles (Fig. 48(a)). The same is true for 24 hours

lead time for percentiles up to the 75th, but for the 90th and 95th percentiles neither model provides for

much value excerpt for a small amount for users with cost-loss ratios below about 0.3.
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Figure 46: Verification for 2m relative humidity during SOP 2 at a lead time of 12 hours and for the 5th,

10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 47: Verification for 2m relative humidity during SOP 2 at a lead time of 24 hours and for the 5th,

10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values for (a) reliability and (b) ROC.
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Figure 48: Economic value for 2m relative humidity forecasts during SOP 2 for the 5th, 10th, 25th, 50th,

75th, 90th and 95th percentiles of the observed values at lead times of (a) 12 hours (b) 24 hours.
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5.2.4 12 hour precipitation

Forecasts for 12 hour accumulated precipitation are verified at 06 and 18 UTC each day - this roughly

separates the precipitation into day time and night time components. Furthermore, the largest number of

stations is available for 12h precipitation at these hours. These stations are shown in Fig. 24. It should be

noted that about half of the stations only have observations for 18 UTC (i.e. lead times of 18 and 42 hours).

Summary scores for 12 hour accumulated precipitation at lead times 18, 30 and 42 hours for SOP 2 are

shown in Fig. 49. On the first day of the forecast, both ALERTNESS_ref and IFSENS have a similar RMSE,

but as the forecast progresses, the RMSE of ALERTNESS_ref increases through the night time precipitation

and continues to increase for the day time precipitation on the second day, while the RMSE for IFSENS

is roughly the same for the day time precipitation on the second day as the night time precipitation (Fig.

49(a)). For the day time on both the first and second days, the spread for ALERTNESS_ref is almost equal to

the RMSE, which a desired feature for an ensemble, but the fact that the RMSE for ALERTNESS_ref is

larger than that for IFSENS is less desirable. In terms of the CRPS (Fig. 49(b)), ALERTNESS_ref is lower

than IFSENS for day time precipitation on both the first and second days of the forecast, and is about the

same for the night time precipitation. The ensemble mean has a negative bias, that becomes increasingly

negative throughout the forecast, for ALERTNESS_ref, while IFSENS has a large positive bias for the day

time precipitation on the first day of the forecast that is much smaller for the night time precipitation and

increases again slightly for the second day (Fig. 49(c)). Although the ensemble spread and RMSE suggest

near optimal dispersion for ALERTNESS_ref for daytime precipitation (Fig. 49(a)), the rank histogram,

which combines both the day time and night time precipitation data, is dominated by the negative bias signal,

while the rank histogram for IFSENS suggests under dispersion (Fig. 49(d))

As for SOP 1, the performance of the models is further assessed for the 5th, 10th, 25th, 50th, 75th, 90th and

95th percentiles of the observed 12h accumulated precipitation, where it is greater than zero, for each lead

time. SOP 2 was a relatively dry period for most of the region so this results in a fairly small data set with

596, 113 and 683 cases for the 18, 30 and 24 hour lead times respectively. The evolution of the thresholds

for these percentiles with lead time is shown in Fig. 50. Note that the 5th and 10th percentiles had almost

exactly the same values so from hereon in, the 10th percentile is not shown for 12h accumulated precipitation

verification. There is no clear diurnal cycle in the the thresholds.

The Brier Skill Score, using the sample climatology as reference, suggests that day time precipitation (lead

times 18 and 42 hours) performance for ALERTNESS_ref is superior to IFSENS for all percentiles up to and

including the 75th percentile (Fig. 51). For night time precipitation, ALERTNESS_ref has a higher Brier

Skill Score than IFSENS for the 5th and 75th percentiles while the Brier Skill Scores are comparable for

the 25th and 75th percentile. For the 95th percentile, neither ALERTNESS_ref nor IFSENS have a positive

Brier Skill Score throughout the forecast and for the 90th percentile ALETRNESS_ref has a slightly positive

Brier Skill Score for daytime precipitation on both the first second days and IFSENS has a negative Brier

Skill Score for both 18 and 30 hour lead times, but a positive Brier Skill Score, that is marginally higher than

that for ALERTNESS_ref, for day time precipitation on the second day of the forecast.

The reliability for the first day of the forecast suggests that ALERTNESS_ref is close to perfect reliability
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Figure 49: Summary verification scores for 12 hour accumulated precipitation during SOP 2: (a) RMSE and

spread, (b) CRPS, (c) Bias of the ensemble mean and (d) Normalized relative rank histogram.
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Figure 50: Thresholds used for categorical scores for 12h accumulated precipitation during SOP 2 derived

from the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed values that were greater than

zero valid at each lead time.
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Figure 51: Brier Skill Score for 12 hour accumulated precipitation during SOP 1 for the 5th, 10th, 25th, 50th,

75th, 90th and 95th percentiles of the observed 12 hour accumulated precipitation greater than zero. The

sample climatology is used as the reference forecast.

for all percentiles up to the 90th percentiles while IFSENS over forecasts the probabilities (Fig. 52(a)),

while for the 95th percentile there were too few forecasts to obtain meaningful reliability plots. The ROC

curves, however, suggest that IFSENS performs better than ALERTNESS_ref in terms of hit rate up to

and including the 75th percentile, though ALERTNESS_ref tends to have a lower false alarm rate (Fig.

52(b)). For the night time precipitation, there were generally too few forecasts with precipitation to obtain

meaningful reliability diagrams (Fig. 53(a)), while the ROC suggests that the difference between IFSENS

and ALERTNESS_ref is larger for the night time than for the day time ((Fig. 53(a) cf Fig. 52(b)), mostly

due to lower hit rates for ALERTNESS_ref. The reliability and ROC performance for day time precipitation

on the second day is comparable to that on the first day.

The economic value suggests that ALERTNESS_ref provides more value than IFSENS for users with high

cost-loss ratios for percentiles up to and including the 75th for day time precipitation, while IFSENS appears

to provide more value for the 90th percentile (Fig. 54(a)). For night time precipitation, IFSENS provides

more value than ALERTNESS_ref albeit for roughly the same range of cost-loss ratios (Fig. 54(b)).
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Figure 52: Verification for 12 hour accumulated precipitation during SOP 2 at a lead time of 18 hours and for

the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed 12 hour accumulated precipitation

greater than zero for (a) reliability and (b) ROC.
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Figure 53: Verification for 12 hour accumulated precipitation during SOP 2 at a lead time of 30 hours and for

the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the observed 12 hour accumulated precipitation

greater than zero for (a) reliability and (b) ROC.
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Figure 54: Economic value for 12 hour accumulated precipitation forecasts during SOP 2 for the 5th, 10th,

25th, 50th, 75th, 90th and 95th percentiles of the observed 12 hour accumulated precipitation gretaer than

zero at lead times of (a) 18 hours (b) 30 hours.
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6 Discussion

The main purpose of this work is to provide a benchmark, ALERTNESS_ref, against which future improve-

ments, developed within Work Package 4 of the ALERTNESS project, to the EPS implementation of the

AROME-Arctic model can be measured. As a starting point the aim was to be at least comparable to the

IFSENS global EPS from ECMWF, which is the only EPS that is able to provide operational forecasts for the

region of interest in ALERTNESS. The performance of ALERTNESS_ref relative to IFSENS is measured

using well tested verification scores for ensembles computed by comparison with available observations

at surface weather stations. The domain used for verification is that of the operational AROME-Arctic

deterministic model that is dominated by ocean surfaces. Unfortunately very few conventional observa-

tions are available over these ocean areas, so by having nearly all the stations used in the verification over

land (Fig. 4, Fig. 11, Fig. 17, Fig. 24), it is not possible to gain a full insight into the performances of

ALERTNESS_ref and IFSENS over the whole AROME-Arctic domain. It is hoped that developments in

ALERTNESS Work Package 1 will enable ensemble performance to be verified over ocean and sea ice areas

using new observation sources such as those derived from satellite radiances.

The periods chosen for which to do the verification were intended to be representative of winter (SOP 1)

and summer (SOP 2). During SOP 1 temperatures were typically below 0◦C and the 5th percentile dropped

to as low as −25◦C during the night (Fig. 6), while the summer was characterized by the 95th percentile

temperature being as high as 30◦C during the day (Fig, 32). Therefore, there were some quite extreme

temperatures against which to test the performance of the models. For other parameters, however, the weather

was somewhat benign with 95th percentile wind speeds of 10 ms−1 during SOP 1 (Fig. 13) and 8 ms−1

during SOP 2 (Fig. 38), and 95th percentile 12 hour accumulated precipitation of up to 6 mm during SOP 1

(Fig. 26) and up to 15 mm during SOP 2 (Fig. 50). The verification of precipitation is further complicated by

the fact that the observation statistics are dominated by zeros leaving only a relatively small number of cases

from which to compute categorical scores.

A key finding is that, for all parameters, ALERTNESS_ref is better dispersed than IFSENS. Normalized

rank histograms have normalized counts closer to 1 for ALERTNESS_ref than for IFSENS, and the standard

deviation of the ensemble members with respect to the ensemble mean, the usual method for quantifying the

spread of an ensemble, is higher. This is despite ALERTNESS_ref only have ten perturbed members, as

opposed to the 50 in IFSENS. A reason for this may be that IFSENS is designed for medium range forecasts

and therefore doesn’t look to maximize spread in the short range. Indeed one of the perturbation methods

used in IFSENS is to use singular vectors to perturb the model in a way that maximizes the error growth at

48 hours lead time. Furthermore, IFSENS uses perturbations to the tendencies resulting from the model’s

physics parameterizations to estimate the model error as the forecast progresses (SPPT: Stochastically

Perturbed Parameterization Tendencies). Indeed for most parameters the spread of IFSENS is seen to grow

steadily throughout the 48 forecast hours that are considered here while the spread for ALERTNESS_ref

tends to remain roughly the same (if the diurnal cycle is ignored) from 0 to 48 hours (e.g. Fig. 12).

In terms of the parameters investigated, it is clear that ALERTNESS_ref is superior to IFSENS for 10m wind

speed, and this superiority exists for both SOP 1 and SOP 2 for all thresholds. However, it was difficult to
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objectively compare the models for extreme winds since the number of observed extreme wind events was

small. For 2m temperature, ALERTNESS_ref is generally better than IFSENS, though during the night time

there is an increase in RMSE that is not reflected in the spread - this is the case for both models. To further

investigate the cause of the increased RMSE during the night, the computation of the RMSE and the bias of

the ensemble mean is split into groups of observed 2m temperature at 2.5◦C intervals for ALERTNESS_ref

and weighted by the number of cases for that interval. Fig. 55 shows the weighted RMSE at each lead

time during SOP 2 and it is clear that for the night time hours, the RMSE is dominated by errors for 2m

temperatures in the range 7.5◦C − 20◦C, with the bias showing a strong warm bias for the same temperature

range (Fig. 56) for these hours. The bias also suggests that while the mid range temperatures are over

estimated, the warmer temperatures tend to be under estimated, although the latter is the case for all lead

times. A similar signal is seen for SOP 1 (not shown) with positive bias for the mid-range temperatures at

night and a small negative bias for the warmer temperatures.

A reasonable question to ask at this point is whether this warm bias results from a systematic bias in the

model as a whole, or the construction of the ensemble. The bias of the individual members at 24 hours lead

time is therefore inspected with respect to that of the control member for the same temperature ranges. In this

case no weighting is applied, but the number of cases for each temperature range impacts the significance, so

only those temperature range with more than 100 cases are shown. Fig. 57 shows the difference in bias for

each member compared to the control member and there is a clear signal that for the colder temperatures

all of the members are warmer than the control member and for the warmer temperatures the majority of

the members are cooler than the control member, while in the middle of the temperature range there is a

near even distribution of members. In order to test if the signal for colder temperatures is robust, the same

analysis is done for SOP 1 (Fig. 58). In this case it is clear that, for temperatures colder than −2.5◦C, all of

the perturbed members are warmer than the control member. This suggests that, although the control member

tends to have a positive bias for 2m temperature at 24 hours lead time (∼ 6◦C for the (−22.5,−20]◦C, but

∼ 0◦C for the (−12.5,−10]◦C range), the perturbations are leading to an increased bias in the ensemble

mean, especially for the extreme cold temperatures. This positive bias for the perturbed members during

SOP 1 is actually replicated for all temperatures throughout the whole ALERTNESS_ref forecast for SOP 1,

while this is not the case for ALERTNESS_ref for SOP 2, or at all for IFSENS (Fig. 59).

The results for 2m relative humidity are troublesome in that the night time performance is especially poor for

higher relative humidities. A similar analysis to that for 2m temperature, with the verification done for 5%

relative humidity bands, was done. A concern for SOP 2 was that there was a large increase in the errors

in ALERTNESS_ref during the night time that was not present for IFSENS and was not reflected in the

ensemble spread. Fig. 60 shows the RMSE, weighted by the number of cases, at all lead times for SOP 2 for

2m relative humidity in ALERTNESS_ref. It is clear that at the 0, 24 and 48 hour lead times, the RMSE is

largest for the highest humidity bands, with the bias in the ensemble mean (Fig. 61) suggesting that there is a

sizable negative bias for these high humidities. By looking at the biases of the perturbed members relative

to the control member at 24 hours lead time (Fig. 62), it is clear that as the 2m relative humidity becomes

larger, all of the perturbed members have a more negative bias than the control member. For SOP 1, the

largest errors in ALERTNESS_ref are seen at the 15 and 39 hour lead times, so the biases of the perturbed

members relative to the control member are shown in Fig. 63. Here, the more negative biases in the perturbed
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Figure 55: RMSE for 2m temperature for different temperature ranges weighted by the number of cases for

the temperature range during SOP 2 for ALERTNESS_ref at all lead times.
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Figure 56: Bias of the ensemble mean for 2m temperature for different temperature ranges weighted by the

number of cases for the temperature range during SOP 2 for ALERTNESS_ref at all lead times.
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Figure 57: Bias for each ensemble member for 2m temperature for different temperature ranges relative to

the control member (mbr000) during SOP 2 for ALERTNESS_ref at 24 hours lead time.
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Figure 58: Bias for each ensemble member for 2m temperature for different temperature ranges relative to

the control member (mbr000) during SOP 1 for ALERTNESS_ref at 24 hours lead time.
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Figure 59: Bias for the control and each of the perturbed ensemble members for 2m temperature.

members compared to the control member are larger, especially for the cases with low relative humidity.

In the case of 2m relative humidity, there appears to be a systematic negative bias in the perturbed members,

and an inspection of the biases for each member (Fig. 64) confirms this to be the case. Since relative

humidity is related to both temperature and moisture, and there is a systematic positive bias in the perturbed

members of ALERTNESS_ref during SOP 1, which would act to reduce the relative humidity, it would be

useful to know whether there is also a negative bias in the moisture also contributing to the negative bias in

the the 2m relative humidity. Forecasts of specific humidity were therefore also verified for each ensemble

member of ALERTNESS_ref and the biases of the individual members are shown in Fig. 65. For SOP 1, the

perturbed members have a more positive bias than the control member between lead times of 18 and 33 hours,

suggesting that at this time the negative bias of 2m relative humidity in the perturbed members compared

with the control member is being driven by the warm bias in 2m temperature. For SOP 2, however, all of the

perturbed members have a negative bias in the specific humidity when compared with the control member

and there is no systematic bias in the 2m temperature, suggesting that the negative bias in the perturbed

members for the relative humidity is driven by the moisture.

It should be noted that the perturbed members being “drier” in terms if relative humidity is a known problem

for the EPS implementation of the Harmonie AROME model and scientists in the HIRLAM consortium or

actively working to understand the causes. At the time of writing, both the surface data assimilation and the

surface perturbations in soil moisture are thought to be contributing.

It is unclear whether these biases in 2m relative humidity are reflected in the precipitation. However, there are

key differences between the relative performances of ALERTNESS_ref and IFSENS during SOP 1 and SOP
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Figure 60: RMSE for 2m relative humidity for different relative humidity ranges weighted by the number of

cases for the temperature range during SOP 2 for ALERTNESS_ref at all lead times.
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Figure 61: Bias of the ensemble mean for 2m relative humidity for different relative humidity ranges

weighted by the number of cases for the temperature range during SOP 2 for ALERTNESS_ref at all lead

times.
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Figure 62: Bias for each ensemble member for 2m relative humidity for different relative humidity ranges

relative to the control member (mbr000) during SOP 2 for ALERTNESS_ref at 24 hours lead time.

67



RH Range: (80,85]

523 cases

RH Range: (85,90]

462 cases

RH Range: (90,95]

328 cases

RH Range: (60,65]

419 cases

RH Range: (65,70]

452 cases

RH Range: (70,75]

479 cases

RH Range: (75,80]

471 cases

RH Range: (40,45]

124 cases

RH Range: (45,50]

229 cases

RH Range: (50,55]

288 cases

RH Range: (55,60]

367 cases

−15 −10 −5 0 −15 −10 −5 0 −15 −10 −5 0

−15 −10 −5 0

mbr010

mbr009

mbr008

mbr007

mbr006

mbr005

mbr004

mbr003

mbr002

mbr001

mbr010

mbr009

mbr008

mbr007

mbr006

mbr005

mbr004

mbr003

mbr002

mbr001

mbr010

mbr009

mbr008

mbr007

mbr006

mbr005

mbr004

mbr003

mbr002

mbr001

Bias relative to control member [%]

M
em

be
r

−10

0

10

%

Figure 63: Bias for each ensemble member for 2m relative humidity for different relative humidity ranges

relative to the control member (mbr000) during SOP 1 for ALERTNESS_ref at 15 hours lead time.
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Figure 64: Bias for the control and each of the perturbed ensemble members for 2m relative humidity.
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Figure 65: Bias for the control and each of the perturbed ensemble members for 2m specific humidity.
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2. During SOP 2, daytime scores for ALERTNESS_ref are typically better than those for IFSENS, whereas

for the night time ALERTNESS_ref is either worse, or comparable to IFSENS. However, during SOP 1

IFSENS generally had better verification scores than ALERTNESS_ref. This may be explained, to some

extent, by the different processes that determine rainfall. During the day time in the summer (SOP 2), some

of the precipitation is likely to be convective, a process that is explicitly permitted by ALETRNESS_ref due

to the higher spatial resolution, but parameterized in IFSENS. It is likely this that gives ALERTNESS_ref

the better day time scores in SOP 2. During the winter (SOP 1) and at night, the precipitation is likely to

be larger in both spatial and temporal scales, which IFSENS is able to forecast well. It is often the case

that, when comparing high spatial resolution models with models with a lower spatial resolution, the higher

spatial resolution models are doubly penalized by near misses. That is, where precipitation is forecast close

to a station, but not at the location of the station it is counted as a missed event at the location of the station

and a false alarm at the location at which it occurred. This may not be the case for the lower resolution model

as the pixels are large enough to get the “correct” forecast. By using 12 hour precipitation accumulations this

double effect is mitigated to some extent as there are less likely to be small scale features. However, the

fairest comparison between ALERTNESS_ref and IFSENS would be to use a spatial verification technique.

Unfortunately, for this region there is currently no good quality spatial data set of precipitation observations

available. Work in Work Package 1 may identify a suitable method to use in the future.

Another aspect to note is that, for 2m temperature and 2m specific / relative humidity in particular, the spread

for ALERTNESS_ref does not increase with time at the same rate as the RMSE. For SOP 1, a linear fit

to the spread for 2m temperature for ALERTNESS_ref does not increase at all with lead time while the

RMSE does increase, and for 2m relative humidity the spread becomes smaller with increasing lead time

(Fig. 66). For SOP 2, the results are similar although excessive spread for the 2m specific humidity becomes

less excessive as lead time increases (Fig. 67). For IFSENS, there is a clear increase in spread with lead

time for all parameters. A key difference between ALERTNESS_ref and IFSENS is that ALERTNESS_ref

takes no account of the model uncertainty whereas IFSENS uses SPPT to estimate the model uncertainty.

It is possible that it is this modelling of the model uncertainty that is helping the spread to increase as the

forecast progresses, and that the planned introduction of SPP (Stochastically Perturbed Parameterizations) to

the Harmonie AROME EPS for ALERTNESS will help the spread to increase with increasing lead time.
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Figure 66: Spread and RMSE for all parameters with a linear model fit for SOP 1 (note that 2m specific

humidity data were not available for IFSENS).
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Figure 67: Spread and RMSE for all parameters with a linear model fit for SOP 2 (note that 2m specific

humidity data were not available for IFSENS).
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7 Conclusions and future plans

The aim of ALERTNESS Task 4.1 was to provide a reference set of EPS data (referred to as ALERTNESS_ref)

against which future developments in ALERTNESS could be measured. Furthermore, the applicability of

the Harmonie AROME EPS model for the Arctic region was to be assessed by comparing with IFSENS, the

only operationally available EPS for the region. For most parameters ALERTNESS_ref was superior to, or

equal to IFSENS in terms of verification scores over land. The main issue appears to be a systematic dry bias

of the perturbed members compared with the control and a systematic warm bias for very cold temperatures.

Both of these are known issues that are being addressed in the HIRLAM consortium. We consider the results

reported herein to be a good starting point from which to further develop an EPS for the Arctic within the

ALERTNESS project.

However, a major question mark remains about the performance of ALETRNESS_ref over the large ocean

areas in the Arctic. Ongoing research in ALERTNESS work package 1 will identify methods and observations

against which ALERTNESS_ref could be verified. The most straightforward of these is wind over the ocean

as derived from the ASCAT satellite. However, it is believed that both the sea surface temperature and

sea ice concentrations are major contributors to the uncertainty in weather forecasts for the Arctic, and

ALERTNESS task 4.2 is addressing that by considering novel strategies for sea surface temperature and sea

ice perturbations.

While the results for ALERTNESS_ref suggest relatively large uncertainties in the model initial conditions,

these uncertainties may be better constrained by the introduction of an ensemble of data assimilation (EDA).

EDA will be implemented into the EPS for the Arctic and its impact on the forecast assessed in ALERTNESS

task 4.3. Furthermore, the error growth does not appear to be properly modelled in ALERTNESS_ref and the

introduction of SPP to estimate the model uncertainty in ALERTNESS task 4.4 may go some way towards

achieving a better growth in the forecast spread for some parameters.

8 Collaboration with other projects

Results from SOP 1 have been used in the APPLICATE project to assess the impact of removing perturbations

to the sea surface temperature. This experiment revealed a problem in the way that sea surface and land

temperature perturbations are treated in the model and is currently being investigated by model developers in

HIRLAM.

The results from SOP 1 have also been shared with the Nansen Legacy project, and they are using these

data to force an ocean and sea ice model for the period. The results from that work will then be used in

ALERTNESS to provide an ensemble of sea surface temperature and sea ice boundary conditions to force an

AROME-Arctic ensemble.

All results from ALERTNESS are also shared with the HIRLAM consortium with the aim reporting issues to

the model developers so that issues with the model may be improved in future iterations.
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9 Data availability

Data from the model runs are available in NetCDF format on the Norwegian Meteorological Institute thredds

server at https://thredds.met.no/thredds/catalog/alertness/catalog.html.
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