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1 General model configuration

The basis for the idealised model simulations is the NorKyst800 version[Asplin,

2011] of the Regional Ocean Modeling System (ROMS), which is run opera-

tionally by the Norwegian Meteorological Institute. NorKyst800 covers the coast

of mainland Norway and has a horizontal resolution of 800 meters. Ocean data

assimilation at such high resolution is a formidable task, requiring extensive su-

percomputing resources, careful analysis to estimate representation errors (which

reflects the model’s ability to represent the observed dynamics), and a long his-

tory of observation data to estimate observation error decorrelation scales. The

latter is potentially a serious problem with HF-radar data since observation errors

are likely to be correlated in time and/or space1. In this study we have therefore

chosen to use a coarser horizontal resolution, with horizontal grid cells that are

2.4x2.4 km2.

Otherwise, the idealised model presented here closely resembles NorKyst800, for

example with regard to vertical coordinates and choice of vertical mixing scheme.

It should be noted that the forcing of the model is done by specifying all the

necessary momentum, radiative, and freshwater fluxes, which means that no bulk

flux schemes are used. Also, salinity is kept constant and all changes in water

density are caused by changes in temperature. A linear equation of state is used.

There are seven dependent variables in ROMS: (u, v, T, S, ζ, ū, v̄), representing

horizontal velocity in easterly direction, horizontal velocity in northerly direction,

potential temperature, salinity, vertically averaged velocity in easterly direction,

vertically averaged velocity in northerly direction, and sea surface height, respec-

tively. In the ROMS code and ROMS output these variables are referred to as (�,

�, ����, ����, ����, ����, ����), respectively.

1.1 Model grid

The model domain is configured as a channel with periodic north-south boundary

conditions and solid walls along the eastern and western boundaries, see figure

1. The grid is Cartesian with a horizontal resolution of 2.4 kilometers. We use the

f -plane approximation with constant Coriolis parameter equivalent to 65◦ north.

The domain size is 100x120 interior grid points (easterly/northerly directions), and

we use 35 vertical levels.

1W. G. Zhang, pers. comm.
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Figure 1: Model domain and topography. The variable ���� is shown, i.e. before

the internal smoothing that is applied in ROMS. Depth is in meters.

The main topographic features are (i) a shelf along the eastern boundary, with av-

erage depth of 200 meters, and width of approximately 70 kilometers, (ii) a sharp

shelf break with a hyperbolic tangent profile (maximum slope is approximately

0.1), and (iii) a deep ocean floor width average depth of approximately 1800 me-

ters towards the western boundary. In order to trigger instabilities, random noise

is added to the depth with maximum amplitudes of 50 meters.

1.2 Initialisation and forcing of the model

The initial conditions are uniform with T = 10, S = 35, ζ = 0 and zero velocities.

The model is run applying constant heat fluxes over a period of 150 days. The aim

is to produce unstable baroclinic currents that will be guided by topography. To

accomodate this, we apply a net bottom heat flux into the ocean on the shelf, and

a net surface heat flux out of the ocean over the deep ocean Isachsen [2011].

These fluxes are balanced such that the net heat flux into the ocean is zero.

Since the deep ocean is wider than the shelf, the surface fluxes are smaller than

the bottom fluxes (approximately 160 Wm−2 and 440 Wm−2, respectively). The

momentum and net freshwater fluxes are both set to zero.

The water heated over the shelf bottom is rapidly mixed upwards through the en-

tire water column resulting in a sharp temperature front near the shelf break (see

figs. 2 and 3). Due to geostrophic adjustment a northward flowing, topograph-

ically controlled slope current develops. This current is baroclinically unstable

2



Figure 2: Sea surface temperature at the end of the spinup period. The values

are given in degrees Celsius.

and heat exchange with the deep water region is facilitated by macro turbulence

(ocean eddies).

Figure 3: A vertical east-west section in the middle of the basin showing the

temperature distribution at the end of the spinup period. Note the sharp front over

the shelf break. Values are given in degrees Celcius.
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1.3 Sensitivity tests

The domain is periodic so that the water masses flowing out of the domain at

the northern boundary reappear at the southern boundary. It is of interest for

the assimilation experiments to investigate how quickly the various dynamical

features propagate through the domain. As shown in fig. 4, the mean northward

surface velocity has a maximum of about 1 m/s over the slope, which means

that a drifting object can potentially be advected through the domain in about

three days. The flow is also characterised by baroclinic and barotropic waves

and eddies, however, with propagation speeds that are generally very different

from the mean flow speeds. Figure 4 also shows a region of special interest:

it is here that observations are made, both hydrographic and HF-radar currents.

The statistical analysis used to assess the performance of the data assimilation

system is restricted to this region (see Sec. 3).

To investigate how upstream conditions influence the dynamics in this region we

perform an adjoint sensitivity studyMoore et al. [2009], Zhang et al. [2009]. Such

studies can reveal what variables influence a specific quantity of interest in a

specific region and at a specific time. We focus on the advection of water masses

and investigate the sensitivity of the surface velocity variance to temperature,

choosing a short section over the slope in the middle of the domain. Figures

5 and 6 show how the influence reaches increasingly further upstream as we

move backwards in time, but that the main upstream influence is restricted to the

southern part of the domain. Based on these results we conclude that an upper

limit of three days for the assimilation experiments is adequate.
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Figure 4: The mean northward surface velocity during a three days simulation.

The region enclosed by the black line is used for assessing the performance of

the data assimilation system, as further discussed in Sec. 3.

Figure 5: The panels show the sensitivity of surface velocity variance in the short

section denoted by the black line. The sensitivity to temperature at intermediate

depths (level 18) is shown. Put more simply, the panels indicate where the water

masses come from that will cause changes in the surface velocities (at the sec-

tion) at time T = 0, in this case showing where these water masses are 12 and

24 hours ahead of T = 0, respectively.
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Figure 6: Same as fig. 5, but for T = −48 h and T = −72 h, respectively.

2 Configuration of the data assimilation system

ROMS contains a four dimensional variational data assimilation system (ROMS-

4DVAR) that accepts observations in any of the dependent variables Moore et al.

[2011]. As yet the 4DVAR system does not allow assimilation of radial currents

from HF radars. In our experiments, data assimilation is only considered for inte-

rior model points and no adjustment of the surface/bottom fluxes or boundary con-

ditions are made. We use incremental, strong-constraint 4DVAR. ROMS-4DVAR

also has options for multivariate background error correlations (e.g. temperature

observations can directly influence sea surface height), but since the underly-

ing theories are dubious for high latitudes and eddy resolving models, we do not

make use of any such options here. The estimates of background (model) errors

are taken from day 120 to 150 of the spinup period, using the standard deviation

of each variable in each grid point. The vertical error correlation lengths for all

variables is set to 30 m.

The tuning of ROMS-4DVAR focuses on three components of the assimilation

system:

• Horizontal background error correlation scales: These control the in-

fluence radius of a single observation, i.e. a small scale implies that an

observation will only have direct influence in a small area centered around

the observation. The actual influence of the observation is weighted by the

estimates of background (model) and observation errors.

• Inner/outer loops: Central to 4DVAR is the forward and backward time

integration using linearised model dynamics. A pair of forward (tangent lin-
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ear) and backward (adjoint) model integrations is called an inner loop. If

the problem is strongly nonlinear, a temporary solution can be used to re-

linearise the tangent linear and adjoint models, which is referred to as an

outer loop.

• Assimilation window length: The 4DVAR system relies on the linearised

models being reasonably accurate during the assimilation period. If the

problem is strongly nonlinear, shorter assimilation windows may have to be

used.

2.1 Synthetic observations

Synthetic observations are taken from a separate model simulation that has been

forced with time varying momentum and heat fluxes, see fig. 7. An example of

the difference between the simulation used for synthetic observations and the

simulation that forms the basis for 4DVAR is shown in fig. 8.

An observation error is assigned to each synthetic observation, but no random or

systematic errors are added to the observation values. The observation errors are

used in the assimilation system to give the observations proper weight compared

to the background (model) values.

The observation locations are shown in fig. 9. Hydrographic observations, e.g. such

as taken from a research vessel with a CTD, are simulated by taking a single

vertical profile of temperature every hour, zigzagging southwards making four

sections across the slope. A total of 64 temperature profiles are processed and

each individual observation is assigned a constant error of 0.05 K. Two simulated

HF-radars are used to provide hourly total current vectors in 61 locations. More

details about these synthetic observations are presented in the following section.
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Figure 7: After the spin-up period we have a restart field “A”. A separate simu-

lation (1) is then forced with time varying heat and momentum fluxes to produce

a different restart field “B”. The restart field “B” is then used for a simulation (2)

from which synthetic observations are taken, and which represent the “true” state

of the ocean. The original restart field “A” is used as a starting point for simulation

(3) with ROMS-4DVAR to assimilate the synthetic observations. Ideally, the entire

simulation (3) should become closer to simulation (2) as a result of assimilating

the synthetic observations.
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Figure 8: Example of the difference between the restart fields “A” and “B”, here

showing sea surface height.
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Figure 9: The black dots show where temperature profiles are taken. One full

vertical profile is taken every hour, and four sections are made, starting from the

north. The red dots are the intersection points of the two simulated HF-radars.

Hourly observations of total current vectors are produced for the assimilation. The

water depth is indicated in gray.

2.1.1 Simulated HF-radar observations

We simulate two HF-radar stations positioned a distance of ya = 118 km and yb

= 166 km from the southern boundary. We assume that the radars retrieve radial

currents at an effective depth De = 2 m, with an azimuthal resolution of ∆θ =

11.25 degrees. Furthermore we assume that the maximum range of the radars is

R = 80 km, and that the observation error σR associated with the radial currents

is a linear function of radial distance r. The azimuthal resolution determines the

number of beam directions, and, combined with the maximum range R, also the

number of intersecting beams from which we can estimate total current vectors

(see Fig. 10).

To obtain the synthetic HF-radar observation errors we have first used standard

vector algebra to determine the positions were the beams intersect and then cal-

culated the errors in the easterly and northerly directions (σ
(E)
GDOP

, σ
(N)
GDOP

) due

geometric dilution of precisionChapman et al. [1997], see fig. 11.

The total errors are then assumed given by

(σ
(E)
tot , σ

(N)
tot ) =

�

σ
(E)
GDOP

σR|v
(E)|, σ

(N)
GDOP

σR|v
(N)|

�

(1)

where v is the observed speed. The relative observation errors, i.e. the product

σGDOPσR, are shown in fig. 12. The errors in a real HF-radar system are more
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Figure 10: The left panel shows the radar beams and the intersection points

where total current vectors are obtained. The right panel shows the observation

error σR that is attributed to the distance from the HF-radar stations.

Figure 11: The left panel shows the GDOP error in the northerly component of

the total current vector, while the right panel shows the GDOP error in the easterly

component.
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Figure 12: The panels show the total relative error (σGDOPσR) in the northerly and

easterly directions, respectively.

complex than those given by (1), but a comparison with data from the CODAR

system deployed near Fedje demonstrate that the values obtained from (1) are

reasonable (see figs. 13 and 14). The data from the Fedje system are from the

period Feb. 1 to Apr. 30, 2009. HF-radar observations from the Finnmark system

collected late autumn 2012 possess similar error statistics (not shown here).

Finally, in order to cover the region with energetic currents near the slope, the

entire simulated HF-radar system is translated approximately 40 km westwards

from the eastern boundary (compare figs. 9 and 10).
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Figure 13: The figure shows the average relative error, i.e. error divided by velocity

value, for the easterly component of the total current vector. The data are taken

from the Fedje site, using all observations made in the period Feb. 1 to Apr. 30,

2009. The stations are marked by stars.

Figure 14: The figure shows the average relative error, i.e. error divided by velocity

value, for the northerly component of the total current vector. The data are taken

from the Fedje site, using all observations made in the period Feb. 1 to Apr. 30,

2009. The stations are marked by stars.
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3 Results

We only consider the velocities (u, v) and the temperature T in the evaluation

of the data assimilation system. Furthermore, we only consider a limited region

similar to the HF-radar coverage area (see fig. 4), and also restrict the analysis to

the two uppermost vertical levels of the model.

The procedure is straightforward: each numerical experiment results in an anal-

ysis, i.e. a solution of ROMS-4DVAR. This solution is compared with the “truth”

as represented by the simulation that provides the synthetic observations. Aver-

age bias and standard deviation for each of the variables (u, v, T ) are calculated

based on all grid points and all output times in the region of interest.

Due to the way the experiments are designed, the (u, v, T ) variables have little

bias compared to what we would expect from a realistic model, and the standard

deviation is used when deciding what options that yield the best results.

3.1 Numerical experiments

A total of 15 different numerical experiments are made as outlined in Table 1.

3.2 Error correlation scales

Figures 15-17 show the results from the experiments with different horizontal er-

ror correlation scales. It is clear that the smaller scale (5 km) yields the best

results. One likely explanation is that observation values are erroneously dis-

tributed across sharp gradients when the larger correlation scales are used.
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Exp. no. Corr. scale Obs. types BG. error Inner/outer Assim. window

0 N/A N/A N/A N/A N/A

1 5 km All Normal 5/4 72 h

2 10 km All Normal 5/4 72 h

3 20 km All Normal 5/4 72 h

4 Best All Normal 20/1 72 h

5 Best All Normal 10/2 72 h

6 Best All Normal 4/5 72 h

7 Best All Normal 6/5 72 h

8 Best HF Normal Best 72 h

9 Best Temperature Normal Best 72 h

10 Best All Inflated Best 72 h

11 Best HF Inflated Best 72 h

12 Best Temperature Inflated Best 72 h

13 Best All Normal 6/5 24 h

14 Best All Normal 10/2 6 h

15 Best All Normal 6/5 6 h

Table 1: The numerical experiments used for evaluation of the data assimila-

tion system. From left to right the columns denote horizontal error correlation

scales; observation types; background (model) error estimates; number of inner

and outer loops; length of assimilation window. Exp. 0 is a control run without

data assimilation.
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Figure 15: Bias and standard deviation of u for the experiments with different

horizontal error correlation scales. Exp 0: no assimilation; Exp 1: 5 km; Exp 2:

10 km; Exp 3: 20 km.
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Figure 16: Bias and standard deviation of v for the experiments with different

horizontal error correlation scales. Exp 0: no assimilation; Exp 1: 5 km; Exp 2:

10 km; Exp 3: 20 km.
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Figure 17: Bias and standard deviation of T for the experiments with different

horizontal error correlation scales. Exp 0: no assimilation; Exp 1: 5 km; Exp 2:

10 km; Exp 3: 20 km.
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Figure 18: The convergence of the normalised cost function minimum is shown

for experiments 1 and 4-7.

3.3 Inner and outer loops

The next set of experiments aim to determine the number of inner and outer

loops that should be used. In 4DVAR the analysis is obtained by minimising a

cost function, and the convergence of the cost function minimum, Jmin, is shown

in fig. 18. It appears that using outer loops helps reducing the value of Jmin,

which indicates that a more optimal solution is found. In the last (and best) of

these experiments, with 6 inner and 5 outer loops, the value of the normalised

cost function minimum comes very close to 1, which is an indication that our

error statistics are properly specifiedWeaver et al. [2002]. It should be noted that

increasing the number of outer loops at the expense of reducing the number of

inner loops is not necessarily the best option, even though the final analysis will

be slightly better. The representation of e.g. the gain matrix in ROMS-4DVAR is

based on the so-called Lanczos vectorsMoore et al. [2011] and each inner loop

produces one such vector. The Lanczos vectors are e.g. useful for a posteriori

analysis of system performance.

3.4 Impact of different observation sets

The next set of experiments is made to evaluate the impact of the different ob-

servation types and the results are shown in figs. 19-21. It is interesting to note

that the errors in both u and v are smallest when only HF-radar observations are
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Figure 19: Bias and standard deviation of u for the experiments with different

observation sets. Exp 0: no assimilation; Exp 1: both temp./HF; Exp 8: HF only;

Exp 9: temp. only.

assimilated. The error in T is also smaller when only HF-radar observations are

assimilated compared to when only temperature profiles are assimilated. One

likely explanation is that the HF-radar observations improves the positioning of

the eddies, and as these carry water masses the temperature fields also improve.
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Figure 20: Bias and standard deviation of v for the experiments with different

observation sets. Exp 0: no assimilation; Exp 1: both temp./HF; Exp 8: HF only;

Exp 9: temp. only.
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Figure 21: Bias and standard deviation of T for the experiments with different

observation sets. Exp 0: no assimilation; Exp 1: both temp./HF; Exp 8: HF only;

Exp 9: temp. only.

19



3.5 Impact of inflated background error

We also made several experiments to investigate how sensitive the solution is to

the specification of the background error. In these experiments we used inflated

background error variances so that the normal values were increased by a factor

3. Figures 22-24 show the difference between using inflated and normal back-

ground error statistics. The overall impact is small, in fact it is only when both

observation sets are used that any improvement can be seen.
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Figure 22: Bias and standard deviation of u for the experiments with inflated

background error (red solid line: normal errors, black dashed line: inflated errors).

Exp 0: no assimilation; Exp 1/10: both temp./HF; Exp 8/11: HF only; Exp 9/12:

temp. only.
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Figure 23: Bias and standard deviation of v for the experiments with inflated

background error (red solid line: normal errors, black dashed line: inflated errors).

Exp 0: no assimilation; Exp 1/10: both temp./HF; Exp 8/11: HF only; Exp 9/12:

temp. only.
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Figure 24: Bias and standard deviation of T for the experiments with inflated

background error (red solid line: normal errors, black dashed line: inflated errors).

Exp 0: no assimilation; Exp 1/10: both temp./HF; Exp 8/11: HF only; Exp 9/12:

temp. only.
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3.6 Length of assimilation window

The last experiments are made to investigate different assimilation window lengths.

The results are shown in figs. 25-27. Reducing the window length from 72 h to 24

h yields a slight improvement, but a further reduction to 6 h is not beneficial.
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Figure 25: Bias and standard deviation of u for the experiments with different

assimilation window lengths. Exp 0: no assimilation; Exp 7: 72 h; Exp 13: 24 h;

Exp 15: 6 h.
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Figure 26: Bias and standard deviation of v for the experiments with different

assimilation window lengths. Exp 0: no assimilation; Exp 7: 72 h; Exp 13: 24 h;

Exp 15: 6 h.
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Figure 27: Bias and standard deviation of T for the experiments with different

assimilation window lengths. Exp 0: no assimilation; Exp 7: 72 h; Exp 13: 24 h;

Exp 15: 6 h.
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4 Concluding remarks

A total of 15 different numerical experiments with ROMS-4DVAR has been made.

The main aim of these experiments has been to test the use of HF-radar obser-

vations in a model setup that is similar to the operational ocean model systems

at the Norwegian Meteorological Institute, and to explore the various options of

the ROMS-4DVAR system to aid the implementation of a realistic model with data

assimilation.

Both synthetic HF-radar currents and synthetic hydrographic profiles have been

assimilated. Both data sets yield an improvement, and the data assimilation sys-

tem works well in combination with the general configuration of the ocean model

(i.e., vertical coordinates, mixing schemes, etc.).

For a realistic model it is recommended that (i) small horizontal error correlation

scales should be used, (ii) outer loops should be used, and (iii) short assimilation

windows should be used. It is also recommended that the nonlinear model should

produce at least hourly output for tangent linear and adjoint models to ensure that

linearised solutions do not deviate significantly from the nonlinear solutions.

The test case considered in this study focuses on a specific mode of ocean circu-

lation and the length of the experiment is short. The quantitative results obtained

here are therefore not necessarily representative of the results that will be ob-

tained when using realistic ocean model setups. Real flows are more complex

and e.g. storm surge and tides are not considered here. Nevertheless, the test

case represents a specific type of ocean dynamics that is very challenging to

model, and the fact that the data assimilation system yields an improvement is

encouraging.
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