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Summary

The quality of the humidity analysis in Numerical Weather Prediction (NWP)

models is crucial for the correct prediction of local weather and severe weather

events, especially in short-range forecasts. The main goal of the “Assimilation of

binary cloud cover” (ABC) project is to improve the humidity analysis by develop-

ing and validating a fundamentally new method for exploiting cloud cover satellite

observations in current variational data assimilation systems. Cloud data have a

binary nature (“cloud” versus “no-cloud”) and their assimilation in variational data

assimilation systems is not consistent with the requirements of variational data as-

similation theory, i.e. continuous derivatives with respect to state parameters (no

switching points). The strategy investigated in this report for the use of cloud ob-

servations in existing variational data assimilation systems consists of considering

the cloud cover observations as binary occurrences, and applying Bayesian decision

theory to compute optimal humidity pseudo-observations suitable for direct use in

variational data assimilation systems. Such an approach can also in principle be

extended to other binary products measuring on/off processes as well (e.g. “rain”

versus “no-rain”, or even “conceptual” observations like ’cumulus clouds’ vs. ’no-

cumulus-clouds’). The pseudo-observation strategy is tested on the CloudSat Cloud

Profiling Radar (CPR) which is a 94-GHz radar devoted to microphysical studies.

A “threshold algorithm” able to retrieve cloud profiles from the radar return power

has been implemented and tuned, producing cross-section of cloud fractions avail-

able to to on-duty forecasters at met.no. Using a large-scale condensation scheme

as observation operator and assimilating pseudo-observations only in case of non-

zero observation minus guess difference in cloud-fraction space has permitted to

produce humidity pseudo-observations, which have been subsequently assimilated

in ALADIN/HARMONIE 3D-Var. The results of the assimilation experiments are

positive, especially in terms of improved of verification skill scores for dynamical pa-

rameters (wind, geopotential). The impact of the pseudo-observations is significant

in data-sparse area, like over sea where the amount of in-situ humidity observations

is very small. It is shown that the sensitivity of the analysis with respect to CloudSat

data is comparable with radiosonde measurements of humidity.
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CHAPTER 1 THEORY FOR ASSIMILATING BINARY OBSERVATIONS

Chapter 1

Theory for Assimilating Binary Observations

Summary

The purpose of this Chapter is to study the statistical formalism used in data

assimilation, and expand this assimilation theory to include binary observations.

One dimensional simulated data sets are used for the verification of the theory. In

these data sets we know the true state of the atmosphere, Xt, the first guess Xb and

the scalar observation Y . The expression for P (Xt | Xb∩Y ) is for instance developed

and the derivation is verified against the simulated data set. The theory is applied to

a simple one-dimensional binary observation condition, and subsequently extended

to more realistic binary cloud observations. An objective quality control procedure

based on Bayesian risk function is also investigated.

This Chapter is based on the Met.no Research Note 2006/11 (see Appendix B:

Storto A. and Tveter F.T., 2006).

1.1 Introduction

This Chapter reports the status of the “Assimilation of Binary Cloud Cover”

(ABC) project after almost one year from the launching. This project is carried

out at the Norwegian Meteorological Institute and funded by EUMETSAT through

the fellowships program. A pilot study that investigates the benefits of assimilating

binary cloud cover data can be found in Tveter (2004).

In data assimilation theory, a first guess of the atmospheric state is combined

with observations to estimate a new and improved atmospheric state, referred to as

the “analysis”. The data assimilation problem can be divided into two parts: first to

find the probability density distribution for the true state (Xt), given our observation

(Y ) and first guess (Xb), P (Xt | Xb ∩ Y ), and then to estimate the state of the

atmosphere Xa that has the lowest expected “Bayesian loss”, l(Xt, Xa), according

to this distribution. One commonly used loss function is l(Xt, Xa) = (Xt − Xa)
2,

which will give the analysis that scores best in RMSE verification methods. The

1
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optimal analysis is then the expected state of the true atmosphere.

In this Chapter we focus on the first part of the data assimilation problem,

namely the formulation of P (Xt | Xb ∩ Y ). In order to better understand the for-

malism that will be used to solve the binary observations assimilation problem, the

formalism is first applied to the classical problem where observations with Normal

error distributions are assimilated. A simple binary problem is studied afterwards.

A simulated data set is used to verify the analytical probabilities expressions. At-

tempts are also made to derive theory suitable for use in a 3D-Var environment

where the software is assuming that the data has Normal error distributions.

In real life, complex variables as cloud cover depend on many control variables,

and the choice of the best “forward operator” to use is a pivotal point. The theory we

developed is therefore applied to a more realistic case, again one-dimensional, where

the binary condition (cloud or no-cloud) depends on two state variables, namely the

temperature and the specific humidity. This bi-variate problem is studied using the

same assumptions for the dataset, and introducing a simple relation (Slingo, 1987)

between cloud cover and relative humidity, with the aim to provide useful infor-

mation for the implementation of the theory in an operational framework. In this

sense, Bayes decision theory supplies the mathematical instruments to perform an

objective quality control, in order to remove from the assimilation the observations

which are difficult to use, due to the uncertainty in the forward model.

In section 2 the formalism of the data assimilation is introduced and applied

to a simulated dataset; in section 3 a simple binary condition is imposed, and the

effects on the analysis are evaluated. In section 4 we take into account a more

realistic forward model and study quality control issues.

1.2 Introductory study

The starting point of this study will be the construction of a one dimensional

data set suitable for verifying the theoretical achievements. We will focus after-

wards on the derivation of the state of the atmosphere with the biggest probability,

applying the Mean Squared Error criterion for the verification.

1.2.1 Simulating a data set

The simulated data set consists of a series of known “true” states, observations

and previous forecasts (first guess) generated by a random generator1. The true state

1To be precise, in the following simulations Xt is assumed to be the temperature, varying from
250K to 282K, and Yr, Xb, Y have variance set to 1K2, 10K2 and 5K2 respectively; Y still refers
to the temperature, so the observation operator is the identity operator. The given values for the
observation and for the first guess are set to 264K and 270K. These values are also used in plotting
the theoretical Normal distributions.

2
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is assumed to be uniform along a prefixed range, while the series of observations and

background have Normal, unbiased and independent random errors with respect to

the true state.

Let us suppose that the true state Xt of the variable has a uniform distribution

(Fig. 1.1) within a fixed interval (a, b) modelled by

Xt ∼ U (a, b) . (1.1)

The errors of the observation and the background are assumed unbiased and Normal,

Yr − Xt ∼ N
(
0, σ2

r

)

Y − Xt ∼ N
(
0, σ2

o

)

Xb − Xt ∼ N
(
0, σ2

b

)

where σr is the standard deviation of the reference observations, σo is the standard

deviation of the scalar observations and σb is the standard deviation of the model

first guess. The distribution of the observation and first guess given the true state

of the atmosphere follows therefore a Normal distribution according to

Yr | Xt ∼ N
(
Xt, σ2

r

)

Y | Xt ∼ N
(
Xt, σ2

o

)

Xb | Xt ∼ N
(
Xt, σ2

b

)
. (1.2)

The observation value is found by adding a random number generated by a Normal
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Figure 1.1: Probability distribution of Xt. The histogram refers to the simulated data
set, while the grey line to Eq. (1.1).

distribution (with the standard deviation σo and variance σ2
o), to the true state

3
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value Xt. The same procedure has been used to generate the background term Xb

with the standard deviation σb, (σb > σy). A “very accurate” observation Yr, (i.e. a

reference observation), was also generated in the same manner using the standard

deviation σr (σr < σy).

1.2.2 Total distributions

It is relatively easy to find the total probability density distributions of Y ,

Xb and Yr from the simulated data set. When we want to model these probabil-

ity distributions based on the theoretical distributions functions, we start with the

probability density functions (PDFs) in Eq. (1.2), giving the total probability dis-

tributions of Y , Xb and Yr as the convolution integrals, along the interval (a, b), of

the probability densities in Eq. (1.2), e.g. the probability of Xb is

P (Xb = x) =

+∞∫

−∞

P (Xb = x | Xt = u)P (Xt = u) du (1.3)

=
1

(b − a)
√

2πσ2
b

b∫

a

e
−

(u−x)2

2σ2
b du (1.4)

where u is the auxiliary integration variable. Eq. (1.4), after the subdivision of the

interval (a, b) in n intervals δ long, becomes in discrete form

P (Xb = x) = lim
δ→0


 1

δ (b − a)

(b−a)/δ∑

i=1

φ

(
x −

[
a + δ(i − 1

2
)
]

σb

)
 . (1.5)

Figures (1.2), (1.3) and (1.4) show the probability distributions estimated from

the simulated data set along with the corresponding distributions calculated from

the model. We observe that the data set distribution and the analytical models

distributions match closely. We also see that the smaller the variance the closesr

to the uniform distribution the PDFs are for Yr, Y and Xb. Thus (see (Fig. 1.2))

it is possible to consider P (Xb = x) uniform between (a + kσb) and (b − kσb) if

Φ (x < −k) is negligible, for instance with k = 3, where Φ (z) is the cumulative

density function (CDF) of the Standard Normal distribution, namely the P (Z < z)

if Z ∼ N (0, 1). So, the Yr PDF (accurate reference observation) is very similar

to the Xt uniform distribution, where the Xb PDF moves more away from this

distribution. This property will be of basic importance later on, when we will use

the Normal assumption for describing the distribution of Xt given the background

information.

4
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Figure 1.2: Probability distribution of Xb. The histogram refers to the simulated data
set, while the grey line refers to Eq. (1.5).
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Figure 1.3: Probability distribution of Y . The histogram refers to the simulated data
set, while the grey line refers to Eq. (1.5).

1.2.3 Derivation of P (Xt | Y ∩ Xb)

Now we study the distribution of P (Xt | Y ∩ Xb), which is the goal of the first

part of the data assimilation problem. If we assume independence between the

observation error and the background error, i.e.

P (Y ∩ Xb | Xt) = P (Y | Xt) P (Xb | Xt) . (1.6)

5
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Figure 1.4: Probability distribution of Yr. The histogram refers to the simulated data
set, while the grey line refers to Eq. (1.5).

we may write

P (Y | Xb ∩ Xt) =
P (Y ∩ Xb ∩ Xt)

P (Xb ∩ Xt)

=
P (Y ∩ Xb | Xt) P (Xt)

P (Xb | Xt)P (Xt)

=
P (Y | Xt) P (Xb | Xt)

P (Xb | Xt)

= P (Y | Xt) .

Following a Bayesian analysis, and using the equation above we have

P (Xt | Y ∩ Xb) =
P (Xt ∩ Y ∩ Xb)

P (Y ∩ Xb)
(1.7)

=
P (Y | Xb ∩ Xt) P (Xt ∩ Xb)

P (Y ∩ Xb)
(1.8)

=
P (Y | Xt) P (Xt ∩ Xb)

P (Y ∩ Xb)
(1.9)

=
P (Y | Xt) P (Xt | Xb)

P (Y | Xb)
(1.10)

6
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where we may write

P (Y | Xb) =

+∞∫

−∞

P (Y | Xt)P (Xt | Xb) dXt

=

+∞∫

−∞

P (Y | Xt)
P (Xb | Xt) P (Xt)

P (Xb)
dXt
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Figure 1.5: The thick line reproduces P (Xt | Y ∩ Xb) as computed from the data set,
while the thin line is the analytical solution of Eq. (1.11). The given values for Xb and Y
are set to 270K and 264K respectively.

Figure (1.5) shows the probability distribution of the left hand side (LHS) of

Eq. (1.10) estimated from the simulated data set and the right hand side (RHS) of

Eq. (1.10) calculated analytically. To calculate the analytical distribution we must

express Eq. (1.10) in terms of the theoretical distributions in Eq. (1.2). Bayes’ rule

gives,
P (Y | Xt) P (Xt | Xb)

P (Y | Xb)
=

P (Y | Xt) P (Xb | Xt)P (Xt)

P (Y | Xb)P (Xb)
. (1.11)

7
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The classical approach to the solution of P (Xt | Y ∩ Xb) is given by

P (Xt | Y ∩ Xb) =
P (Xt ∩ Y ∩ Xb)

P (Y ∩ Xb)
(1.12)

=
P (Y ∩ Xb | Xt) P (Xt)

P (Y ∩ Xb)
(1.13)

=
P (Y | Xt) P (Xb | Xt)P (Xt)

P (Y ∩ Xb)
(1.14)

=
P (Y ∩ Xt)P (Xb | Xt)

P (Y ∩ Xb)
(1.15)

=
P (Xt | Y ) P (Y )P (Xb | Xt)

P (Xb | Y )P (Y )
(1.16)

=
P (Xt | Y ) P (Xb | Xt)

P (Xb | Y )
. (1.17)

Note how Xb and Y have switched places in Eq. (1.17) compared to Eq. (1.10).

Equation (1.10) is more suitable when observations have strong non-linear re-

lations with the model variables. In the case of binary cloud-cover observations

(“cloud” or “no-cloud”), is not possible to compute Xt from the observation Y

(model space) since Xt can not be unequivocally found from Y , because many com-

binations of the true state can cause the same value for the observation. Note

that the binary cloud cover observation operator is usually defined as P (Y | Xt)

(observations space).

Most of the methods currently used for estimating the background errors

(consider for instance the Lönnberg-Hollingsworth and derived methods, the NMC

method and the Ensemble-based methods) model the error evolution assuming to

know the true state of atmosphere. Therefore, they retrieve first guess (forecast)

error statistics suitable for use in the classical Eq. (1.17), and refer to P (Xb | Xt) in-

stead of P (Xt | Xb). However, the expressions can in principle be related by Bayes’

rule,

P (Xb | Xt) = P (Xt | Xb)
P (Xb)

P (Xt)
(1.18)

and it is usually valid to assume that the first guess error is relatively small so that

P (Xb) ≃ P (Xt), which gives P (Xb | Xt) ≃ P (Xt | Xb) although we will use this

approximation only in the next section.

In Figures (1.6) to (1.11), P (Xt | Y ∩ Xb) and the RHS of the equations (1.12),

(1.13), (1.14), (1.15) and (1.17) are shown as PDFs in the simulated data set. The

grey line in all the figures is the analytical model for P (Xt | Y ∩ Xb) based on

Eq. (1.11). We observe that all the PDFs correspond to each other.

8
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Figure 1.6: P (Xt | Y ∩ Xb) as computed from the data set (thick line) and analytical
solution of based on Eq. (1.11) (thin line). The given values for Xb and Y are set to 270K
and 264K respectively.
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Figure 1.7: P (Xt ∩ Y ∩ Xb) /P (Y ∩ Xb) as computed from the data set (thick line) and
analytical solution of based on Eq. (1.11) (thin line). The given values for Xb and Y are
set to 270K and 264K respectively.

1.2.4 Normal approximations

In classical data assimilation theory, it is assumed that all the involved distri-

butions are Normal. This makes the problem much easier to solve. As an exercise

here, we will find the appropriate Normal approximations to our simulated data set,

and study where these approximations are valid.

Focusing on the distributions P (Xt | Y ) and P (Xt | Xb), under the hypothesis

that Y and Xb lie far enough from the borders of the interval (a, b) we can consider

P (Y ) and P (Xb) constants and about equal to P (Xt). Applying the Bayes’ rule

9
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Figure 1.8: P (Y ∩ Xb | Xt)P (Xt) /P (Y ∩ Xb) as computed from the data set (thick
line) and analytical solution of based on Eq. (1.11) (thin line). The given values for Xb

and Y are set to 270K and 264K respectively.
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Figure 1.9: P (Y | Xt) P (Xb | Xt) P (Xt) /P (Y ∩ Xb) as computed from the data set
(thick line) and analytical solution of based on Eq. (1.11) (thin line). The given values for
Xb and Y are set to 270K and 264K respectively.

and referring to Eq. (1.2), they become

P (Xt | Y ) =
P (Y | Xt)P (Xt)

P (Y )
≈ P (Y | Xt) = N

(
0, σ2

o

)

P (Xt | Xb) =
P (Xb | Xt) P (Xt)

P (Xb)
≈ P (Xb | Xt) = N

(
0, σ2

b

)
. (1.19)

The curve of P (Xt | Y ) is identical to P (Y | Xt) (see Fig. 1.12). Substituting this

expression into Eq. (1.10) and considering that for Eq. (1.2) and Eq. (1.19) we have

10
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Figure 1.10: P (Y ∩ Xt) P (Xb | Xt) /P (Y ∩ Xb) as computed from the data set (thick
line) and analytical solution of based on Eq. (1.11) (thin line). The given values for Xb

and Y are set to 270K and 264K respectively.
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Figure 1.11: P (Xt | Y )P (Xb | Xt) /P (Xb | Y ) as computed from the data set (thick
line) and analytical solution of based on Eq. (1.11) (thin line). The given values for Xb

and Y are set to 270K and 264K respectively.

P (Y | Xb) =

+∞∫

−∞

[P (Y | Xb ∩ Xt) P (Xb | Xt)] dx

=

+∞∫

−∞

[P (Y | Xt) P (Xb | Xt)] dx (1.20)

11
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Figure 1.12: Comparison between P (Xt | Y ) (histogram) as obtained from the data set,
and analytical curve of P (Y | Xt) (grey line). The given value for Y is set to 264K.

follows that

P (Xt | Y ∩ Xb) =
(2πσoσb)

−1e
−

(Xt−Y )2

σ2
o · e

−
(Xt−Xb)2

σ2
b

+∞∫
−∞

(2πσoσb)−1e
− (x−Y )2

σ2
o · e

−
(x−Xb)2

σ2
b dx

(1.21)

and finally we obtain that

(Xt | Y ∩ Xb) ∼ N

(
σ2

bY + σ2
oXb

σ2
b + σ2

o

,
σ2

bσ
2
o

σ2
b + σ2

o

)
(1.22)

which is the approximate analytical solution for the problem.

The interested reader can verify that the two approaches represented by

Eq. (1.17) and Eq. (1.10) also agree when the approximations of Eq. (1.19) are

applied.

1.2.5 Sampling Interval

For the case of the simulated data set, the PDFs are computed by count-

ing the occurrences in intervals. So, the constraints that appear in conditional

probabilities are, in practise, considered in term of intervals δ, for instance

P (Xt | y − δ/2 < Y < y + δ/2 ∩ x0 − δ/2 < Xb < x0 + δ/2) where y0 and x0 are

specific values for the observation and first guess. The choice of the interval width in-

fluences the searched PDF: evidently, the bigger the interval, the more the resulting

12
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PDF converges towards the unconditioned probability, for instance

lim
δ→∞

P (Xt | y0 − δ/2 < Y < y0 + δ/2 ∩ x0 − δ/2 < Xb < x0 + δ/2) → P (Xt) .

Without loss of generality, we now consider the observation Y = y0. The

rigorous formulation of the PDF of (Xt | Y ) is P (Xt | y0 − δ/2 ≤ Y ≤ y0 + δ/2)

rather than P (Xt | Y = y0), where δ is exactly the global width of the interval.

To take into account the influence of the width of δ, we can divide δ in n = δ/∆l

smaller intervals, each a ∆l long, and the probability function becomes

P (Xt | y0 − δ/2 ≤ Y ≤ y0 + δ/2) =
P (y0 − δ/2 ≤ Y ≤ y0 + δ/2 | Xt)P (Xt)

P (y0 − δ/2 ≤ Y ≤ y0 + δ/2)

(1.23)

=

y0+δ/2∫

y0−δ/2

P (Y = v | Xt)
P (Xt)

P (Y = v)
dv (1.24)

≈
n∑

i=0

P (Y = y0 − δ(i∆l − 1
2
) | Xt)P (Xt)

P (Y = y0 − δ(i∆l − 1
2
))

(1.25)

where v is the auxiliary integration variable.
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Figure 1.13: Histogram of the PDF of (Xt | Y ∩ Xb) from the data set and analytical
solution (Eq. 1.25) with δ/2 = 0.25. The given values for Xb = x0 and Y = y0 are set to
270K and 264K respectively.

The previous expression represents the convolution integral of the distribution

with mean y0 − δ(i∆l − 1
2
). We can notice that if δ increases E (Xt | Y ∩ Xb) gets

closer to – or included in – (v0 − δ/2, y0 + δ/2), since P (Xt | Y ) can be considered

uniform in a larger area of the interval (a, b). We also observe that the standard

deviation of P (Xt | Y ) increases.
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Figure 1.14: As in Figure (1.13), with δ/2 = 1.00.
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Figure 1.15: As in Figure (1.13), with δ/2 = 4.00.

Figures (1.13) to (1.18) just show P (Xt | Y ∩ Xb) when the interval δ increases.

Figure (1.19) shows how the standard deviation increases on the growing of δ, until

it gets constant to the value of the standard deviation of Xt. Moreover, if the

conditional probability of X depends on two variables Y and Xb Eq. (1.25) becomes

P (Xt | y0 − δ/2 ≤ Y ≤ y0 + δ/2 ∩ x0 − δ/2 ≤ Xb ≤ x0 + δ/2) =

14
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Figure 1.16: As in Figure (1.13), with δ/2 = 10.00.
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Figure 1.17: As in Figure (1.13), with δ/2 = 15.00

=

y0+δ/2∫

y0−δ/2

x0+δ/2∫

x0−δ/2

P (Y = v ∩ Xb = w | Xt)P (Xt)

P (Y = v ∩ Xb = w)
dv dw

≈

n∑

i=0

P
(
Y = y0 − δ(i∆l − 1

2
) ∩ Xb = x0 − δ(i∆l − 1

2
) | Xt

)
P (Xt)

P
(
Y = x0 − δ(i∆l − 1

2
) ∩ Xb = x0 − δ(i∆l − 1

2
)
) (1.26)

where v and w are the auxiliary integration variables, while y0 and x0 are the

given values for Y and Xb respectively.

Figure (1.20) shows the contour plot of the standard deviation for the two-

variable case, where the y-axes represents the δ used for the first guess and the x-

axes the corresponding δ for the observation. Again, the value to which the standard
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Figure 1.18: As in Figure (1.13), with δ/2 = 20.00.

0 5 10 15 20 25 30

0
2

4
6

8
10

Interval range

D
ev

ia
tio

n

Figure 1.19: Standard Deviation on the growing of the interval δ. As reference value
(dashed line), the standard deviation of Xt without conditional constraints is equal to
9.24.

deviation approaches is the unconditioned P (Xt). The standard deviation is slightly

changing if the interval for the observation increases with respect to the background.

The variable with the biggest variance (i.e. the first guess in this case) has the main

influence on the resulting probability.

1.2.6 Verification

To study the error of the analysis realistically, we consider the reference obser-

vations Yr, that are assumed unbiased, independent of the observation Y and the

first guess Xb, and with a small standard deviation with respect to the true state,
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Figure 1.20: Standard Deviation on the growing of the interval δ for both the observation
and the first guess.

Xt.

With the Mean Squared Error (MSE) verification penalty function in mind, we

define the penalty function J ′ for the analysis Xa according to

J ′ = E
[
(Yr − Xa)

2 | Y ∩ Xb

]
. (1.27)

The MSE verification method will favour the analysis which gives the lowest penalty

function J ′. Let us also define a similar penalty function with respect to the true

state instead of the reference observations,

J = E
[
(Xt − Xa)

2 | Y ∩ Xb

]
. (1.28)

In their analytical form we get

J =

+∞∫

−∞

(Yr − Xa)
2 P (Yr | Y ∩ Xb) dYr (1.29)

J ′ =

+∞∫

−∞

(Xt − Xa)
2 P (Xt | Y ∩ Xb) dXt. (1.30)
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We notice that Yr − Xt | Y ∩ Xb has a symmetric distribution around zero, so

that E[(Yr − Xt)(Xt − Xa) | Y ∩ Xb] = 0. We may write

J ′ = E
[
((Yr − Xt) + (Xt − Xa))

2 | Y ∩ Xb

]

= E
[
(Yr − Xt)

2 | Y ∩ Xb

]

+2E [(Yr − Xt)(Xt − Xa) | Y ∩ Xb]

+E
[
(Xt − Xa)

2
]

(1.31)

= σ2
r + E

[
(Xt − Xa)

2 | Y ∩ Xb

]

= σ2
r + J,

where we remember that σr is the reference observation error standard deviation.

We define the “optimal analysis”, the value of Xa = X̃a, for which J has minimum

value. We find from Eq. (1.29)

min
Xa

J ⇒
∂J

∂Xa
|fXa

= 0

− 2

∫
XtP (Yr | Y ∩ Xb) dXt

+ 2X̃a

∫
P (Yr | Y ∩ Xb) d Xt = 0 (1.32)

X̃a = E [Xt | Y ∩ Xb] . (1.33)

240 250 260 270 280 290 300

0
40

0
80

0
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00

 

Xa

J

Figure 1.21: J ′. The minimum is reached when Xa = X̃a

As we see, J and J ′ differ each other only for σ2
r , that is however independent

from the analysis itself. This means that an analysis which is optimal with respect to

the reference observation will also be optimal with respect to the true state. Figure

18
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(1.21) shows the behaviour of the J ′ function.

In the case of Normal distributions (Eq. 1.21) we see that an analysis that is

defined to give the maximum probability density, will also have the smallest MSE.

In fact, the denominator in Eq. (1.10) is then independent from Xt, so the maximum

for P (Xt | Y ∩ Xb) is obtained when the numerator is maximum

max
Xt

P (Xt | Y ∩ Xb) = max
Xt

[
(2πσoσb) exp

(
−

(Xt − Y )2

σ2
o

)
· exp

(
−

(Xt − Xb)
2

σ2
b

)]

= min
Xt

[
(Xt − Y )2

σ2
o

+
(Xt − Y )2

σ2
o

]
=

σ2
bY + σ2

oXb

σ2
b + σ2

o

which is equivalent to E (Xt | Y ∩ Xb) since it is the mean of the Normal distribution

of Eq. (1.22). In the common 3D-Var implementations, all the probability density

functions are assumed to be Normal and the cost function is defined so that it gives a

minimum for the maximum probability density. As we have seen above, the 3D-Var

approach will then yield the optimal MSE analysis.

1.3 Handling binary data

The concept of binary data can be introduced starting from the previous results.

An easy way to think of binary observations is to consider the expression given in

Eq. (1.24) infinitely increasing the upper limit of the integral. In other words, the

observation condition is true if it lies over a threshold and false if it lies below. Thus,

Eq. (1.24) becomes

P (Xt | Y ≥ y0) =
P (Y ≥ y0 | Xt)P (Xt)

P (Y ≥ y0 | Xt)

=

+∞∫

y0

P (Y = v | Xt)
P (Xt)

P (Y = v)
dv. (1.34)

Using the definitions given in Eq. (1.1) and Eq. (1.2) and the result of Eq. (1.19),

we obtain

P (Xt | Y ≥ y0) =
1√
2πσ2

o

+∞∫

y0

e
−

(Xt−v)2

2σ2
o dv. (1.35)

Such a PDF is the cumulative probability function for the Normal distribution with

mean in y0 and variance σ2
o . Figure 1.22 represents the simulated and theoretical

PDF for Eq. (1.35), when y0 is set to 264K. We observe that the probability

grows from 0 up to his maximum value from about 260 to 268K and then it holds

steady. This range becomes more narrow when the standard error of the observation

19



CHAPTER 1 THEORY FOR ASSIMILATING BINARY OBSERVATIONS

decreases.

Let’s consider the equation for P (XT | (Y > y0) ∩ Xb). Following the same

approach, we set Xb to a value x0. We obtain, from the last equation and the results

of Eq. (1.24) and Eq. (1.25),

P (Xt | (Y ≥ y0) ∩ Xb) =

+∞∫

y0

x0+δ/2∫

x0−δ/2

P (Y = v | Xt)P (Xb = w | Xt)
P (Xt)

P (Y = v ∩ Xb = w)
dv dw (1.36)

=
1√

2πσ2
oσ

2
b

+∞∫

y0

x0+δ/2∫

x0−δ/2

e
−

(Xt−v)2

2σ2
o e

−
(Xt−w)2

2σ2
b

√
2π(σ2

o + σ2
b )

(b − a) exp
(
− (w−v)2

2σ2
o+σ2

b )

) dv dw. (1.37)

Figures (1.24) to (1.26) show P (XT | (Y > y0) ∩ Xb) for three different y0. If y0

is much smaller than x0, the resulting PDF is very similar to P (XT | Xb) (Fig. 1.23),

since P (XT | (Y > y0)) is already at the maximum value for most (Xt | Xb), and

the binary observation condition doesn’t affect the resulting PDF. On the contrary,

if y0 is equal to, or greater than, x0, (see the figures 1.25 and 1.26 for the other

two cases with y0 = 270K and y0 = 275K respectively), the binary observation

condition controls noticeably the resulting PDF. Finally, we observe that such a

PDF presents a Normal-like behaviour. The comparison with a Normal distribution

is carried out imposing the coincidence between the expected values of the actual

PDF of (XT | (Y > y0) ∩ Xb) and its Normal approximation. We also define the

estimate of variance for Xt using the Maximum Likelihood Estimate theory:

X̂t = E (XT | (Y > y0) ∩ Xb)

ŝ2 =
1

n

n∑

i=1

(
Xti − X̂t

)2 (1.38)

We now compare P (Xt | Y ) with the distribution that follows the law N
(
X̂t, ŝ2

)
.

Figure (1.27), (1.28) and (1.29) show the two PDFs for different values of y0, while

(1.30) the Quantile-quantile plot. All of them demonstrate the goodness of the

Normal approximation. This is a very useful property, which will be exploited

in the next section, with regards to the variational assimilation. In fact, having a

Gaussian-like probability density function for the analysis even with a non-Gaussian

distribution for the observation error, allows us to retrieve a pseudo-observation with

Gaussian error, suitable for variational assimilation.
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Figure 1.22: P (XT | (Y > y0)) as computed from the data set (histogram) and its
analytical solution (grey line), in the case of binary observation. The dashed line is in
correspondence of the y0 value, set to 264K.
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Figure 1.23: P (XT | Xb) as computed from the data set (histogram) and its analytical
solution (grey line). The dashed line is in correspondence of the x0 value, set to 270K.

1.3.1 Pseudo-observations

At this moment, most of the Limited Area Models (LAMs) implement the vari-

ational theory for the assimilation of the observations and we have to make the

assimilation theory for binary observations consistent with the variational assimila-

tion theory. The aim of the variational assimilation consists of finding Xt in order
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Figure 1.24: P (XT | (Y > y0) ∩ Xb) in the case of binary observation as computed from
the data set (histogram) and its analytical solution (grey line), when y0 = 264K. The
strong dashed line shows x0 (270K), while the slight dashed line y0.
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Figure 1.25: P (XT | (Y > y0) ∩ Xb) in the case of binary observation as computed from
the data set (histogram) and its analytical solution (grey line), when both x0 and y0K are
equal to 270K (dashed line).

to have the maximum value for P (XT | Y ∩ Xb), namely we find

max
Xt

P (XT | Y ∩ Xb) =
P (Y | Xt)P (XT | Xb)

P (Y | Xb)
=

min
Xt

J = − ln P (XT | Y ∩ Xb) = − ln [P (Y | Xt)] − ln [P (Xt | Xt)] + k (1.39)
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Figure 1.26: P (XT | (Y > y0) ∩ Xb) in the case of binary observation as computed from
the data set (histogram) and its analytical solution (grey line), when y0 = 275K. The
strong dashed line shows x0 (270K), while the slight dashed line y0.

260 265 270 275 280 285

0.
00

0.
06

0.
12

XT

D
en

si
ty

Figure 1.27: Comparison between P (XT | (Y > y0) ∩ Xb) (solid line), and the Normal
PDF with parameters given by Eq. (1.38) (dashed line). Values for y0 and x0 are 264K
and 270K respectively.

where k is a constant. The cost function J , introduced in the last equation, with

regards to Eq. (1.2) and Eq. (1.19), is defined

J =
1

2

(Y − XT )2

σ2
o

+
1

2

(Xb − XT )

σ2
b

. (1.40)

The variational assimilation2 assumes that all the conditional PDF of the true state

are Normal. So, in order to assimilate binary observations, the PDF described by

2Now we consider the problem of finding Xt still one-dimensional.
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Figure 1.28: Comparison between P (XT | (Y > y0) ∩ Xb) (solid line), and the Normal
PDF with parameters given by Eq. (1.38) (dashed line). Value for both y0 and x0 is 270K.
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Figure 1.29: Comparison between P (XT | (Y > y0) ∩ Xb) (solid line), and the Normal
PDF with parameters given by Eq. (1.38) (dashed line). Values for y0 and x0 are 275K
and 270K respectively.

Eq. (1.37) is not suitable since it is not a Normal distribution. A possible approach

is to use a pseudo-observation y′, so that

E[XT | (Y > y0) ∩ (Xb = x0)] = E[XT | (Y = y′) ∩ (Xb = x0)]

where the PDF of (XT | (Y = y′) ∩ (Xb = x0)) is Normal. This condition means

that the analysis is still optimal, referring to the derivation of (1.33). Considering

the Normal distribution of the true state given the observation and the first guess,
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Figure 1.30: Quantile-quantile plot. Comparison between P (XT | (Y > y0) ∩ Xb) and
the Normal PDF with parameters given by Eq. (1.38). Value for both y0 and x0 is 270K.

Eq. (1.22), the definitions in Eq. (1.38) and y′ = E (Xt | Y = y′), we find y′:





σ2
o′ = σ2

o ŝ2

σ2
o−ŝ2

y′ =
(σ2

b +σ2
o′

)X̂t−σ2
o′

x0

σ2
b

Note how the background strongly affects the definition of y′. This can be seen

how the need of additional information in the use of binary observations, that are

poor with respect to a continuous observation. Figures (1.31), (1.32) and (1.33) show

the N (y′, σ2
o′), namely P (XT | (Y = y′)), against P (XT | (Y = y′) ∩ (Xb = x0))

and P (XT | (Xb = x0)), while figures (1.34) and (1.35) show E (XT | (Y > y0) ∩ Xb)

and y′ on the growing of y0. The range of standard deviation is also represented for

these two figures. We observe that E (XT | (Y > y0) ∩ Xb) is constant and equal to

E (XT | Xb) until y0 is small enough, depending on σ2
o and σ2

b , and then it increases

while its standard deviation decreases.

1.3.2 Sensitivity to small shifts

To find a probability density function for P (Y | Xt) such as P (Xt | Y ∩Xb) was

Normal, we study the functions family given by

P (Y | Xt) = f(xt) = eαx2
t +βxt+γ. (1.41)
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Figure 1.31: Comparison between P (XT | (Y = y′) ∩ (Xb = x0)) (solid line),
P (XT | (Xb = x0)) (dashed line) and P (XT | (Y = y′)) (dotted line), when x0 and y0

are set to 270K and 264K respectively.

Considering the equation

P (Xt | Y ∩ Xb) =
P (Y | Xt)P (Xt | Xb)

P (Y | Xb)
(1.42)

= aP (Y | Xt)P (Xt | Xb),

where

a = [P (Y | Xb)]
−1 ∼ const (1.43)

we can impose
1

σa
e−

1
2(

x−ma
σa

)
2

= a
1

σb
e
− 1

2

“
x−mb

σb

”2

eαx2
t +βxt+γ (1.44)

ma, and σa are the expected value and the standard deviation of P (Xt | Y ∩ Xb)

while mb, and σb are the expected value and the standard deviation of P (Xb | Xt)

Thus we have for α, β and γ:

α =
1

2σ2
b

−
1

2σ2
a

β =
ma

σ2
a

−
mb

σ2
b

γ =
m2

b

2σ2
b

−
m2

a

2σ2
a

+
1

2
ln

σ2
b

σ2
a

− ln a

In order to study the shift of P (Y | Xt) on the x axis as function of ma and mb,

we impose σ2
a ∼ σ2

b , neglecting the quadratic terms. We obtain for the parameters
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Figure 1.32: Comparison between P (XT | (Y = y′) ∩ (Xb = x0)) (solid line),
P (XT | (Xb = x0)) (dashed line) and P (XT | (Y = y′)) (dotted line), when both x0 and
y0 are set to 270K.

in f(xt):

α = 0

β =
ma − mb

σ2
b

γ =
m2

b − m2
a

2σ2
b

− ln a

Then, the slope of P (Y | Xt) is

dP

dXt
= βeγeβXt , (1.45)

and the increment of the probability P (Y | Xt) is

dP (Y |Xt)
dXt

P
=

d ln P (Y | Xt)

dXt

= β (1.46)

To study the relationship between the function previously founded, the actual binary

observations PDF and the conditional probability for Xt, we exclude two cases,

• when y0 ≪ x0 (e.g. if x0 − y0 > 2.5(σo + σb), see Fig. 1.36);

• when y0 ≫ x0 (see Fig. 1.37).

In the first case, P (Xt | Y > y0∩Xb) will be in practise equal to P (Xt | Xb) since

the binary observation does not affect the resulting probability density function.

On the other side, the second case represents a critical case since P (Xt | Xb) and
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Figure 1.33: Comparison between P (XT | (Y = y′) ∩ (Xb = x0)) (solid line),
P (XT | (Xb = x0)) (dashed line) and P (XT | (Y = y′)) (dotted line), when x0 and y0

are set to 270K and 275K respectively.

P (Y | Xt) are very small in the range of interest, and P (Xt | Y > y0 ∩ Xb),

as product of these two PDFs, is dramatically affected by their precision (see in

Fig. 1.37 how vary the histogram with respect to the Normal curve). Under these

hypothesis, (1.46) provides a simple mathematical interpretation of the shift that

occur for different values of the observation threshold y0. In fact, if Xa = ma and

Xb = mb, and assuming again that σ2
a ∼ σ2

b , we have that

Xa − Xb = σ2
b

d lnP (Y | Xt)

dXt
. (1.47)

When in fact the probability of Y approaches to the maximum value, the slope of

ln P (Y | Xt) and the (Xa − Xb) is infinitesimal.

1.3.3 Some numerical approximations

For numerical optimisations and future developments, it can be useful to ap-

proximate the PDF of P (Xt | Y > y0) to a function g(x). We suppose that:

• such a family be exponential;

• the exponent be linear.

So, we find the family function: eax+k, that in a more convenient way can be rewrit-

ten ea(x−y0)+b. We also require that g(x = y0) = D/2, where D is the probability

P (Xt ≫ y0 | Y > y0), i.e. the probability of Xt values that have maximum probabil-

ity to occur, given an observation value y0 and its standard deviation σo. It follows
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Figure 1.34: Expected value and standard deviation range for
(XT | (Y > y0) ∩ (Xb = x0)) on the growing of y0, with x0 = 270K (in correspon-
dence of the dashed line).

that b = ln(D/2), and we write once again g(x),

g(x) =
D

2
ea(x−y0). (1.48)

To be more precis, now we split the function we are looking for in two parts, imposing

continuity in y0 and symmetry with respect to the axis x = y0 and y = D/2, that

is:
D

2
− g(y0 − x) = g(x − y0) −

D

2

and reminding that for values greater than c (where c is the upper limit for the

uniform P (Xt), we finally obtain:

g(x) =





D
2
ea(x−y0) if x < y0

D
(
1 − 1

2
ea(y0−x)

)
if y0 < x < c

0 if x > c

To find the value for D, we impose a normalisation, since the integral of g(x)

over x has to be equal to 1. Simplifying the problem, for symmetry we have that

(see Fig 1.38)

+∞∫

−∞

g(x) du =

y0∫

−∞

g(x) du +


D(c − y0) −

y0∫

−∞

g(x) du


 = D(c − y0) (1.49)

29



CHAPTER 1 THEORY FOR ASSIMILATING BINARY OBSERVATIONS

250 255 260 265 270 275 280

26
0

27
0

28
0

29
0

30
0

 

y0

y’

−

−
−

−
−

−
−

−
− − − − − − − − − −

− − − −

−

−

−

−

− −
−

−

−

−

−

−

−
−

− − − − − − − − − − − − − − −
− − − −

Figure 1.35: Expected value and standard deviation range for (XT | Y = y′) on the
growing of y0, with x0 = 270K (in correspondence of the dashed line).
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Figure 1.36: Histogram and Normal-like PDF (red line) for P (Xt | Y > y0 ∩ Xb),
P (Xt | Y > y0) (green line), P (Xt | Y = y′) (dashed line), P (Xt | Xb = x0) (blue line) for
x0 = 276K and y0 = 264K.

and so

D =
1

c − y0
(1.50)
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Figure 1.37: Histogram and Normal-like PDF (red line) for P (Xt | Y > y0 ∩ Xb),
P (Xt | Y > y0) (green line), P (Xt | Y = y′) (dashed line), P (Xt | Xb = x0) (blue line) for
x0 = 264K and y0 = 276K.

Note that the exact solution differs very slightly:

+∞∫

−∞

g(x) = D(c − y0) +
D

2a
ea(y0−c)

and

D =
1

c − y0 + 1
2a

ea(y0−c)
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Figure 1.38: P (Xt | Y > y0).

Finally, Fig. 1.40 shows the approximation g′(x) of g(x), obtained without

splitting the function, but considering that g(x) affects P (Xt) mainly when it gets
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Figure 1.39: g(x).

low values; thus the same function of Eq. (1.49) – for x < y0 – is used unless g′(x)

is greater than D.
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Figure 1.40: g′(x).

1.4 One dimensional assimilation of cloud cover

Up to now we have considered to deal with identity observation operator. We

also have assumed that the observation could affect only one physical quantity.

To approach the problem of assimilating cloud cover data more realistically, we

extend the precedent formalism to the case that two variables are influenced by the

observation. In terms of variational algorithms, these variables are called “control

state variables” since only these will enjoy the analysis increment at the end of
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the assimilation. It is reasonable that the two “control state variables” will be the

temperature T and the specific humidity3 q. In addition we will take into account

a realistic forward model for computing the cloud cover from T and q. First of all,

in order to extend the previous formalism to a multi-variate case, let’s consider the

PDF4 for the background and the observation, given the true state of the atmosphere

P (Y | Xt) =
1

2π
√
|R|

exp

(
−

1

2

[
(Y −H(Xt))

T R−1 (Y − H(Xt))
])

(1.51)

P (Xb | Xt) =
1

2π
√
|B|

exp

(
−

1

2

[
(Xb −Xt)

T B−1 (Xb − Xt)
])

(1.52)

where:

• Xt (and Xb) is the true-state (and background) vector, Xt = (T, q)T ;

• H is the “forward operator”, moving the control variables into the observation

space. This operator is given by the product of the interpolation operator by

the observation operator. We will assume to handle with observation measured

in the same point of X; therefore the interpolation operator will be the identity

matrix, and H becomes the cloud cover model;

• R is the observation errors covariances matrix, that include both the represen-

tativeness (non-perfect cloud cover operator) and the instrumental error; since

we have only one observation, following the notation in the previous section

R = σ2
o ;

• B is the background error covariances matrix. We will assume that the tem-

perature and humidity errors be uncorrelated, so that our B matrix will be a

diagonal matrix consisting of the temperature and humidity error variances.

The formalism for finding P (Xt | Y ∩Xb) is identical to the one-dimension case,

except that the observation error is now affected by the additional contribute of the

forward model (that however is thought of as unbiased and Gaussian).

1.4.1 Proposed approach

The basic idea is to find an analysis for the temperature and humidity given the

cloud cover binary condition and the information from the former forecast. Once

we have this analysis, whose errors are assumed Gaussian distributed, we retrieve

a “pseudo-observation”, to use in the variational assimilation together with the

3We choose the specific and not the relative humidity for consistency with assimilation systems
and forecast models.

4In Eq. (1.51) and Eq. (1.52) the multivariate normal distribution is for the bi-variate case,
since the power of 2π at the denominator is n/2, being n the dimension of Y or Xb.
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conventional observations. The formulation of the analysis represents the first step

for the detection of the “pseudo-observation”. We consider to directly deal with the

binary observation K, i.e. we already have the 0 (no-cloud) or 1 (cloud) information

about cloudiness. Therefore we focus on the probability density function for the

true state of atmosphere given the background and the “status of cloud/no cloud”.

We also define our forward model as the probability of having cloud given the true

state of the atmosphere. Thus, we have:

H (Xt) ≡ P (K = 1 | Xt) (1.53)

P (K = 0 | Xt) = 1 − H (Xt) (1.54)

P (K = 1 | Xb) =

+∞∫

−∞

P (K = 1 | Xt)P (Xt | Xb) dXt

=

+∞∫

−∞

H (Xt) P (Xt | Xb) dXt (1.55)

and for the PDF of Xt

P (Xt | K = 1 ∩ Xb) =
P (K = 1 | Xt) P (Xt | Xb)

P (K = 1 | Xb)
(1.56)

=
H (Xt) P (Xt | Xb)

+∞∫
−∞

H (Xt) P (Xt | Xb) dXt

(1.57)

Note that this procedure is immediately suitable also for the real satellite observation

Y , since from a Bayesian point of view we have

P (Y | Xt) = P (K = 1|Xt) P (Y |K = 1)+(1 − P (K = 1|Xt))P (Y |K = 0) (1.58)

We can define our analysis X̃a as the expected value of the PDF of the true state

X̃a = E [Xt | K ∩ Xb] . (1.59)

Repeating exactly the same formalism in the previous section, it can be shown that

our analysis X̃a is optimal with respect to the RMSE verification. Using Eq. (1.53)

and Eq. (1.55), the analytical solution of Eq. (1.59) is given by

P (Xt | K ∩ Xb) =
P (K | Xt) P (Xt | Xb)

P (K | Xb)
(1.60)

=
H(Xt)

1

2π|B|1/2 exp
[
−1

2
(Xt − Xb)TB−1(Xt − Xb)

]
∫ +∞

−∞
H(Xt)

1

2π|B|1/2 exp
[
−1

2
(Xt − Xb)TB−1(Xt − Xb)

]
dXt

.
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This theoretical analysis is shown in Figures 1.41 to 1.43 against the background

PDF and the distribution5 of (K|Xt) for different background temperatures. In

these plots the three PDF (for the background, the observation and the analysis)

are drawn. Since is only shown the case K = 1, the points on the left of the grey

lines (contour of H(Xt)) give P (K | Xt) = 1, while on the right the P (K | Xt) = 0.

Figure 1.44 also presents the analysis X̃a and the analysis increments (X̃a −Xb) on

the growing of the background temperature. When the probability to have cloud

(no-cloud) given the background is high and our binary observation leads to cloud

(no-cloud) condition, the increments are close to zero and the binary observation

does not add any useful information to the background (Fig. 1.41). When instead

the probability to have cloud (no-cloud) given the background is very low and we

have K = 1 (K = 0), the analysis is forced to assure the cloud status, so that

the increments is high and decreases (increases) linearly with the background (Fig.

1.43). In the intermediate cases (Fig. 1.42), the increment is less dramatic and

grows following a quadratic function. Note also that for a continuous observation,

the curves in Fig. 1.44 are linear.
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Figure 1.41: Contour of theoretical PDF of (Xt | Xb), (K | Xt) and (Xt | K ∩Xb) when
the background temperature is 238K and K = 1.

Finally, in order to find the pseudo-observation Y ′, the classical formulation of

5In all this examples the binary observation is assumed to be set to “cloud” (K = 1). The
forward model H(Xt) that we have used will be presented later on.
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Figure 1.42: As in Fig. 1.41 when the background temperature is 245K and K = 1.
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Figure 1.43: As in Fig. 1.41 when the background temperature is 252K and K = 1.

the analysis from the variational theory has to be inverted6

R = HB(B −A)−1BHT − HBHT (1.61)

X̃a − Xb = BHT
(
HBHT + R

)
(Y′ −HXb), (1.62)

6In practise, this formula has to be replaced with more efficient minimization algorithms.
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Figure 1.44: Analysis and increments as obtained theoretically for different values of the
background both for case K = 1 (left) and K = 0 (right).

where S̃ is the estimated variance for P (Xt | K = 1 ∩ Xb).

1.4.2 On the forward model

Many models have been developed during last years to compute cloud cover.

A few of these formulations are prognostic, integrating the cloud cover over the

time either in a four dimensional variational assimilation framework (Jakob, 1999)

or in a forecast model (Tompkins, 2002). In terms of a three dimensional vari-

ational (3DVAR) assimilation, that is our reference assimilating system, such an

approach can not be undertaken, so we will concentrate on diagnostic formulation

for the cloud cover. Climate modellers have given great importance to the cloud

cover computations in an effort to better reproduce the radiative balance. However,

every approach aims to find some reasonable predictors for cloud cover, proposing

a relation between these predictors and the cloud cover itself. Unfortunately, most

of these formulations choose as cloud cover predictors quantities related to micro-

physical processes, like the cloud water content or the liquid water content. These

variables are not control variables in the three dimensional data assimilation (at

least as developed for several LAMs). Unless to explicitly compute these variables,
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they are not available during the analysis.

It seems reasonable for now to choose a forward operator as simple as possible

and eventually in the future going back to this problem. Further, the vertical inte-

gration of the forward operator represents a delicate problem even more than the

forward operator itself.

Many studies (e.g. Walcek, 1994) suggest that simple relations between the

cloud cover and the relative humidity can be established. The basic idea is that

the cloud is formed when the the relative humidity is equal to 100%; anyway, since

the humidity that we deal with in NWP is a measure averaged in each grid cell, we

assume that clouds can exist also for values of relative humidity smaller than 100%.

A simple relation for the cloud cover c, known the threshold RHcr below which no

cover can form, is given by:

c =

[
RH − RHcr

1 − RHcr

]2

(1.63)

In the former equation, relative humidity RH is obtained from the control variables

T and q as follows

RH = 100
q

qs

= 100
q [p − (1 − 0.622) es(T )]

0.622es(T )

where p is the pressure and es(T ) the saturation water vapour pressure, computed

for instance through an empirical expression (Lowe, 1977). Equation (1.63) has

been used operationally in ECMWF (Slingo, 1987) and replaced only in 1993 by a

prognostic scheme (Tiedtke, 1993). Anyway the definition of the parameter RHcr

is problematic since it depends on many other factors, first of all the pressure level

and the related nature of the cloud and also on local physiographic characteristics.

As example, Teixeira (2001) found that for the mid-tropospheric atmosphere (500−

400mb) cloud cover can not be neglected even for relative humidities less than 60%.

We will return to this problem later on in this section.

1.4.3 Configuration and results

The simulation performed for this one-dimensional case, as in the previous

sections, considers the true state of atmosphere uniformly distributed,

Xt ∼ U (a, b) , (1.64)

while the background follows the Normal distribution

Xb − Xt ∼ N (0, B) , (1.65)
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where temperature and humidity are considered uncorrelated for simplicity. For K

we consider the expression

K =





0 if H (Xt) < ε,

1 if H (Xt) ≥ ε.
(1.66)

where ε ∼ U (0, 1). This last condition is imposed to ensure that a few cases of

tremendous inconsistency between the theoretical forward model and the K condi-

tion can occur.

The forward model is based on Eq. (1.63). Figure 1.46 shows the cloud cover

on the growing of the relative humidity, while Fig. 1.47 shows the contour for

different values of the two control variables. Note that this model is designed to

reproduce the cloud cover in only one layer. The total cloud cover is normally

obtained through the maximum-random overlap algorithm, that assumes to have

maximum horizontal overlap for the cloud-cover between vertically adjacent cloudy

layers, while random horizontal overlap is taken into account between non-adjacent

cloudy layers. Therefore the abrupt slope in the forward model curve is normally

damped by the multi-layers computation. However, in the case we’re studying,

it leads to a quasi-binary set of values for H (Xt), even if for the computation of

the background (Eq. 1.65) we had to reduce the variance of the specific humidity as

computed through a 20 days NMC statistics in order to operate in a more significant

interval of humidity. Figure 1.45 shows the distribution of K = 1 on the varying of

humidity and temperature.

Figure 1.45: Distribution of K = 1 occurrences.

Results for analysis increments (see (Fig. 1.48)) match with the analytical so-

lution of Eq. (1.60), leading to the same conclusions. The right wing of (X̃a − Xb)

in Fig. 1.48(a) and the left wing in Fig. 1.48(b) does not have a continuous trend

because these cases occur rarely even in a large dataset.
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Figure 1.46: The forward model given in Eq. (1.63).
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Figure 1.47: Contour of cloud cover as computed from Eq. (1.63) on the varying of
temperature and specific humidity.

Now we consider the verification penalty function J

J = E
[
(X − X̃a)

2
]

= E
[
E
[
(X − X̃a)

2 | K ∩ Xb

]]
= E [J | K ∩ Xb] . (1.67)

Note that this J function corresponds to the Mean Squared Error. To be optimal

our analysis should satisfy the requirement

X̃a = min J | K ∩ Xb, (1.68)

where we now implicitly have that X̃a is a function of K and Xb. To compute (1.67)
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Figure 1.48: Analysis increments on the varying of the background temperature: (a)
case K = 1 (Cloud observed), (b) case K = 0 (No-Cloud observed).

we use the following formula:

J | K ∩ Xb = E
[
(X − X̃a)

2 | K ∩ Xb

]
(1.69)

= E
[
X2 | K ∩ Xb

]
− 2E [X | K ∩ Xb] X̃a + X̃a

2
(1.70)

= V ar [X | K ∩ Xb] + E
[
X̃a − X | K ∩ Xb

]2
. (1.71)

We see that minimum (J | K ∩ Xb) is achieved for X̃a = E [X | K ∩ Xb].

Figures 1.49 and 1.50 show the cost function J for temperature and humidity

respectively7. The dashed line corresponds to the analysis that matches closely with

the minimum of J , while the dotted line corresponds to the first guess.

1.4.4 How RHcr affects the analysis?

With reference to the cloud cover forward model, we now have the problem

to choose the threshold below which no cloud formation is admitted. It can be

useful to follow a Bayesian approach and evaluate the influence of the parameter

RHcr on the analysis. In terms of the PDF for RHcr, studying the case which has

tremendous impact on the analysis can provide useful information for an objective

quality control of cloud cover data as well. Our assumption will be basically that

the cloud cover can be correctly diagnosed by Eq. (1.63), but the parameter RHcr

is uncertain, and thus we introduce a probability density function. Since RHcr is

7For a test case where the background is set to 243.7K and 5.225·10−4KgKg−1 for temperature
and humidity respectively.
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bounded between two limits, 0 and 1, the natural candidate for the RHcr PDF is

the Beta distribution

P (RHcr) =
Γ (a + b)

Γ (a) Γ (b)
RHa−1

cr (1 − RHcr)
b−1 . (1.72)

For commodity, we will refer hereafter to the reparameterized Beta distribution with

parameters α and β8

P (RHcr) =
Γ (β)

Γ (αβ) Γ ((1 − α)β)
RHαβ−1

cr (1 − RHcr)
(1−α)β−1 . (1.73)

8α is equal to a/(a + b); β is equal to (a + b).
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Now the expected value and the variance of such a distribution will be respectively

α and α(1 − α)/(1 + β). The probability to have a cloud if we know the relative

humidity is (after the assumption (1.53))

P (K|RH) =

1∫

0

P (K | RH ∩ RHcr) P (RHcr) dRHcr (1.74)

=

1∫

0

[
RH − RHcr

1 − RHcr

]2

P (RHcr) dRHcr.

However, the parameters α and β are unknown, and in real life we fix the value for

the critical relative humidity, R̂Hcr. In particular, depending on the vertical level,

we choose a R̂Hcr, that will be the expected value for the distribution of RHcr (also

equal to α). Then, it’s possible to define the Bayes risk associated to two possible

decisions: choose X̃a (from Eq. (1.59)) or Xb as analysis. This last condition is

equivalent to reject the observation. With regards to the MSE verification, for the

analysis X̃a

B(X̃a) = E
[
E
[
(Xt − X̃a)

2 | Xb ∩ K ∩ RHcr

]]
(1.75)

=

+∞∫

−∞

1∫

0

E
[
(Xt − X̃a)

2
]
P (Xt | Xb ∩ K ∩ RHcr) dXt dRHcr

=

+∞∫

−∞

1∫

0

E
[
(Xt − X̃a)

2
] P (K | Xt ∩ RHcr)P (Xt | Xb)

P (K | Xb ∩ RHcr)
dXt dRHcr

where

P (K | Xb ∩ RHcr) =

+∞∫

−∞

1∫

0

P (K | Xt ∩ RHcr)P (Xt | Xb) dXt dRHcr (1.76)

to compare with the Bayes risk deriving from the choice of using Xb as analysis

B(Xb) = E
[
E
[
(Xt − Xb)

2 | Xb

]]
(1.77)

=

+∞∫

−∞

E
[
(Xt − Xb)

2
]
P (Xt | Xb) dXt

We have compared the difference between the Bayes risk associated to the analysis

and that one to the background for different values of the variance of RHcr (Fig. 1.51a

and Fig. 1.51b).
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Figure 1.51: Computation of Bayes risk for different values of the variance of RHcr: (a)

PDF, (b) Bayes risk for the analysis X̂a minus Bayes risk for the background Xb, case
K = 1.

1.4.5 An objective background quality control

It seems useful to introduce a simple quality control to discard the suspicious

binary observations and remove those ones resulting in redundancy with the back-

ground. Following the results of the former subsection, the quality control criterion

is to remove from the assimilation all the observations for which the Bayes risk as-

sociated to the analysis X̃a is even bigger than the risk associated to keeping the

background as analysis. This can happen since our forward model roughly model

the cloud cover, neglecting many factors that affect the fraction of cloud. Let’s

introduce a gross error that takes into account the weakness of the forward model.

We let this error in the Beta distribution of RHcr as constant additional probability

κ for every RHcr:

P (RHcr) =

Γ(β)
Γ(αβ)Γ((1−α)β)

RHαβ−1
cr (1 − RHcr)

(1−α)β−1 + κ

1 + κ
(1.78)

The effect of such an error can be visualised in Fig. 1.52(a). The three PDF are

flattened with respect to the same ones in Fig. 1.51(a). The Bayes risk functions

in (1.75) and (1.77) are thus recomputed, and they show (Fig. 1.52b) that now

the impact of the variance is very slight. For higher values of temperature (that

correspond to low values of RHcr, all the PDFs tend to κ, and the difference in

the risk function tend therefore to be the same for every value of variance. In

the same figure we have cut the right wing. In fact, we can impose as objective

quality control criterion, to take X̃a as analysis only if (Ba − Bb) is smaller than a

value ǫ. Otherwise, we will discard the observation. Note that this last condition
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applies when Xa − Xb is dramatically large, therefore this quality control aims to

avoid unrealistic analysis (see Fig. 1.43). To also avoid the assimilation of binary

observation that do not contain any information with respect to the background, we

can operate similarly, imposing the condition that (Ba −Bb) should be greater than

a small threshold below which the analysis is in practise equal to the background.

This condition can also prevent the analysis from overestimating the importance of

the background itself (that otherwise would be twice taken into account).
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Figure 1.52: Computation of Bayes risk for different values of the variance of RHcr when
a gross error is introduced: (a) PDF, (b) Bayes risk for the analysis X̂a minus Bayes risk
for the background Xb, case K = 1.

1.5 Conclusions

The formulation of the probability density function of the true state of the

atmosphere is the first part of the data assimilation theory. To achieve this, the

PDF has been derived following two approaches. The main difference is that the

first one computes the probability of the observation given the true state, operating

therefore in the “observations space”, while the second includes on the contrary the

probability of the true state given the observation, answering the Bayesian solution

of the data assimilation problem. Again, the first one is the only possible choice

when the observation operator is not invertible, so it is largely used in modern

variational assimilation techniques.

Although the two formulations are very similar, they coincide if we use the

Normal approximation for the true state PDF. This approximation is verified against

a simulated data set, which match closely both the theoretical and the approximated

distributions. As consequence, the Normal approximations are accurate enough

to use instead of the theoretical formulations of the PDFs, unless the standard
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deviations of the background or the first guess are very large. Using the Mean

Square Error verification, the analysis has been verified to be optimal, with regards

to a reference observation too.

A simple binary observation problem has also been studied, where the observed

value here represents the threshold point between the zero and the maximum proba-

bility. How the PDF changes depends on the standard deviation of the observation.

The resulting PDF for the true state has a Normal behaviour, that is a very impor-

tant property. With regards to the variational assimilation theory, the conditional

probabilities of the true state, given the background and the observation, are in fact

assumed Normal. Thus, it is possible to assimilate the binary observations without

further simplifications. However, the probability density for the true state known

the binary observation is not Normal, so a pseudo-observation has been retrieved by

imposing the coincidence between the two expected value. Such a condition allows

to keep optimal the analysis. The definition of the pseudo-observation is noticeably

affected by the background; this approach allows in fact to assimilate the binary

observation, poorer in terms of information with respect to continuous observations,

through the intense use of the background. Unfortunately, the error in the pseudo

observation is consequently correlated with the error in the first guess, but the re-

sulting analysis is still optimal in the single observation case.

Same results can be found when we deal with a more realistic situation and

when we suppose to assimilate binary cloud cover data. In fact, although in the

context of the 3D-Var framework the choice of forward model has to obey several

constraints, first of all that it has to depend only on “control state variables”, simple

relations between cloud cover and relative humidity are well-known and have been

intensively used also in recent years.

The analysis we obtain are forced by this forward model to reproduce the ob-

servation. Three main cases occur, depending on the value of the background: i)

if the probability to have the binary condition given the background is maximum,

the observation itself does not add useful information, and the analysis increment is

infinitesimal; ii) if the probability to have the binary condition given the background

tends to zero, the analysis is forced to follow the binary condition and the analysis

increment is big and very sensitive to the forward model; iii) in the other cases, the

analysis increment has a reasonable value.

The Bayesian decision theory gives useful insights and suggests that too big

analysis increments should be avoided, and an objective quality control based on

the computation of the Bayes risk function can therefore be constructed. Note that

we can also observe redundancy between the background and the observation, a

problem peculiar of binary data.
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Chapter 2

Assimilation of Binary Cloud Cover: Towards the

Use of of CloudSat Radar Reflectivities

Summary

CloudSat radar provides high resolution and high quality profiles of reflectiv-

ities, that can be used to detect vertical structure of clouds. The theory for the

assimilation of binary cloud cover can be therefore applied to the radar received

power. A strategy to process the radar data and to use them in assimilation is

described in this Chapter.

2.1 Rationale

Assimilation of binary cloud cover offers an attractive perspective for the im-

provement of moisture analysis. It is theoretically possible to use even simple cloud

cover relationship to retrieve humidity profiles, once that the cloud cover is known.

However, dealing with spaceborne observations from AVHRR or other high resolu-

tion sounders leads to vertical integration problems, since the synchronous use of

several channels can only partially overtake the vertical mislocation of the clouds;

furthermore, the typical cloud classification from these instruments can provide a

cloud top height and a tentative thickness, taking anyway into account only the first

cloud seen from the satellite.

Since the cloud cover errors do not follow a Gaussian distribution, and, further-

more, the binary function that describes it cannot be computed the gradient, these

observations are not suitable for use in three(four)-dimensional variational assimi-

lation systems, where errors are assumed Gaussian and observations operators have

to be linearised. We can however define our analysis as

Xa =

∫ +∞

−∞

XtP (Xt | K ∩ Xb) dXt (2.1)
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where K is the binary observation, Xt is the true state of the atmosphere and Xb

is the a priori knowledge (background) of the state of the atmosphere. In case

of cloud types or cloudmask observation (e.g. from AVHRR) the problem is not

well-posed because the solution of Eq. 2.1, given one observation K, involves the

vertical integration of many variables, and to ride this problem over one should

make some assumptions for the vertical integration, read overlap, of the clouds.

Such assumptions can compromise the assimilation of the observations itself.

As intermediate test for the feasibility of assimilating cloud cover into assim-

ilation systems and for testing different strategies that can be followed, the use

of CloudSat reflectivities appears of benefit. In facts, the radar aboard CloudSat

provides vertical profiles of cloud fraction with extreme precision, if compared to

other satellite cloud products, and at very high horizontal and vertical resolution;

as active instrument, the 94 GHz Cloud Profiling Radar (CPR) can also correctly

detect multi-layer cloud systems. This instrument is therefore an optimal candidate

for the assimilation of cloud fraction data, and a strategy is subsequently presented.

In section 2.2 the pre-processing algorithm for CloudSat data and a review of the

use of the observation operator is described; in section 2.3 we extend the theory for

the assimilation of binary observations to CloudSat cloud fraction; in section 4.4 the

implementation in an experimental assimilation system is presented.

2.2 Exploitation of CloudSat data

2.2.1 CloudSat and the on-board 94 GHz radar

In April 2006 NASA launched the CloudSat satellite, whose mission aims to

provide vertical distribution of cloud layers for model validation and better under-

standing of microphysical properties of clouds (Stephens et al., 2002). CloudSat

joins the so-called “A-train”, a constellation of 6 satellites flying in close proximity

(among them, Aqua and Calipso). Reflectivities measured by the 94 GHz Cloud

Profiling Radar (CPR), aboard CloudSat, are calibrated to provide profiles of cloud

fraction at high resolution (about 2500 meters along the track and 250 meters on the

vertical). The radar frequency of 94 GHz has been shown to be perfectly suitable

for the the study of clouds microphysics (Clothiaux et al., 1995).

These clouds profiles represent therefore an optimal framework for testing the

assimilation of cloud cover data, because of the high resolution, both along the track

and on the vertical, and the high quality of the radar data. Successful assimilation

of CloudSat radar data can also be of interest for designing next-generation of po-

lar orbiting satellites. However, it should be noted that CloudSat CPR data are

disseminated with an average delay of 8 hours, making their use far from being

operational.
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CloudSat has a nearly circular orbit at 705 Km of altitude with a 99 minutes

period that repeats every 233 orbital revolutions (16 days). The 94 GHz radar is a

nadir-pointing active instrument that profiles the atmosphere along the orbit track.

In order to have an idea about the dissemination of CloudSat data, Fig. 1(a) reports

the dissemination over 1 day, and Fig. 1(b) the dissemination for a 6 hours time

window, both the figures accounting observations only inside the computational

NWP model domain, hereafter ALADIN11. The latter one reproduces a typical

data availability in a three-dimensional variational assimilation time-slot.

(a) (b)

Figure 2.1: CloudSat data dissemination: (a) Over 24 hours (20.10.2007); (b) Over a
6-hours assimilation window (19.10.2007 12:00 UTC ±3h).

2.2.2 Retrieval of cloud fraction profiles

The algorithm for the retrieval of cloud profiles from the radar received power

consists of several modules that will be briefly reviewed consecutively. First, the

State of Health (SOH) aboard CloudSat is checked to correctly reports the status

of the satellite. The pre-processing software performs the following checks:

• Validity of GPS data;

• Validity of temperature values;

• Normality of radar telemetry quality;

• Normality of peak power;

• CPR not in calibration manoeuvre;

• State Of Health (SOH) correctly received;
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• Star trackers switched on;

• Absence of Non-Incrementing Second Anomaly (NISC).

Then, all the data supplied in Level1-FL (near real-time First-Look data) are

extracted and each profile is checked to correctly report the expected number of

radar bins. Two major computations are then performed to calculate profiles of

reflectivity factors and profiles of cloud fractions.

The reflectivity factor is computed through the radar equation (Meneghini and

Kozu, 1990):

dbZ = 10 log10

(
α4η

π5K2
1018

)
(2.2)

where α is the radar wavelength, K2 is function of the dielectric constant (around

0.75 at 94 GHz), and η is the radar backscatter, given by

η =
PR − PN

PT
r2C (2.3)

where PR, PN , and PT are respectively the received power, the noise power and the

transmitted power, r is the distance of the radar to the cloud or the surface; C is the

radar constant, computed by the CloudSat Data Processing Center from pre-launch

measurements, see Li et al. (2007), equal to

C =
(4π)3

α2G2∆Ω

where G is the antenna gain, ∆ is the pulse integral and Ω is the integral of the

normalised antenna pattern. In Eq. 2.3, the transmitted power PT is the one

averaged for an entire CloudSat granule (the track between two consecutive passages

over the Equator), rather than the instantaneous transmitted power. The noise

power is the mean of the received power in several stratospheric levels (from about

17 to 23 Km of height) that are assumed to be hydrometeors-free; the standard

deviation of the noise power is computed as well, for use in the cloudmask retrieval.

The cloudmask is computed for every profile using a threshold algorithm, that

reads:





CF = 1 if Pr − Pn > k1σn

CF = PR−PN−k0σn

(k1−k0)σn
if k0σn < Pr − Pn < k1σn

CF = 0 if Pr − Pn < k0σn

(2.4)

where σn is the standard deviation of noise power, and k0 and k1 are parame-

ters empirically tuned. This simple scheme has been validated against the CloudSat

Data Processing Center Level2 products that take advantage of a more advanced
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two-step algorithm with an along-track integration scheme to compute power prob-

ability within subsets of received power distribution (Clothiaux et al., 1998), and,

additionally, has been compared with the combined CloudSat-Calipso-MODIS cloud

products, that exploits the lidar reflectivities (from Calipso) to detect thin clouds

and refine the cloudmask through the high-resolution two-dimensional cloudmask

provided through the MODIS sounder aboard Aqua.

Since the surface can be even 5 orders of magnitude more reflective than hy-

drometeors (Marchand et al., 2008), the first 3 to 5 bins above surface (up to 0.7

to 1.2 Km) are dominated by the surface return. A filter has been therefore im-

plemented to take out the surface return. The filter subtracts the “ surface clutter

profile”, estimated on a flat surface for the first 5 bins above the surface, to the

received power. Successively, for profiles where such an estimate cannot considered

reliable (the criterion is an orography gradient greater than 2% or a Digital Ele-

vation Map, DEM, reporting an altitude greater than 2000 m) the filter discards

cloudy bins if the adjacent profiles along the track, for the same height above the

surface, do not show the presence of hydrometeors. This procedure is applied to the

first 5 bins above the surface.

2.2.3 Examples of cloudmask production

To show how the cloudmask algorithm works, we report a couple of interesting

examples. Following figures show the CloudSat orbit, and cross-sections of received

power, reflectivity factor and cloud fraction, for an area covering extending from

35N to 90N of latitude and from 45W to 100E of longitude. Cloud fractions are

interpolated to constant geopotential levels, keeping the same vertical resolution of

240 m as in the original CPR data.

In Fig. 2.2 is shown how the CloudSat cloudmask is able to identify multi-layers

cloudy profiles. This feature represents one the most relevant benefits in the use of

spaceborne radar for detecting clouds. Profiles between 65N and 80N latitudes show

the presence of mid-level clouds associated with low-level clouds. This can be easily

noted for the received power cross-section and the reflectivity factor cross-section,

as well as in the resulting cloudmask, and represents an useful advance if compared

with usual satellite cloud products (e.g. the Nowcasting-SAF products). Another

interesting aspect is the strongly binary nature of the cloud fraction as given by the

cloudmask. This feature is consistent with the more advanced cloud products from

CloudSat-Calipso-MODIS, and it should be noted how these data mostly report

the punctual presence or absence of hydrometeors. This aspect has to be taken

into account when assimilating CloudSat data since NWP models reports a cloud

fraction averaged into a model gridbox, leading to a statistical nature of the cloud

cover parameter.
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(a)

(b)

(c)

Figure 2.2: CloudSat cloudmask algorithm, multilayer clouds example, valid UTC time
19.11.2007 00:19: (a) CloudSat orbit track; (b) Cross-section of received power and re-
flectivity factor; (c) Cross-section of retrieved cloud fractions interpolated to constant
geopotential levels.
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In Fig. 2.3 is shown the capability of the algorithm to filter out the surface

clutter from the received power. In particular, over Mongolia (first part of the

cross-section, 35N to 50N latitude) and over Greenland the surface return is notably

stronger than the hydrometeors layers, and it’s correctly filter out by the cloudmask

algorithm.

As another example, Fig. 2.4 show the potential use of CloudSat cloudmask for

nowcasting purposes. The CloudSat product is now used operationally by forecast-

ers at the Norwegian Meteorological Institute, and can be visualised in real-time by

the DIgital ANAlysis (Diana) visualisation software. We compare the cloud fraction

cross-sections (where the height is projected on the right side of the satellite track)

with the subjective analysis by forecasters and with MSG-1 combined visible and

infrared channels (3+9+10). The cloud system derived from the warm front devel-

oping from UK, remarkable in both METEOSAT images and forecasters analysis,

shows the typical advancing structure in the profiles close to Oslo as reported by

the CloudSat cloudmask.

2.2.4 Treatment of cloud fractions data for assimilation

The cloud fraction data obtained by the previous algorithm can be used for real-

time visualisation and thus be useful for nowcasting purposes. In order to assimilate

these data in variational assimilation models, a few more steps are needed to ensure

the quality of the observations and to minimise the spatial correlation of the cloud

cover observations.

For all the profiles correctly received, a two-step domain check is performed

to discard data outside the ALADIN11 domain. The procedure is divided in two

step for computer efficiency. The first step roughly check data to be inside a lati-

tude/longitude grid. The second step projects each data point to the model plane,

following the Lambert Conformal projection. A “red-zone””, 50 Km large, is taken

into account to discard data too close to the domain lateral boundaries.

Since the CloudSat resolution along the orbit track is much higher than the

NWP model resolution (about 2.5 Km against 11 Km for the ALADIN11 domain),

the observations are averaged and interpolated to the model points. The weigthing

function is Gaussian; to avoid that one CloudSat profile is used more than once

during the interpolation, for each model gridpoint only observations inside a gridbox

as large as the model resolution and centred on the model point are used. For each

cloud fraction CFM in the model space:

CFM =

∑N
i=0 wifi∑N
i=0 wi
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(a)

(b)

(c)

Figure 2.3: CloudSat cloudmask algorithm, surface clutter filter example, valid UTC
time 30.11.2007 05:16: (a) CloudSat orbit track; (b) Cross-section of received power and
reflectivity factor; (c) Cross-section of retrieved cloud fractions interpolated to constant
geopotential levels.
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(a)

(b)

Figure 2.4: Example of use of CloudSat cloudmask for nowcasting purposes, valid UTC
time 05.12.2007 03:00: (a) CloudSat cloudmask and forecasters analysis; (b) METEOSAT
MSG1 Infrared and Visible channels (3+9+10).
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where, if d is the geometrical distance between the model point and the i-th obser-

vation,

wi =

{
e−

d2

2 if fi is inside the box

0 otherwise

This procedure leads to super-observations generated by averaging different

amounts of CloudSat observations; to discard poor super-observation generated by

too few origin data, a thinning routine is adopted. The domain is divided in a

number of square grid-boxes, whose side is 50 Km, inside which only one super-

observation is retained. The choice of 50 Km large grid-boxes issues from a compro-

mise between having dense observations and reducing the spatial correlation of the

observations, and it’s a value used operationally for thinning of humidity sounders

(AMSU-B and MHS). The algorithm keeps the superobservation generated with the

largest number of data, and, if eventually two or more of them have the same density,

impose the closeness to the box centre as additional criterion.

Processing the cloud fraction data requires the knowledge of a few parameters

from the NWP model, hereafter first guess. The following fields are read from a

forecast initialised 6 ± 1.5 hours before the CloudSat profiles:

• Orography (spectral 2D field);

• Surface pressure (spectral 2D field);

• Surface temperature (gridpoints 2D field);

• Specific humidity (spectral 3D field);

• Temperature (spectral 3D field);

• Cloud fraction, prognosed (gridpoints 3D field);

The large scale microphysics scheme adopted in the forecast model for the com-

putation of cloud fraction is known as the “Lopez microphysics” scheme (Lopez,

2002). In this scheme there are two prognosed variables, large-scale cloud conden-

sate (suspended liquid water and ice) and precipitation content (rain and snow). The

scheme uses additional water species (cloud liquid water, cloud ice, rain, snow and

water vapour) to parametrise large-scale condensation, auto-conversion, collection,

evaporation of precipitation and precipitation downfall. Some tunings made in the

operational implementation regard the ice-water separation function, the relative

humidity minimum value for the formation of cloud condensate (Bouteloup et al.,

2005).

Spectral fields are moved to grid-point space according to the ALADIN def-

inition of the space of bi-Fourier coefficients (e.g. Berre, 2000). For the generic
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parameter s:

s(ix, iy, z) =

M∑

m=−M

N∑

n=−N

s(m, n, Z) exp

[
2πi

(
mix
J

+
niy
Q

)]

where (ix, iy) is the horizontal position vector in physical space; z is the vertical

index; J and Q are the number of points of the extended domain in each direction; m

and n are the zonal and meridional wavenumbers; s(m, n, Z) is a bi-Fourier spectral

coefficient; M and N are the maximum zonal and meridional wavenumbers. The

elliptic truncation adopted in ALADIN reads as:

(m

M

)2

+
(m

M

)2

≤ 1

After the inverse spectral transform, geopotential is computed through a dis-

crete version of the hypsometric equation, starting from the lowest level (surface):

zi = zi+1 +
RdTv

g
ln

pi+1

pi
; Tv = T (1 + 0.622q) (2.5)

where z is the geopotential, Rd is the gas constant for dry air (= 287.04 JK̇g−1·K−1),

g is the standard acceleration of gravity (= 9.80665 m ·s−2); p is the pressure; Tv and

T are respectively the virtual temperature and temperature; q is specific humidity.

Relative humidity RH is obtained from specific humidity;

RH =
pq

0.622es(T )

where es(T ) is the saturation vapour pressure for a temperature T . Values of es(T )

are tabulated.

For each model point where thinned superobservations are present and valid,

first guess upper-air fields are interpolated to original CloudSat levels. The inter-

polation is linear in the height. Pressure can be either interpolated (default) or

computed from CloudSat geopotential (inverting Eq. 2.5).

2.2.5 Cloud fraction forward model

For data assimilation purpose, the cloud fraction computation from the first

guess fields should depend on the control vector. Unfortunately, the prognostic

scheme of Lopez (2002) contains time evolution of cloud condensate and precip-

itation, and therefore can be used only in four-dimensional assimilation systems.

However, simple relationship between cloud fraction and relative humidity have

been used intensively in NWP models. The pre-processing software contains three
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scheme for the computation of cloud fraction CF :

CF =

(
RH − RHcr

1 − RHcr

)2

(2.6)

proposed by Slingo (1987);

CF = 1 −

√
1 − RH

1 − RHcr
(2.7)

proposed by Sundqvist (1978);

CF = 1 −

√
1 − RH

1 − RHcr − κ (RH − RHcr)
(2.8)

proposed by Tompkins and Janisková (2004). The latter differs from the Sundqvist

relationship because of the introduction of a pressure-dependent variance for the

subgrid distribution of cloud cover. The three formulae leads to very similar cloudi-

ness profile given the same parameter RHcr; Fig. 2.5 compares the Slingo and the

Sundqvist formulation when RHcr = 0.7. Indeed, the schemes are very sensitive to
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Figure 2.5: Values of cloud cover computed by the use of the Slingo and Sundqvist
expression, (a) for RHcr = 0.6; (b) for RHcr = 0.8.

the tuning of RHcr. To show this, we report the values of RHcr computed through

linear regression for observed cloud cover at different heights. It’s basically corre-

sponds to the inverse problem, that reads “which value of RHcr should we set to

obtain true cloud cover from the model fields?” The cloud cover is measured in

three different sites by 94 and 35 GHz zenith-pointing radars and data are kindly

provided by the Cloudnet project (Illingworth et al., 2007), that also supplies in-

terpolated values for several parameters from a few NWP models. The relation 2.7
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: RHcr as function of height for different cloud-radar sites using linear re-
gression from NWP models fields: (a) Chilbolton cloud-radar using ECMWF/IFS fields;
(b) Chilbolton cloud-radar using Météo-France/Arpège fields; (c) Cabauw cloud-radar us-
ing ECMWF/IFS fields; (d) Cabauw cloud-radar using Météo-France/Arpège fields; (e)
Palaiseau cloud-radar using ECMWF/IFS fields; (f) Palaiseau cloud-radar using Météo-
France/Arpège fields.
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has been adopted for the computation. Fig. 2.6 shows the mean and the standard

deviation of RHcr for the ECMWF/IFS global model (39 Km of spatial resolution)

and the Météo-France/Arpège global model (24 Km of spatial resolution), for dif-

ferent seasons and for the overall period. It is of interest to note the dependency

of RHcr from several parameters. First, the model resolution plays an important

role given the statistical gridbox-averaged nature of the cloud-cover. Generally, the

higher the resolution, the larger the threshold RHcr for the formation of clouds. In

principle, at very high cloud-resolving resolutions, RHcr is 1 by definition. Smith

(1990) showed that RHcr can be expressed as a function of subgrid covariances of

temperature and specific humidity, and Lopez (2002), using FASTEX aircraft in-

situ measurements of these quantities, showed that RHcr can be 1 to 0.4 ranging

from 1 to several hundreds of kilometres of resolution (Fig. 2.7 shows these results).

Second, a seasonal dependency is found. As expected, in summer months when

Figure 2.7: RHcr computed from subgrid variances of temperature and specific humidity
as function of horizontal resolution using aircraft measurements from FASTEX campaign.
Data from aircraft NOAA-P3 refer to about 800 hPa, while data from aircraft UK-C130
to about 400 hPa. From Lopez (2002).

convective activity is more remarkable, formation of clouds is facilitated and RHcr
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is smaller. Third, vertical discretization and physics can lead to profiles of RHcr

that differ each other. Fig. 2.6 shows how the RHcr profiles differ from a global

model to the other for high-level clouds, where Météo-France/Arpège keeps lower

values while ECMWF/IFS increases again the critical threshold. This is taken into

account in the definition of RHcr for the two NWP models, see Fig. 2.8. However,

a well-known behaviour of the RHcr inherited by both the parameterizations and

proved by a plenty of experimental studies (e.g. Teixeira, 2001), is that cloud cover

cannot be neglected in mid-atmosphere of relative humidities even less than 60%;

therefore, RHcr presents a minimum for mid-level clouds.
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Figure 2.8: RHcr as used operationally at ECMWF (IFS global model) and at Météo-
France (Arpège global model and ALADIN limited area model).

Several experiments have been conducted to attempt to specify a non-constant

profile for RHcr. The aim is to find an expression for RHcr to have cloud cover values

as close as possible to those ones given by a more advanced prognostic scheme, in

particular the Lopez (2002) scheme is used as reference prognostic scheme. The

proposed method consists of 1) choosing reliable predictors for RHcr; 2) performing

a linear regression for computing the multiplicative coefficients to the predictors

that satisfy the Eq. 2.7, assuming that the “true cloud cover” is the one from the

prognostic scheme, and assuming that the errors in the 6 hours forecasts for the
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vertical profiles of humidity and temperature is negligible; 3) recompute the cloud

cover using the predictors and the coefficients for comparison with the prognostic

scheme, considering as reference the expression used by Tompkins and Janisková

(2004), where RHcr = f(η, η2, η3) is a polynomial of third order of the ratio η = p/ps

pressure divided by surface pressure. Several predictors have been tested:

• For taking into account the atmospheric instability, either the Convective

Available Potential Energy (CAPE) or the vertical gradient of the potential

temperature;

• For taking into account the seasonal variability and the ice cloud/liquid water

clouds separation, either the temperature or the an ice-liquid water separation

function κ, given by

κ = 1 − exp
[
− ((T − 273.16)/∆T )2

]
, for T < 273.16

with ∆T set to 15 according to Bouteloup et al. (2005); κ takes 0 for ice or 1

for water;

• For taking into account the vertical profile of RHcr, either a second order or

third order polynomial of the vertical η coordinate;

• For taking into account the role of aerosol concentration in the clouds forma-

tion in different areas, three aerosol species (sea aerosol, land aerosol, soot

aerosol) optical thickness given by the Tegen et al. (1997) dataset.

The predictors are computed using a two-weeks (01 to 15 January 2007) dataset of

ALADIN 6 hours forecast initialised at 00 and 12 UTC using ECMWF initial and

lateral boundary conditions. Different predictors are computed for forecasts ini-

tialised at 00 UTC (valid time 06 UTC) and at 12 UTC (valid time 18 UTC). This

strategy, however, doesn’t lead to significant improvements: Fig 2.9, 2.10 and 2.11

report the RMSE and Mean error and the HR, FAR, POD and ETS scores respec-

tively for some experiments and two different cloud fraction thresholds. These last

scores are computed building a contingency table for different cloud fraction thresh-

old, (0.01, 0.25, 0.50, 0.75, 0.99) and comparing the experiment cloud fraction value

with the one given by the prognostic scheme. The scores are calculated according to

WWRP/WGNE (2007). Except for middle-high clouds where the performance of a

constant RHcr is not accurate enough, according to the comments formerly pointed

for the Cloudnet dataset, the expensive corrective procedure for taking into account

geographical and physical differences in the RHcr definition doesn’t seem worth of

implementation, unless the procedure is refined. More in details, Fig. 2.10 uses a

very low threshold (0.01) in order to ensure the separation between “cloud” and
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“no-cloud” events. The corrective procedure underestimates the number of cloud

occurrences in the low and middle atmosphere. For a larger threshold (as 0.5 in Fig.

2.11), differences between the experiments are much smoother.
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Figure 2.9: RMSE and Mean error at some pressure levels. REF is the pressure-
dependent expression of RHcr from Tompkins; CTRL uses as predictors η, η2, CAPE, T
and sea, land and soot aerosol optical thickness. EXP01 uses vertical gradient of potential
temperature instead of CAPE in CTRL. EXP02 uses the ice-water separation function
instead of T in CTRL. EXP03 adds an additional predictor, η3, to CTRL. Cloud fraction
is multiplied by 103.

2.2.6 Comparison of CloudSat observed cloud fraction with model prog-

nosed and diagnosed cloud fraction

Superobservations computed in 2.2.4 can be compared with NWP model cloud

fractions. This comparison is of interest for assimilating cloud cover data, in order

to point out the ability of the forecast model to reproduce the vertical structure of

clouds. A one-month comparison has been conducted between the CloudSat cloud

fraction super-observations and two cloud cover schemes from the NWP first guess:

one prognostic scheme using the “Lopez microphysics”, and one diagnostic using the

Sundqvist relation (Eq. 2.7) and the Tompkins definition of RHcr. The model fields,

to realistically reproduce an assimilation framework, are 6 hours forecasts Results

show that the model is generally able to reproduce the cloud structures as seen by

CloudSat. Fig 2.12, 2.12 and 2.14 show a good match between the forecast and the

space-borne cloud fractions. Prognosed and diagnosed schemes are able to detect

the presence of cloud system. The mislocation and the underestimation, more con-

siderable in the diagnostic scheme, of model fields compared to observations provide

an attractive perspective for the assimilation of these data. Once more should be
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Figure 2.10: HR, FAR, POD and ETS scores for the cloud fraction threshold 0.01. Same
experiments as in Fig. 2.9.

noted the strongly binary nature of CloudSat observations against smoother cloud

cover fields as seen by the NWP model.

Figure 2.15 also reports the RMSE and the Mean error for different cloud cover

relationships and different definition of RHcr. Although the diagnostic schemes

suffer of biased error, the Root Mean Square Error suggests that the use of simplified

cloud cover schemes is accurate enough for atmospheric cloud characterisation.

2.3 Theory for assimilation of binary cloud cover applied to

CloudSat cloud fractions data

2.3.1 The formalism

So far the theory for the assimilation of binary observations has been developed

for use when only one observation is assimilated (Storto and Tveter, 2006). The

derivation is summarised by the equation

P (Xt | K ∩ Xb) =
P (K | Xt)P (Xt | Xb)

P (K | Xb)
(2.9)
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Figure 2.11: HR, FAR, POD and ETS scores for the cloud fraction threshold 0.50. Same
experiments as in Fig. 2.9.

Figure 2.12: Comparison between CloudSat cloud cover (top), ALADIN forecast, diag-
nostic scheme (middle) and ALADIN forecast, prognosed scheme (bottom) for CloudSat
04.01.2007,00:59 and ALADIN forecast 2007010318+006.
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Figure 2.13: Comparison between CloudSat cloud cover (top), ALADIN forecast, diag-
nostic scheme (middle) and ALADIN forecast, prognosed scheme (bottom) for CloudSat
06.01.2007,12:07 and ALADIN forecast 2007010606+006.

Figure 2.14: Comparison between CloudSat cloud cover (top), ALADIN forecast, diag-
nostic scheme (middle) and ALADIN forecast, prognosed scheme (bottom) for CloudSat
07.01.2007,12:48 and ALADIN forecast 2007010706+006.
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Figure 2.15: RMSE and Mean error at some height levels. REF uses the prognostic
scheme, EXP1 and EXP2 uses Sundqvist formulation for diagnosed cloud cover with RHcr

as used at ECMWF and at Météo-France respectively, EXP2 and EXP3 uses Tompkins
formulation for diagnosed cloud cover with RHcr as used at ECMWF and at Météo-France
respectively.

that for K equal to 0 or 1 becomes

P (Xt | K ∩ Xb) =





H(Xt)P (Xt|Xb)
+∞R
−∞

H(Xt)P (Xt|Xb) dXt

if K = 1,

[1−H(Xt)]P (Xt|Xb)
+∞R
−∞

[1−H(Xt)]P (Xt|Xb) dXt

if K = 0.
(2.10)

In real life the observations can refer to observed or averaged cloud fraction,

the latter defined as the percentage of cloud in a given area (e.g. model gridbox).

The observed value can be read therefore as the result of several ”cloud“/”no-cloud“

binary observations, and the previous formulation has to be extended to the case of

n observations Ki. If these n observations are assumed independent, we obtain

P (Xt | K1 ∩ K2 ∩ ... ∩ Kn ∩ Xb) =

n∏
i=1

P (Ki | Xt) P (Xt | Xb)

n∏
i=1

P (Ki | Xb)
(2.11)

and reminding (2.10)

P

(
Xt | Xb

n⋂

i=1

Ki

)
=

[H (Xt)]
a [1 − H (Xt)]

b P (Xt | Xb)
+∞∫
−∞

[H (Xt)]
a [1 − H (Xt)]

b P (Xt | Xb) dXt

(2.12)
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where a and b are the occurrences of K = 1 and K = 0 respectively, with a+ b = n.

The cloud fraction C can be defined as the number of cloud observations out of the

total number of observations n:

C =
a

a + b
=

a

n
; a = nC; b = n(1 − C) (2.13)

and we have

P

(
Xt | Xb

n⋂

i=1

Ki

)
=

[H (Xt)]
nC [1 − H (Xt)]

n(1−C) P (Xt | Xb)
+∞∫
−∞

[H (Xt)]
nC [1 − H (Xt)]

n(1−C) P (Xt | Xb) dXt

(2.14)

For an infinite number of observations the limit is:

P

(
Xt | Xb

n⋂

i=1

Ki

)
= lim

n→∞

[H (Xt)]
nC [1 − H (Xt)]

n(1−C) P (Xt | Xb)
+∞∫
−∞

[H (Xt)]
nC [1 − H (Xt)]

n(1−C) P (Xt | Xb) dXt

(2.15)

Unfortunately the limit is undetermined; for large values of n,

[H (Xt)]
nC [1 − H (Xt)]

n(1−C) gets asymptotic (see Figure 2.16 for C = 0.8),

and the same happens for the integral at denominator.
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Figure 2.16: Distribution of (C | Xt).

The impact of different number of binary “sub-observations” that constitute one

averaged observation can be showed by simulating a dataset of observations. Start-

ing from a uniform distribution of “true state of the atmosphere” Xt, it is possible

to define the a priori knowledge of the atmosphere (Xb, known as background or
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first guess) that follows a normal distribution with mean Xt and standard deviation

σb. Further, Xt is moved to cloud fraction space through the operator H(Xt), and

n binary sub-observations bi can be defined using n uniform random variables ki:

when ki > H(Xt), the i-th sub-observation bi = 1 otherwise is 0. The total cloud

fraction f is therefore the average of the n bi sub-observations. If X is the relative

humidity, the mathematical formalism reads:

Xt ∼ U(0, 100)

Xb − Xt ∼ N(0, σb)

ki ∼ U(0, 1)

bi = 1 if ki − H(Xt) > 0

bi = 0 if ki − H(Xt) ≤ 0

CF =
1

n

n∑

i=0

bi

From these n sub-observations, the analysis Xa, defined as E

[
Xt | Xb

n⋂
i=1

Ki

]
,

can be computed through Eq. 2.14, and compared with the actual distribution of

occurrences in the simulated dataset.

Fig. 2.17 shows the results when the number of observations is set to 10. The

probability distribution of having a cloud fraction given Xt as computed from 2.14

and as counted in the simulated dataset and the probability (theoretical and exper-

imental) of Xt given the observation and the background are plotted for different

cloud fraction values. Eq. 2.14 is able to describe the probability distributions inter-

ested by the fractional values of clouds; moreover, it’s shown (green line in the plots)

the error in considering only one sub-observation. This is summarised by Fig. 2.18,

that compares the analysis increment (analysis - background) function of observed

cloud fraction for different numbers of sub-observations n.

2.3.2 Discussion

At this point an important question to address is “how many binary sub-

observations generate a cloud fraction observation”. To answer, it should be noted

first of all that from a physical point of view it is sensitive to think of the sub-

observations as observations at cloud resolving resolution (1 to 2 Km) for which the

parameter cloud fraction is meaningless; at the scale where subgrid fluctuations of

water content is negligible, the presence of condensed water is a binary occurrence.

This relies also with the definition of RHcr, as pointed in the previous section of the

Chapter, and can be reasonably pointed that the number of sub-observations to use
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Figure 2.17: Probability of having a cloud fraction given Xt (left) and probability of Xt

given the observation and the background (right) when the number of sub-observations is
10 and background relative humidity is 80%. In black the distribution as counted in the
simulated dataset; in red the theoretical solution of Eq. 2.14; in green the same equation
when only one sub-observation is assumed.

depends on the spatial resolution of the “averaging operator”; in other words, the

further is the spatial resolution of the observations from cloud resolving resolution,

the more we need a greater number of binary sub-observations.

Another aspect of the use of Eq. 2.14, visible through Fig. 2.18, is that such

a decomposition of a cloud fraction observation leads to larger analysis increments.
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Figure 2.18: Analysis increments for a different number of sub-observations; background
relative humidity is 80%.

This depends on the assumption of independence of the sub-observations, each one

of them takes the same weight in the computation of the analysis. The larger the

number of sub-observations, the more important will be the role of the observations

in the analysis; the contribution of the observation probability distribution to the

analysis increases because of the increased sharpness of the forward model: with

many coherent observations the transition from a “no-cloud” event to a “cloud”

event is more sharp.
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Chapter 3

Use of satellite data in ALADIN-HARMONIE

Norway

Summary

The ALADIN/HARMONIE three-dimensional variational data assimilation

system is being implemented at the Norwegian Meteorological Institute. Use of satel-

lite observations is very important to improve numerical weather prediction in high

latitude regions. Our poster will present the implementation of most of the available

satellite data in the ALADIN/HARMONIE-Norway analysis system (microwave:

AMSU-A and AMSU-B/MHS; infrared: Seviri and IASI; GPS: ground-based zenith

total delay). This Chapter will also discuss two ways (the so-called NMC and the

ensemble-based method) of estimation of background error covariances as well as

the use of off-line predictors computation and variational bias correction methods

to correct radiance bias.

This Chapter is based on a work presented at the XVI International TOVS

Study Conference (see Appendix B: Storto A. and Randriamampianina R., 2008).

3.1 Introduction

Within the ALADIN/HIRLAM cooperation agreement, a new assimilation and

forecast system is being developed with the aim of providing a reliable framework for

both research and operational purposes, especially for high resolution applications.

The system has been named HARMONIE (Hirlam Aladin Regional/Meso-scale Op-

erational NWP In Europe), and his forecast models are now used operationally

in many HIRLAM national meteorological services, either using non-hydrostatic

physics at cloud-resolving resolution or hydrostatic physics at synoptic scale. The

Norwegian Meteorological Institute (Met.no) is putting many efforts in building the

assimilation counterpart of the system, whose core is based on the spectral upper-

air three-dimensional variational assimilation (3D-Var) of the ALADIN model, op-
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erational since 2005 at the Hungarian Meteorological Service and at the French

Meteorological Service. The assimilation system (hereafter HARMONIE-3DVar) is

currently used at Met.no mainly for two research projects, the Eumetsat funded

”Assimilation of binary cloud cover” and the IPY-THORPEX that aims to investi-

gate the importance of remote-sensed observations in forecasting polar lows; there

are also plans to operationally run HARMONIE-3DVar in the near future. Basic

configuration of the system consists of using a 6 hours forecast from previous cycle

as background (first guess), i) updating the sea surface temperature (SST) through

the ECMWF SST analysis; ii) extracting and pre-processing all the available and

supported observations; iii) performing a surface assimilation based on the ALADIN

community Optimal Interpolation software (CANARI) to analyse surface parame-

ters over land (skin temperature, soil water content); iv) performing the spectral

upper-air analysis for vorticity, divergence, temperature, specific humidity and sur-

face pressure, v) running the forecast model after proper downscaling of lateral

boundary conditions from the ECMWF global model. The upper-air 3D-Var, that

we will focus on in the rest of the Chapter, supports at the moment all the conven-

tional observations, Atmospheric Motion Vectors, aircraft in-situ observations, mi-

crowave radiances from POESS and Metop platforms, radiances from MSG/SEVIRI

Imager, and, in an experimental configuration discussed separately, also infrared ra-

diances from the Infrared Atmospheric Sounding Interferometer (IASI), Zenith To-

tal Delay derived from ground-based GPS stations (GPS-ZTD), humidity retrievals

from the CloudSat CPR radar. Assimilation of scatterometer observations from AS-

CAT aboard Metop is currently under development. In order to optimally exploit

the information contained in space-borne instruments, which are very important for

limited area assimilation systems, a number of questions should be addressed, such

as channel selections for multi-channel instruments, tuning of observational errors,

choice and implementation of bias correction strategies, assessment of background

error covariances and relative impact of the observing network on analysed fields.

In the following part of the Chapter, these issues will be discussed together with

an overview of the assimilation system and some remarks about the actual use of

some observations; finally, results from sensitivity studies of analysis and forecasts

to different observation groups will be presented as diagnostic tool for understanding

the relative importance of observations in the system.

3.2 Observations in the reference assimilation system

HARMONIE-3DVar currently supports the assimilation of a number of obser-

vations, schematically reported in Table 3.1. The table also presents the average

horizontal thinning distance between assimilated observations. All the conventional
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observations are assimilated (radiosondes, synoptic land and ship stations reports,

buoys and drifting buoys measurements, wind profilers). Additionally, aircraft ob-

servations (AMDAR/AIREP), Atmospheric Motion Vectors (AMV) provided by

EUMETSAT and derived from Meteosat Second Generation satellites (MSG) are ex-

tracted and assimilated, microwave radiances from the Advanced Microwave Sound-

ing Unit (AMSU) and the Microwave Humidity Sounder (MHS) aboard NOAA and

Metop polar satellites are exploited. Only MSG/SEVIRI supplies infrared radiances.

Further to satellite bias correction, also daytime temperature measurements from

radiosondes are bias-corrected through ECMWF flat bias correction values, which

depend on instrument characteristics.

Observations Parameter Thinning
SYNOP Z -
AIREP U, V, T 25 Km
AMV U, V 25 Km
DRIBU, BUOY Z -
EUROPROFILERS U, V -
RADIOSONDES Z, U, V, T, Q -
AMSU-A Tb 80 Km
AMSU-B Tb 80 Km
MSG/SEVIRI 60 Km -

Table 3.1: Observations and horizontal thinning distance used in HARMONIE-3DVar.

Quality control and rejection of observations is carried out through a few steps,

consisting in duplicated reports check, background quality control, redundancy check

and spatial and temporal thinning.

3.3 Satellite radiances assimilation

The observation operator for satellite radiances is the Radiative Transfer for

TOV (RTTOV) in his version 8.5, developed by the Numerical Weather Prediction

Satellite Application Facility (NWP-SAF). All the AMSU-A channels from 5 to

13 from NOAA-15, -16, -18 and Metop are assimilated, excepted channels 5 and

11 from NOAA-15; for AMSU-B, channels 3, 4 and 5 are assimilated from all the

NOAA polar-orbiting satellites and from Metop.

For microwave instruments, bias correction has been performed by applying the

Harris and Kelly (2001) scheme, which uses air-mass and scan-angle predictors to

compute the bias. The predictors chosen are 1000-200 hPa thickness, 100-50 hPa

thickness, skin temperature, integrated water vapour, scan-angle and his square and

cubic power. The coefficients have been computed from a two-months period dataset

of forecasts initialised by dynamical adaptation from the ECMWF global model.

Results from the implementation of variational bias correction scheme will be briefly
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discussed later. A detailed study of innovations and residuals statistics for all couples

channel/satellite separately for each network (00, 06, 12, 18 UTC) is currently under

evaluation, with the aim of blacklisting satellite channels whose observations amount

at certain hours is poor in the computational domain and can cause unreliable

computation of bias correction coefficients. Assimilation of MSG/SEVIRI infrared

radiances takes advantage of the Nowcasting Satellite Application Facility (NWC-

SAF) that is used for brightness temperature recalibration, I/O handling. Cloud

type and cloud top height products, still from NWC-SAF, are used for eventually

black-listing radiances data, according to Table 3.2. Channel 4 is not assimilated

because RTTOV does not reproduce accurately radiances for very broad channels

(Brunel and Turner, 2003), while the ozone channel is not used at all. Possibility to

extend the assimilation of channel 11 also when low-level clouds are detected will be

investigated in the future. Only radiances relative to Meteosat-9 scans starting at

05.45, 11.45, 17.45 and 23.45 UTC are considered, and only one pixel over 4 ( 8 Km

resolution) is retained in the observational database. The air-mass scheme for bias

correction is the same as the one used for microwave radiances, but bias correction

coefficients are assumed latitudinally (along scanline) constant. Radiances that are

far away from Meteosat-9 position (latitude ¿ 65◦ N) are rejected.

Channel Spectral Band Use

4 IR3.9 Monitored
5 WV6.2 Clear-sky and above mid-level clouds
6 WV7.3 Clear-sky and above mid-level clouds
7 IR8.7 Clear-sky
8 IR9.7 Not Used
9 IR10.8 Clear-sky
10 IR12.0 Clear-sky
11 IR13.4 Monitored

Table 3.2: Use of MSG/SEVIRI thermal channels in HARMONIE-3DVar.

Figure 3.1 shows the impact of MSG-2/SEVIRI assimilation through radioson-

des verification scores: the impact is in general slightly positive and, as expected,

humidity fields are the most benefited, especially after 24 hours of forecasts.

An ongoing work is dealing with satellite-specific brightness temperature errors

using diagnostics from the Desroziers method (Desroziers et al., 2005a); partial

results suggest that errors were in general over-estimated and important differences

are found between different satellite errors in a limited area model, e.g. Metop/MHS

diagnosed errors are significantly smaller than NOAA-16/AMSU-B.

75



CHAPTER 3 SATELLITE DATA IN ALADIN-HARMONIE NORWAY

Figure 3.1: Difference of root mean square errors between a reference experiment and
an experiment with SEVIRI data assimilation against radiosonde observations. Where
positive (red), SEVIRI observations have a positive impact.

3.4 Variational Bias correction

Variational bias correction has been implemented and it’s now used for all satel-

lite radiances. Main advantages of such a method are the improved separation be-

tween model and observation contribution to the total bias, and the possibility of

automatically computing bias correction coefficient, otherwise very expensive for

high spectral resolution instruments (i.e. AIRS and IASI). In the Met.no config-

uration, bias coefficients are initialized from previous assimilation cycle and the

departures of from such values are minimised in the 3DVar cost function as addi-

tional term. At the end of the minimization, the coefficients are then suitable for

initialising next assimilation coefficients. At implementation time, this procedure is

iterative, starting from zeroed bias coefficients (cold start), and has been observed

to converge to reliable values (i.e. unbiased observation minus analysis differences)

in less than a one-month period of 6 hourly assimilation. Results (not shown) show

a very positive impact on assimilation statistics and forecasts scores. The use of

coefficients from 24 hours old instead of from the previous 6 hours old cycle to re-

spect network characteristics (amount of radiances and scan-angles distribution in

the LAM domain) is currently under evaluation.

3.5 Importance of the background error covariances assess-

ment

Specification of background error covariances (B matrix) for use in the 3DVar

algorithm may affect the impact of observations, since spatial auto-covariances as

well as cross-covariances between different state parameters lead in turn to different

weights given to observations in the analysis system. In HARMONIE-3DVar we have

obtained background error statistics through the application of two different meth-

ods: the ”NMC” method, which derives error statistics from a dataset of differences
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of couples of forecasts valid at the same time but initialised at different time (we

used 48-24 hours forecasts); the ensemble method that in the Met.no configuration

uses differences of 6 hours ensemble forecasts minus the ensemble mean, using 10

members derived from downscaling ECMWF/IFS ensemble analysis; these ones had

been obtained through observations perturbation (to simulate analysis errors) and

spectral backscatter scheme (to simulate forecast errors) from Isaksen (2007) exper-

iment. In both cases, the B matrix formulation follows Berre (2000), that assumes

isotropic and homogeneous but vertically varying covariances and cross-covariances

computed through multiple linear regression. Main differences between the two

methods rely to the broader vertical correlations of background errors for the NMC

method, excepted at very small horizontal scales. Figure 3.2 shows for instance the

vertical correlations of temperature between level 48 (about 850 hPa) and the other

model levels as function of horizontal scale (wavenumber); statistics retrieved via

the NMC method present a large-scale vertical correlation reaching downward the

surface and upward around 100 hPa. This finding becomes very noticeable in satel-

lite radiances single observation experiments for high-peaking channels that involve

many model levels. Figure Eq. (3.3) reports the temperature analysis increments of

a single observation experiment for channel 9 of AMSU-A (aboard NOAA-18) with

a brightness temperature innovation of 2 K, using an NMC B matrix computed over

three months forecasts in winter (DJF 2006/2007) and an Ensemble B matrix from

downscaled ensemble analysis with 10 members for the period from 20061025 to

20071125. We want to stress that much broader vertical error correlations gener-

ated by applying NMC method cause unrealistic analysis increments at very high

levels, even reaching model top, while ensemble errors do not.

Figure 3.2: Vertical error correlation of temperature between model level 48 and all the
other model levels as function of horizontal scale. Left and right panel show the statistics
derived via the NMC method and the ensemble method respectively.
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3.6 Impact on analysis

As index to study the relative impact of observations in the assimilation system,

we use Degrees of Freedom for Signal (DFS, see e.g. Cardinali et al., 2004), that is

defined as the derivative of the analysis increments in observation space with respect

to the observations. In practice, it is computed through a randomisation technique

(Desroziers et al., 2005b).

Figure 3.3: Cross-sections of temperature analysis increments for brightness temperature
single-observation experiments (2 K innovation for AMSU-A channel 9 aboard NOAA-18).
Left and right panel show the increments using the NMC method and the ensemble method
statistics respectively.

The perturbation is performed using an unbiased Gaussian random error whose

standard deviation equals the observation error; 6 assimilation cycles, 4 days far each

other to ensure ergodicity of statistics, have been rerun with perturbed observations.

DFS for each observation have been grouped into parameters and types categories

to provide information about the weight of observations in the assimilation system.

It is also possible to define Relative Degrees of Freedom for Signal as DFS divided

by the number of observations in the subset, which indeed represent an index of

the theoretical weight given to each single observation. Results (Figure 3.4) show

the large importance of wind observations, emphasising the role of aircraft and

AMSU-A observations in the HARMONIE-3DVar system. Use of variational bias

correction increases the weights given to observations, not only for remote-sensed

observations. Humidity measurements and humidity-related observations (SEVIRI

Water Vapour channels, AMSU-B) are very important in relative terms, but less

crucial in the actual assimilation system because of the small amount, compared to

other observations.

3.7 Experimental observations

The assimilation of a number of experimental and new observations is under de-

velopment within the HARMONIE-3DVar system at Met.no. We summarise in the

78



CHAPTER 3 SATELLITE DATA IN ALADIN-HARMONIE NORWAY

Figure 3.4: Absolute and relative DFS. Red bars refer to Harris and Kelly bias correction
scheme experiment for AMSU and SEVIRI; green bars for variational bias correction
experiment.

sequel strategies and main results. The reader can refer to Randriamampianina and

Storto (2008) in these conference proceedings for issues concerning the assimilation

of IASI radiances.

3.7.1 Zenith Total Delay from ground-based GPS stations

Delay of GPS satellite signal measured when ground-based stations point at

zenith contains information about the vertical profile of atmospheric refractivity,

providing therefore information about temperature profile and integrated vertical

moisture content. The observation operator comes from Poli et al. (2007) and links

the control state with the delay processed by different centres throughout Europe.

Flat bias correction is applied to a number of couples of stations and processing

centres whose data supply is regular and whose background departure follows a

Gaussian probability density function. Observation errors, specified separately for

each station, have been obtained from inflating down empirically the standard de-

viations of observation minus guess differences and diagnostic statistics (not shown

here) suggest that they have been however overestimated. After having screened ir-

regular, unreliable and duplicated stations, 54 stations have been selected inside the

HARMONIE-3DVar domain, and the impact of those observations has been studied

over a one-month assimilation period. Results (Figure 3.5) show a slightly positive

impact of GPS-ZTD, especially for mass fields.

Possibility to improve bias correction procedures by the use of a predictors-

based scheme for taking into account observation operator error derived by model

orography displacement and other sensitive parameters is currently under evaluation,

together with a more robust definition of observation errors.
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Figure 3.5: Difference of root mean square errors between a reference experiment and
an experiment with GPS-ZTD data assimilation against radiosonde observations. Where
positive (red), GPS-ZTD observations have a positive impact.

3.8 Summary

As the ALADIN/HARMONIE three-dimensional variational assimilation is be-

ing developed at the Norwegian Meteorological Institute, a lot of scientific choices

and practical issues have to be coped with. A brief overview of the system, able

to assimilate both conventional and remote-sensed data, has been given. Satellite

observations are very important for enhancing forecast verification scores: we are

now assimilating ATOVS/AMSU-A, AMSU-B and MHS radiances by using the RT-

TOV transfer model, and MSG/SEVIRI infrared radiances pre-processed through

the NWC-SAF software. Detailed selection of channels for each satellite at each net-

work (0, 06, 12, 18 UTC) is a delicate task in limited area assimilation systems, and

will be completed soon. Comparisons between different bias correction strategies

has been dealt with: variational procedure leads to easy bias correction procedure

for high spectral resolution sounders, and shows positive impact in terms of both

unbiased residuals (analysis minus observation) statistics and verification scores.

Use of ensemble methods for estimating background error covariances provides less

broad vertical correlations than the ones derived via the NMC method. This avoids

that high-peaking channels generate unrealistic analysis increments at many vertical

levels, reaching the model top. The study of the impact of observation subgroups on

the analysis and forecasts has been performed by using randomisation techniques:

AMSU-A and wind measurements, especially from airborne instruments, result the

most important observations as seen from the analysis, while the impact on fore-

casts, computed using an RMSE-based cost function, shows the great importance of

AMSU-A radiances for all dynamical parameters at all forecast ranges; aircraft and

AMV data seem to affect significantly short-range forecasts for temperature fields,

while AMSU-B plays an important role for humidity fields. Promising results have

been obtained from the assimilation of zenith total delays from ground-based GPS

stations.

80



CHAPTER 4 ASSIMILATING HUMIDITY PSEUDO-OBSERVATIONS

Chapter 4

Assimilating Humidity Pseudo-observations De-

rived from the Cloud Profiling Radar Aboard

CloudSat in ALADIN 3D-Var

Summary

This Chapter describes an experimental procedure for assimilating CloudSat

Cloud Profiling Radar (CPR) observations in ALADIN 3D-Var through the use

of humidity pseudo-observations derived from a one-dimensional Bayesian analysis.

Cloud data are considered as binary occurrences (“cloud” versus “no-cloud”), which

makes the approach feasible to be extended to other cloudiness observations, and to

any other binary observation in general. A simple large-scale condensation scheme

is used for projecting the prior information from a Numerical Weather Prediction

model into cloud fraction space. Verification over a one-month assimilation test

period indicates a clear benefit of the pseudo-observation assimilation scheme for

the limited CloudSat CPR data set, especially in terms of improved skill scores for

dynamical parameters like geopotential and wind.

This Chapter is based on a paper submitted to Meteorological Applications (see

Appendix B: Storto A. and Tveter F.T., 2008).

4.1 Introduction

The quality of the humidity analysis in Numerical Weather Prediction (NWP)

models is crucial for the correct prediction of local weather and severe weather

events, especially in short-range forecasts. Within the global observing system, the

only instruments which provide in-situ humidity measurements are the hygrometers

that meteorological sondes are equipped with, although other observation types,

such as for instance satellite radiances and atmospheric path delay of GPS satellite

signals, contain important information about humidity distribution and may have

significant impact on medium-range forecasts, also on wind fields (Andersson et al.,
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2007). Spaceborne infrared sounders measuring in water vapour absorbing bands

contain information about vertical moisture content for clear sky conditions. Un-

fortunately, the assimilation of radiances in cloudy conditions is still problematic

because of the non-linearity of the observation with respect to the state variables

and the inaccurate scattering parametrisation in rapid radiative transfer models

(RRTMs). Hence, assimilation systems often do not exploit satellite observations

in cloudy conditions, that are all the more important for correctly forecasting se-

vere weather events (McNally, 2002). Several attempts are currently being made to

address the RRTMs limits in cloudy conditions (see for instance Chevallier et al.,

2004).

Cloud cover observations generally contain useful information about the hori-

zontal and vertical structure of the humidity fields, but they are usually not assim-

ilated in NWP models although they are exploited by duty forecasters in subjec-

tive forecasting and in nowcasting systems (Golding, 1998). Assimilation of cloud

cover observations has been shown to have a positive impact when data source are

nowcasting-derived cloud products. At the U.K. Meteorological Office (UKMO),

three-dimensional cloud fraction data derived from MOPS, the Moisture Observa-

tion Pre-processing system (Wright, 1993), have been assimilated in the Met Office

assimilation system (Macpherson et al., 1996) via a nudging scheme. Recent efforts

are addressed to move these observations into the variational assimilation scheme

(Renshaw, 2007). MOPS data are generated by the combined use of Meteosat in-

frared sounder, ground-based synoptic stations (SYNOP) reports for cloud base

height and radar data for adjusting the cloud ice-liquid water separation. Bene-

fits of assimilating MOPS cloud cover data are evident especially in terms of cloud

octas verification, at least up to 18 hours of forecasts. At the European Centre

for Medium-Range Weather Forecasts (ECMWF), Janisková et al. (2002a) have

shown the possibility of a 1D-Var + 4D-Var assimilation scheme for cloud proper-

ties and radiative fluxes observations from the Atmospheric Radiation Measurement

(ARM) programme by correcting temperature and specific humidity profiles; this

two-step approach has been adopted by Chevallier et al. (2002) for cloud-affected

radiances from ATOVS radiometers. Lopez et al. (2006) assessed this strategy also

with radar reflectivities, ground-based precipitation measurements and GPS total

column water vapour retrievals, adding the temporal dimension as well (2D-Var).

At the French Meteorological Service (Météo-France) experimental assimilation of

humidity pseudo-profiles (Guidard et al., 2006) derived from Meteosat nowcasting

products has been performed during the MAP campaign, showing a positive im-

pact on humidity fields and precipitation forecasts, in terms of both location and

intensity. Satellite cloud observations have been also successfully used to adaptively

tune the cloud schemes parameters (Norris and da Silva, 2007), and Benedetti et al.
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(2003) demonstrated the benefits of assimilating cloud-radar reflectivities in a cirrus

model to correct the size distribution of ice-cloud crystals.

In April 2006 the U.S. National Aeronautics and Space Administration (NASA)

launched the CloudSat satellite, equipped with an on-board 94-GHz radar, the Cloud

Profiling Radar (CPR). Detection of clouds by using millimeter-wavelength radars

has already been demonstrated by Pazmany et al. (1994); Clothiaux et al. (1995);

Babb et al. (1998); Kollias et al. (2007) but the CPR is the first spaceborne radar

devoted to cloud systems studies. The CloudSat mission (Stephens et al., 2002) aims

at improving the knowledge of microphysical composition of clouds and providing

very accurate observations for the validation and verification of cloud schemes in

NWP models. By detecting the vertical structure of clouds, the CPR radar also offers

a unique dataset of spaceborne radar echo powers that can be used for detecting

cloud distributions at a very high resolution, both along the satellite track and on the

vertical. Such cloud data can be therefore used also for assimilation purposes, and

this Chapter aims to demonstrate the benefits of assimilating cloud observations

from CloudSat. However, dissemination of CloudSat Level 1 data has a delay of

about 6 hours, and the exploitation of CPR observations is therefore possible in

experimental mode only. The study of the potential of cloud cover observations from

the Cloud Profiling Radar is also of interest for both evaluating the assimilation of

cloud fraction observations and designing next-generation instruments for low Earth

orbit satellites. Another joint NASA-Centre National d’Etudes Spatiales (CNES)

mission, Calipso, has started to provide Lidar measurements useful for detecting

high-level thin clouds and aerosol concentrations, in synergy with CloudSat. Calipso

data and derived products will not be considered in this study.

The Norwegian Meteorological Institute (Met.no) has an ongoing project for the

development of assimilation techniques for cloudiness information. The main goal

is to establish a theory for assimilating cloud observations which can be applied to

several spaceborne platforms. The approach is to use cloud fraction observations in

a pre-processing task to retrieve humidity pseudo-observations (also called humidity

retrievals) suitable for direct assimilation in Numerical Weather Prediction systems

via variational data assimilation methods.

The assimilation system used in this study is not the Met.no operational

HIRLAM 3D-Var (Gustafsson et al., 2001) but the ALADIN 3D-Var (Fischer et al.,

2005) assimilation and forecast system in its quasi-operational configuration. This

system already supports the assimilation of a number of conventional and remote-

sensed observations and the analysis and forecasts performances have already been

evaluated over a long period showing a reliable NWP framework. After the intro-

duction, this Chapter consists of 5 sections that describe respectively, i) an overview

of the assimilation strategy, ii) the Bayesian theory behind the assimilation scheme
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and the cloud fraction observation operator, iii) the practical utilisation of CloudSat

data and the definition of observation errors for use in 3D-Var, iv) the verification

results from a one-month assimilation period and an illustrative case for evaluating

the impact of CloudSat observations.

4.2 Assimilation strategy

The motivation for assimilating cloud cover observations instead of raw radar

return power data stems from the desire to establish a theory for assimilating cloud

data, which in principle can be applied to several cloud products.

Unless important assumptions in variational data assimilation theory are ne-

glected, cloud observations can not be directly assimilated in existing variational

data assimilation algorithms. The cloud observation error distributions are non-

Normal, and the relationship between the observation and the atmospheric state

(humidity and temperature) is very non-linear. Zou (1997) showed that for “on/off”

processes such as cloud formation and precipitation, important errors in the lin-

earised (tangent-linear) observation operator, and in his adjoint model for the gradi-

ent computation, arise when the full non-linear model is not continuous at switching

points. This is even more critical when assimilating “no-cloud” occurrences, which

correspond to a large range of humidity values. To overcome such problems without

loss of information and keeping a rigorous derivation, a two-step approach consist-

ing of a one-dimensional Bayesian analysis followed by three-dimensional variational

assimilation is used. Note that other approaches have been investigated for assim-

ilating cloud observations in a variational framework, for instance by artificially

modifying the cloud cover observation operator to have a continuous derivative for

all the humidity range (e.g. Wu and Smith, 1992) or by retaining only cloud obser-

vations corresponding to humidity values greater than the condensation switching

value, and thus computing the observation contribution to the 3D-Var cost function

in relative humidity space instead of cloud fraction observation space (Renshaw,

2007).

The procedure chosen for assimilating CloudSat observations consists of sev-

eral steps through which the received echo powers measured by the Cloud Profiling

Radar are converted into profiles of cloud fraction, then a thinning procedure is

applied to those data in order to reduce the number of total observations and min-

imise the horizontal correlation of observation errors. Cloud fraction data are used

by a Bayesian analysis, which also takes advantage of the a priori knowledge of

the atmosphere via a 6 hours forecast (background) from previous assimilation and

forecasts cycle to retrieve pseudo-observations of relative humidity. The pseudo-

observations are subsequently used in the three-dimensional variational assimilation
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Figure 4.1: Schematic illustration of data sources, tasks and outputs performed during
the assimilation algorithm. Square boxes represent data (observations and first guess
fields) used in the scheme, while oval-shaped boxes represent processing and computational
steps.

system, together with conventional and other remotely sensed observations. The

Bayesian analysis that generates pseudo-observations of humidity assumes no spa-

tial correlation among CloudSat observations neither in the vertical, nor along the

satellite track, thus performing humidity retrievals layer by layer. The vertical and

horizontal thinning does however take the spatial distribution of observations into

account. Note that the background is used twice during the assimilation algorithm,

which leads to humidity pseudo-profiles with errors theoretically correlated with

the background field errors. This is common practise when a 1D-Var + (3)4D-Var

scheme is implemented (e.g. Janisková et al., 2002a). Figure 4.1 shows schematically

the flow-chart of the assimilation steps as described above. The illustration does

not comprise the thinning procedure and the quality control task which take place

in between the pre-processing algorithm and 3D-Var.

Though the control vector of the 3D-Var minimisation is formed by vorticity,

divergence, temperature, specific humidity and logarithm of surface pressure, all

in spectral space, pseudo-observations derived from CloudSat are assimilated as

relative humidity data. This choice resides on the observation operator (introduced

in section 4.3) which is based on a cloud cover-relative humidity relationship, and

also reflects the will of using the full three-dimensional background-error covariances

of the 3D-Var system to divide the pseudo-observation information into temperature
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and specific humidity contributions.

4.3 The Bayesian analysis

In data assimilation (Bayesian Recursive Estimation), a model of the probability

distribution of the state of the atmosphere given the observations and an a priori

estimate of the atmosphere (i.e. a short-range forecast) is used to identify the analysis

that gives the best mean squared error verification scores for the resulting forecasts.

Assuming for simplicity that the forecast model error is unbiased, and that the

analysis error is linearly propagated forward in time by the forecast model, the

problem can be reformulated as a minimum variance analysis problem.
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Figure 4.2: Cloud fraction - relative humidity relationship adopted in the Bayesian
analysis: (a) Cloud fraction values as function of humidity for case rcr = 0.7 (800 hPa);
(b) vertical profile of rcr.

According to Bayesian decision theory, the minimum variance analysis, xa, is

given by the expected state of the atmosphere,

xa = E
[
xt | y ∩ xb

]
(4.1)

where xt is the true state of the atmosphere, y is the observation vector, xb is the

a priori estimate of the atmospheric state, namely the background9, and E [...] is

the expectation operator. Conventional observations and the background can be

modelled with Normal observation errors. In this case, and according to Lorenc

(1986), the expected state of the atmosphere in Eq. (4.1) corresponds to the most

9As recommended by Ide et al. (1997), we use the superscript to distinguish between background,
analysis and true state of the atmosphere.

86



CHAPTER 4 ASSIMILATING HUMIDITY PSEUDO-OBSERVATIONS

probable state of the atmosphere, which also can be found by minimising the cost

function

J = − ln
(
p
(
xt | y ∩ xb

))
.

This cost function approach is commonly referred to as variational data assimila-

tion. Note that when the observation error is very non-Normal, the variational data

assimilation approach can not be used directly since the minimisation algorithms

rely on a quadratic cost function (i.e. a Normal PDF) to converge.

4.3.1 Theory behind the Bayesian analysis

The cloud fraction observation violates a very basic assumption in variational

data assimilation systems, namely that the probability density function (PDF) for

the observation given the true state of the atmosphere is a Normal PDF. One way of

negotiating the cloud fraction observations into variational data assimilation systems

is by reformulating cloud observations into pseudo-observations based on the cloud

fraction observations,

yp ≡ E
[
xt | k ∩ xb

]
=

∫
xtp

(
xt | k ∩ xb

)
dxt (4.2)

where k is a single cloud fraction observation that has the value 0 (no-cloud) or 1

(cloud), and then assimilating these pseudo-observations. Next we wish to express

p
(
xt | k ∩ xb

)
in terms of the probability distribution for having the observation

given the true state of the atmosphere, p (k | xt), and the probability distribution

for having the true state of the atmosphere given the background, p
(
xt | xb

)
.

We use a simplified model for the probability of having the true state given the

first guess, p
(
xt | xb

)
, that only depends on the state variables in the observation

operator, and we assume that this distribution is Normal,

p
(
xt | xb

)
∼ exp

[
−

1

2
(xb − xt)TB−1(xb − xt)

]
,

where B is the background-error covariance matrix. If we assume that the

observation- and the background-error are independent, i.e.

p
(
k ∩ xb | xt

)
= p

(
k | xt

)
p
(
xb | xt

)
,
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the PDF of k conditioned to xb and xt does not depend on xb,

p
(
k | xb ∩ xt

)
=

p
(
k ∩ xb ∩ xt

)

p (xb ∩ xt)

=
p
(
k ∩ xb | xt

)
p (xt)

p (xb | xt)p (xt)

=
p (k | xt)p

(
xb | xt

)

p (xb | xt)

= p
(
k | xt

)
,

where the Bayes Theorem has been used. Applying again the Bayes Theorem and

using the previous result yields

p
(
xt | k ∩ xb

)
=

p
(
xt ∩ k ∩ xb

)

p (k ∩ xb)

=
p
(
k | xb ∩ xt

)
p
(
xt ∩ xb

)

p (k ∩ xb)

=
p (k | xt)p

(
xt ∩ xb

)

p (k ∩ xb)

=
p (k | xt)p

(
xt | xb

)

p (k | xb)
.

The denominator in the expression above does not depend on the true state of

the atmosphere, being merely a normalisation factor. Note that if it is difficult to

find any relationship between the observation and the model state, then p (k | xt)

becomes almost flat (constant). In this case we see that the pseudo-observation is

equal to the background, and the observation provides no additional information to

the analysis.

We define the observation operator H(xt) ≡ p(k = 1 | xt) and the complement

p(k = 0 | xt) = 1 − H(xt). In doing this, we implicitly assume that the cloud

cover diagnosed by the observation operator represents the probability of having a

cloud, and this is commonly adopted in almost all cloudiness formulations (see e.g.

Tompkins, 2005 for a review of cloud cover parameterizations). If the probability

distribution p
(
xt | k ∩ xb

)
only depends on a limited number of state variables,

Eq. (4.2) can be explicitly solved. Note that there is a linear relationship between

the pseudo-observation and the state of the atmosphere. The pseudo-observation is

therefore quite suitable for use in variational data assimilation if it can be associated

with a Normal observation error.

Inspired by the continuous function for H(xt), one can construct a non-binary

cloud fraction (CF ) observation by defining this as a spatial average of n independent
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neighbouring binary cloud observations, ki, i.e.

CF =
1

n

n∑

i=1

ki. (4.3)

Using the observation operator definition above gives

p

(
n∑

i=1

ki | x
t

)
=

(
n∑
ki

)
p

(
n⋂

i=1

ki | x
t

)

=

(
n∑
ki

)[
H
(
xt
)]P

ki
[
1 − H

(
xt
)]P

(1−ki) ,

p

(
xt | xb ∩

n∑

i=1

ki

)
=

[H (xt)]
P

ki [1 − H (xt)]
n−

P
ki p

(
xt | xb

)
∫

[H (xt)]
P

ki [1 − H (xt)]n−
P

ki p (xt | xb) dxt

(4.4)

where the omitted summation limits are from i = 1 to n. Note the binomial coef-

ficient
(

nP
ki

)
which briefly appears in the derivation. In practise, considering only

one observation (i.e. n = 1 so that
∑n

i=1 ki = CF ), the previous equation provides

an explicit formula for the computation of the PDF for the true state of the atmo-

sphere conditioned to the cloud fraction CF and to the background. Note finally

that having n equal independent cloud observations corresponds to having a single

cloud observation that is very accurate. We observe in this case that the “effective”

observation operator, [H (xt)]
n
, is more “sharp” than a single observation operator,

H (xt), as indicated earlier, namely that the uncertainty in the binary observation

is accounted for by the observation operator itself.

4.3.2 The cloud fraction observation operator

The observation operator H(xt) is used to compute the probability of having

a cloud given the “true” value of the control vector. We have chosen a simple

diagnostic expression for H(xt) which depends on the relative humidity r, as in the

large-scale condensation scheme developed by Sundqvist et al. (1988), summarised

by

H
(
xt
)

= 1 −

√
1 − r

1 − rcr
(4.5)

where rcr is the relative humidity threshold which represents the switching value for

the clouds to exist. The reason behind the choice of Eq. (4.5) resides on the need of

using a simple and cheap diagnostic scheme for cloud cover, involving as few model

parameters as possible; the use of more sophisticated schemes is however possible

and should be investigated in the future. Similar formulations of the cloud fraction

relationship have been extensively used as diagnostics expressions in several global

models (by Slingo, 1987 for the ECMWF global model, and by Janisková et al.,
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Figure 4.3: Example of cloud fraction intercomparison between the CloudSat observed
cloud fraction (top panel), the Sundqvist diagnostic scheme (middle panel) applied to a
6-hour forecast, and the prognostic microphysical scheme (Lopez, 2002) (bottom panel)
from a 6-hour forecast. The Sundqvist diagnostic scheme is used as observation operator
for computing the humidity pseudo-observations.

2002b later for assimilation purposes; by Smith, 1990 for the UKMO Unified Model);

Wood and Field (2000) showed that such parameterizations are in good agreements

with aircraft data. Recently, Tompkins and Janisková (2004) proposed a large-scale

condensation scheme for data assimilation purposes that uses the same equation for

the cloud fraction as in Eq. (4.5) with an additional parameter to take into account

the vertically-varying standard deviation for the rcr parameter.

Estimation of the rcr threshold is a delicate task; the existence of such a thresh-

old originates from the statistical meaning of cloud fraction in an NWP model, where

clouds-related processes are typically sub-grid ones, and the grid-point humidity is

the cloud fraction averaged sum of a saturated air moisture content and an unsat-

urated one. As shown by Lopez (2002) and Tompkins (2003) through the study

of temperature and humidity subgrid variances from aircraft in-situ observations,

the humidity threshold is therefore strongly dependent on the model resolution, as
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Figure 4.4: Profile of background-error standard deviation of specific humidity for use
in the Bayesian analysis. Full line refers to a summer three-month dataset (JJA); dashed
line refers to a winter threemonth dataset (DJF).

it should equal 1 at cloud-resolving scale by definition and decrease with the res-

olution. Seasonal variability does also affect the value for what regards convective

activity and ice-liquid separation of cloud water. Finally, several observations cam-

paigns (Walcek, 1994 and Teixeira, 2001) showed the vertical dependence of rcr,

that typically reaches a minimum in the middle atmosphere, where clouds can form

even for relative humidity values smaller than 60%. Our choice of rcr has been

empirically tuned to match as close as possible the model cloud fraction prognostic

scheme (Lopez, 2002), following also suggestions in Bouteloup et al. (2005) for model

physics implications at high troposphere, leading to the expression:

rcr =





0.55 if p < 400hPa

9.72 · 10−7p2 − 7.78 · 10−4p + 7.06 · 10−1 if p > 400hPa

with p being pressure in hPa. Sundqvist et al. (1988) also took into account oro-
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graphic effects, which are not considered here, by decreasing rcr over land by empiri-

cal small values. It is interesting to note that Norris and da Silva (2007) assimilated

satellite cloud observations not to correct humidity fields but to adaptively tune

the critical relative humidity values in the large-scale condensation parametrisation.

The observation operator at a fixed level and the rcr definition are plotted in Figure

4.2.

Cloud fraction profiles calculated from the diagnostic model in Eq. (4.5) have

been extensively compared with the forecast model prognostic scheme and with

CloudSat observations, and show a good agreement especially in terms of cloud

location. Nevertheless, the diagnostic model, because of its statistical nature, un-

derestimates the cloud cover, if compared against for instance the radar observations,

which measure a punctual quantity and are strongly binary. An example of inter-

comparisons between cloud observations, the forecast model prognostic cloud cover

and the diagnosed cloud cover is given in Figure 4.3.

4.4 Use of CloudSat observations

The CPR aboard CloudSat is a 94-GHz nadir-pointing radar. It therefore pro-

vides cross-sections of return power along the satellite track. Clothiaux et al. (1995)

showed that cloud radar operating at 94 GHz are able to detect almost all types

of atmospheric hydrometeors excepted very high and thin clouds (cirrus) and has

some attenuation problems when precipitating clouds are present.

4.4.1 Pre-processing of CloudSat data

The cloud detection procedure is a simplified algorithm from Clothiaux et al.

(1998), for which cloud fraction is calculated from the ratio between the net return

power and the estimated standard deviation of noise power, and it reads

CF =





1 if PT − PR − PN > k1σn

PT−PR−PN−k0σn

(k1−k0)σn
if k0σn < Pr − Pn < k1σn

0 if PT − PR − PN < k0σn

(4.6)

where PT is the transmitted radar power, PR is the received echo power (return

power), PN and σn are respectively the mean and the standard deviation of the noise

power, estimated over a number of stratospheric bins assumed to be hydrometeors-

free (Marchand et al., 2008). k1 and k0 are empirically tuned parameters. The

previous algorithm has been validated against Level-2 CloudSat products, which also

uses a spatial box-filter to improve the hydrometeors detection (Marchand et al.,

2008), and against combined CloudSat-Calipso-MODIS products provided by the

92



CHAPTER 4 ASSIMILATING HUMIDITY PSEUDO-OBSERVATIONS

CloudSat Data Processing Center (CDPS) of the Cooperative Institute for Research

in the Atmosphere (CIRA). The cloud fraction detection algorithm also comprises

a surface clutter filter, that takes use of a CDPS estimated flat surface reflectivity

profiles (Marchand et al., 2008) with a joint control among neighbouring radar pixels

when the satellite profile refers to complicated orography. Despite the received echo

powers delivery delay, the cloud product generated by Eq. (4.6) runs operationally

at Met.no providing additional validation information for on-duty forecasters.
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Figure 4.5: Example of humidity pseudo-observations from the Bayesian analysis of
CloudSat cloud fraction. Left panel: comparison between first guess (grey line) and
CloudSat-derived observations (black line) in cloud fraction space; right panel: relative
humidity profiles of first guess (grey line) and pseudo-observations after the Bayesian
analysis (black line).

Cloud cover data derived from Eq. (4.6) are spatially averaged in order to

make the observation resolution consistent with the one of the model, as CloudSat

scans the atmosphere at an approximate resolution of 2.5 Km along the satellite

track, while the model resolution is of 11 Km. This procedure also reproduces the

statistical average of cloud fraction in a NWP model, where cloud-related processes

are typically sub-grid phenomena. Equations (4.2) and (4.4) are applied to CloudSat

cloud cover data to retrieve humidity pseudo-observations, assuming only one binary

observation (
∑n

i=1 ki = CF ). In using Eq. (4.4), background errors are assumed

vertically and horizontally uncorrelated, and humidity errors standard deviation are
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computed through the NMC method (Parrish and Derber, 1992) using 48 - 24 hours

forecasts differences for two three-months periods relative to winter and summer

seasons (Figure 4.4); error values for intermediate months are interpolated.

Quality check and vertical thinning of humidity pseudo-observations retain only

one observations each 50 hPa on the vertical, and which does not deviate more than

0.95 from the first guess in cloud fraction space or 3 times the background-error

standard deviation in humidity space. Figure 4.5 shows an example of Bayesian

analysis, in particular in the situation of dramatic discrepancy between observed

and background cloud profiles; on the left panel a comparison between CloudSat

cloud fractions and the background-diagnosed cloud cover is presented, while on the

right panel the analysed profile of relative humidity is plotted together with the

background profile. Note that in the middle and high atmosphere (in the figure be-

tween 200 and 300 hPa), inconsistencies between the different cloud cover schemes

in the forecast model and in the Bayesian analysis lead to unjustified analysis in-

crements; however, these situations refers to observations minus guess differences

equal to 0 in cloud cover space, and pseudo-observations of humidity are rejected in

such a case. This approach also reduces redundancy of the background information

in 3D-Var. Further, CloudSat data above 200 hPa are not used in order to avoid

problems rising from the possible missed detection of very high and thin clouds,

which as mentioned earlier is a well-known weakness in cloud detection based on

94-GHz radars.

4.4.2 Errors specification for use in 3D-Var

Humidity pseudo-observations derived from CloudSat are suitable for direct

assimilation in variational assimilation systems. Observation errors for such ob-

servations are assumed spatially uncorrelated and are computed following a Monte

Carlo approach. The analysis is computed for different values of simulated back-

ground and CloudSat cloud fractions perturbed with an unbiased Normal error. The

background standard deviation has been set equal to the NMC-derived values. The

CloudSat cloud cover observation error is calculated from Eq. (4.6) through prop-

agation of covariances, assuming that cloud fraction errors are only caused by the

uncertainty in the power noise estimation:

σ2
CF = σ2

PN

(
∂CF

∂PN

)2

+ σ2
PR

(
∂CF

∂PR

)2

+ σ2
PT

(
∂CF

∂PT

)2

≃ σ2
PN

(
∂CF

∂PN

)2

≃ 0.044,

σ2 being the variance. An example of an error profile is given in Figure 4.6 for a

clear-sky background profile, as a function of pressure and CloudSat cloud cover

observation. It shows that the closer the observed cloud fraction is to 0, the larger
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Figure 4.6: Humidity pseudo-observations errors (relative humidity, %) from Monte
Carlo simulations as function of pressure and observed cloud fraction. The background
profile refers to a mid-summer clear-sky atmosphere.

the error is, because the bigger the uncertainty in the humidity pseudo-observations

is in the absence of clouds, which can allow the humidity to range from 0 to the

critical threshold. Note that the use of the Monte Carlo method is feasible because

humidity pseudo-observations can be explicitly computed. Assuming that cloud

fraction errors only depend on the estimation of noise power standard deviation and

considering Eq. (4.6) as a “perfect” algorithm leads in general to an underestimation

of pseudo-observation errors.

4.4.3 Single observation experiments

The effects of CloudSat pseudo-observation assimilation are initially studied in

single observation experiments. Two cases are compared: i) a non-cloudy obser-

vation in combination with a cloudy background, leading to a negative humidity

analysis increment (EXPSO1); ii) a cloudy observation in combination with a clear-

sky background, leading to a positive humidity analysis increment (EXPSO2). Table

4.1 reports observed values of cloud fractions, innovations and residuals10 at obser-

vation location for both the experiments, while Figure 4.7 shows the cross-sections

of the analysis increments for the two single observation experiments, for tempera-

10Analysis increments in observation space.
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Figure 4.7: Single observation experiments: cross-sections of analysis increments along
the meridian correspondent to the observation location (-4.2 W) for 9 degrees latitude
in both north and south direction: (a) Temperature for EXPSO1; (b) Temperature for
EXPSO2; (c) U-wind for EXPSO1; (d) Uwind for EXPSO1; (e) Specific Humidity for
EXPSO1; (f) Specific Humidity for EXPSO2. Contours are plotted every 0.05 K, 0.10 m
s-1 and 0.025 g Kg-1 for temperature, u-wind and specific humidity respectively; full lines
correspond to positive increments while dashed lines to negative increments. Vertical axis
is the pressure in hPa.

ture, u-component of horizontal wind, and specific humidity. One can notice that

according to the humidity retrieval error definition, the closer the observation is to

a “no cloud” event, the smaller the impact is on the analysis. This is an important
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EXPSO1 EXPSO2
Pressure (hPa) 324.32 399.20
Observed Cloud Fraction 0.103 0.528
Background Rel. Hum. (%) 88.01 31.95
Background Cloud Fraction 0.484 0.000
Rel. Hum. Pseudo-observation (%) 71.43 70.70
Rel. Hum. Pseudo-observations Error (%) 17.05 8.07
Rel. Hum. Innovations (%) -16.58 38.75
Rel. Hum. Analysis Increment (%) -12.83 35.16

Table 4.1: Single observation experiments: pressure, CloudSat-observed cloud fraction,
background values, pseudo-observation from the Bayesian analysis and observation minus
guess and observation minus analysis within the 3D-Var.

feature of our approach: though all the cloud information are used, a very different

and asymmetric weight is given to them, depending primarily on the fact that a

non-cloudy observation contains less information than a cloudy observation, or, in

other words, an observation which corresponds to moist-unsaturated air is less infor-

mative than an observation corresponding to moist-saturated air. The background

constraint spreads the observation minus background increments into the fields of

the analysed variables (vorticity, divergence, temperature and specific humidity)

and it is important to notice that the pseudo-observations directly modify the spe-

cific humidity and temperature fields, and indirectly, the wind fields (Berre, 2000).

In particular, the background-error covariance matrix (not shown here), computed

via the “NMC-method”, has a strong negative vertical correlation of temperature

throughout the troposphere, while the temperature-humidity coupling shows a neg-

ative cross-correlation in the very low atmosphere and a positive cross-correlation

from 900 to 500 hPa and negligible above. As an important consequence, humid-

ity retrievals in the high atmosphere impact temperature fields above, humidity

retrievals in the low atmosphere have a large impact near the surface. The wind

circulation is always modified.

4.5 Impact of the humidity pseudo-observations on analysis

and forecasts

The variational assimilation system used for testing the assimilation of the hu-

midity pseudo-observations is the three-dimensional spectral limited area variational

assimilation system ALADIN 3D-Var (Sadiki and Fischer, 2005; Fischer et al., 2005).

In the Met.no quasi-operational configuration, the assimilation step is performed ev-

ery 6 hours, consisting of a) updating the sea surface temperature (SST) through

the ECMWF SST analysis, b) performing the surface Optimal Interpolation analy-

sis, c) performing the upper-air spectral three-dimensional variational assimilation.
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Figure 4.8: Daily amount of observations used in the assimilation for July 2007, in
logarithmic scale. TOT is the total number of observations; SAT corresponds to satellite
radiance; CONV to conventional observations; CSAT to CloudSat pseudo-observations.

Observations assimilated in the upper-air analysis are all the conventional (land

and ship SYNOP reports, wind profilers, radiosondes, buoys), aircraft observations,

Atmospheric Motion Vectors (AMV) from MSG satellites, AMSU-A and AMSU-B

radiances from the POES satellites and AMSU-A and MHS from Metop. The com-

putational domain has a resolution of 11 Km and extends for 4455x2970 km (405x270

nodes). Vertical discretization consists of 60 hybrid eta levels. A background quality

check is performed over all the observations, while bias correction is performed for

all the satellite radiances following the air-mass scheme developed by Harris and

Kelly (2001), and for radiosonde daytime observations of temperature according to

ECMWF coefficients. Background-error statistics have been derived via the NMC

method applied to three-months dataset (20070601 to 20070831) of 48 minus 24

hours forecast differences. This configuration represents the Reference experiment

(NoCloudSat), against which the CloudSat experiment is compared, which adds the

CloudSat-derived humidity pseudo-observations to the reference set of observations.

Both the experiments have been carried out for a one-month period, from 20070701

to 20070731.

The daily amount of observations used in 3D-Var for the CloudSat experiment

is shown in Figure 4.8. Note that CloudSat-derived humidity observations are very

few, 0.34% (about 200 to 300 per day) of all the observations during the July 2007

experiment, while all the satellite radiances (45.62%) are in a number comparable

with the conventional, aircraft-borne and AMV observations (54.04%). An inter-
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Figure 4.9: Innovations (observation minus first guess, in black) and observation minus
analysis (in grey) statistics for CloudSat observations: (a) bias timeseries; (b) standard
deviation timeseries; (c) vertical profile of bias; (d) vertical profile of standard deviation.

ruption period in the production of pseudo-observations is present between 12th and

13th July, due to problems in CloudSat data reception.

Observation minus first guess and observation minus analysis statistics (Figure

4.9) show that CloudSat analysis increments are unbiased. The weight of CloudSat

observations is very large in the analysis, since the observation minus first guess
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Figure 4.10: Bias and standard deviation of analysis increments (analysis minus first
guess) of CloudSat experiment minus NoCloudSat experiment at 700 hPa: (a) bias of
differences of temperature increments; (b) standard deviation of differences of analysis
increments; (c) bias of differences of specific humidity increments; (d) standard deviation
of differences of specific humidity increments.

standard deviation is much larger than the observation minus analysis standard

deviation. CloudSat analysis increments for the one-month experimental period

are also found to make a major impact on data-sparse areas. Figure 4.10 shows

the monthly-averaged bias and standard deviation of the differences between the

analysis increments of the CloudSat experiment minus the analysis increments of the

NoCloudSat experiment at 700 hPa. They represent two indexes for identifying the

most-affected areas by the CloudSat-derived observations. It is clear that areas over

sea, especially in areas corresponding to the Norwegian Sea and in the Northwest

part of the LAM domain are particularly sensitive to the new observations, with
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an overall unbiased behaviour over the domain. It is not possible to say whether

the humidity pseudo-observations in general have a drying or wetting effect on the

analysis.
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Figure 4.11: Degrees of freedom for signal grouped by observation type and parameter:
absolute (a) and relative (b).

Degrees of Freedom for Signal (DFS, see e.g. Cardinali et al., 2004), that

are defined as the derivative of the analysis (increments) in observation space with

respect to the observations, have been computed through a randomisation technique

(Chapnik et al., 2006) that reads:

DFS = (ỹ − y)R−1
(
H(x̃a − xb) − H(xa − xb)

)
(4.7)

where ỹ is the vector of perturbed observations, x̃a is the analysis from perturbed

observations, R is the observational error covariance matrix and H is the tangent-

linear version of the observation operator. The perturbations are performed using

an unbiased random error whose standard deviation equals the observation error;

6 assimilation cycles, 4 days distant each other, have been rerun with perturbed

observations. Equation (4.7) can be applied to any observation subset. DFS have

been calculated with the aim of studying the impact of CloudSat data relatively to

the other observation types in the assimilation system; however, DFS shows the self-

sensitivity of the observation (sensitivity at observation location), without providing

information about the spatial correlation between the analysis and the observations.

DFS indicate the importance of the observations in terms of weight, efficacy of the

observation operator, and amount of observations.

Results from the DFS computation are shown in Figure 4.11, together with

the Relative Degrees of Freedom for Signal, that is, DFS divided by the number of

observations. Globally, CloudSat data are not very important in the assimilation

system, given the small amount of observation, but their relative weight is com-

parable with the humidity measurements from the radiosonde network. Relative

DFS, which however are meaningless in terms of real impact, show that the humid-
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Figure 4.12: Synoptic situation and CloudSat data coverage for the mid-summer case-
study (20070709 at 12 UTC). Shaded contours show the wind intensity at 500 hPa (in m
s-1), black-line contours show the mean-sea level pressure, white crosses are in correspon-
dence of the humidity pseudo-observations from CloudSat data after background quality
check. The black frame indicates the domain extension.

ity pseudo-observations (indicated as CloudSat in the Figure) are the second most

important after buoys observations, and this result seems to be primarily related to

the availability of the humidity pseudo-observations in data-sparse regions (i.e. over

sea).

The available humidity pseudo-observations are very few and their impact in

terms of modifications of meteorological development cannot easily be identified.

The effect of adding CloudSat-derived pseudo-observations is here briefly illustrated

for a mid-summer case-study (20070709), which is selected because of a relatively

high amount of CloudSat profiles compared to other assimilation windows. In the 6-

hours assimilation window centred at 12 UTC, CloudSat passed inside the Norwegian

ALADIN domain 3 times. After the background quality check, 412 single-level ob-

servations are retained. In Figure 4.12 the profiles containing valid observations are

plotted over a map representing the synoptic situation (where contours of 500 hPa

wind intensity and mean-sea level pressure are plotted). The pseudo-observations
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Figure 4.13: Cross-section of analysis increments due to the CloudSat pseudo-
observations for the illustrative case. Analysis increments (bottom panel) are plotted
together with cloud fractions detected by CloudSat (top panel) and cloud fractions com-
puted from the first guess (middle panel) using the Sundqvist large-scale condensation
scheme. The geographical extension of the cross section coincides with the longest satel-
lite track in Figure 10, indicated there by the solid black triangle, from the eastern coast
of Greenland and passing along the eastern cost of the British island, in North-South
direction according to the satellite track direction.
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analysis increments in observation space (relative humidity) are shown in Figure

4.13 for the central profile of Figure 4.12, together with the CloudSat-derived and

the model-diagnosed cloud fractions. It is possible to distinguish a low-level hu-

midity increase in the northern (left) part of the cross-section accompanied by a

drying effect of CloudSat observations in the middle part of the atmosphere. The

effect of the pseudo-observations on the forecast (Figure 4.14) is evident mainly over

sea and after 6 hours of forecasts, they have caused an important gradient of both

temperature and moisture visible in the relative humidity analysis increments in the

northern part of the cross-section, which in turn lead to a downward heat flux.

It is also interesting to notice that in connection with the vertical profile approx-

imately at (10W, 64N) a few humidity pseudo-observations with positive observation

minus first guess relative humidity at about 850 hPa increased the moisture con-

tent significantly and caused an important increase of temperature above the layer,

because of the negative vertical correlations between specific humidity and temper-

ature, and the negative vertical auto-correlations of temperature errors. Due to

the balances induced by the background constraint, a temperature gradient evolved

upwards, changing also the wind fields in the high atmosphere (not shown here).

The differences between the control and the experimental forecasts become less

important and more noisy after +24 hours, and at +48 hours they are hard to

distinguish. This loss-of-memory of the forecast system is a well-known feature

of the impact of the humidity observing system (see e.g. Bengtsson and Hodges,

2005) and can be studied through the temporal evolution of the bias between the

experiment with CloudSat humidity retrievals and the one without. Figure 4.15

clearly indicates that such a bias is gradually lost after the forecast integration, and

becomes very small at +48 hours for temperature, while very rapidly vanishes for

cloud fraction (which is anyway a prognostic variable in the forecast model). This is

true also for specific humidity, apart from a positive bias in the middle atmosphere

after 48 hours of forecasts.

Verification of surface pressure against SYNOP stations has been carried out for

all the 00 and 12 UTC 48-hour forecasts from 20070705 to 20070731 (first five days

are considered as a warming-up period). Impact of CloudSat is slightly positive

on the average (Fig. 4.16) for the surface pressure, while the root mean square

error timeseries indicate that there are no significant improvements during extreme

weather events. Skin temperature (not shown), which is in general sensitive to the

cloud fraction because of the change in the downwelling radiation, is not significantly

affected by the CloudSat observations.

Verification against radiosondes (Fig. 4.17) shows an effective improvement

of forecasts with respect to geopotential and wind fields, while mass fields have

better scores in the middle atmosphere and worse scores in the lower atmosphere.
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Such a result can partially be explained by the fact that the simplified cloud cover

observation operator does not comprise parameterizations of convective processes

that are all the more important in the very low part of the atmosphere. According

to our experience, the long background vertical auto- and cross- correlations derived

through the “NMC” method may also be cause of unjustified analysis increments

near the surface.

4.6 Summary and perspectives

Within a three-dimensional variational data assimilation system, we have de-

veloped a method to assimilate cloud observations from CloudSat as humidity

pseudo-observations. These pseudo-observations are the product of a Bayesian anal-

ysis based on a short-range forecast and the cloud or no-cloud observations. The

Bayesian decision theory provides an attractive statistical framework for exploit-

ing binary observations, otherwise difficult to use in variational data assimilation

systems. A major strength of this approach is the possibility to assimilate also

clear-sky occurrences, which turn out to have a smaller weight in the variational

data assimilation. The formulation presented in this Chapter is very general, which

implies a potential extension in the future to other instruments that supply cloudi-

ness observations, like for instance, ground-based cloud-radars, cloud products from

nowcasting tools, and in principle also any other observation of an on/off meteoro-

logical process. Cloud products from satellite infrared sensors are also of potential

use in this approach.

The methodology has been applied to received echo powers from the 94-GHz

radar aboard CloudSat, the first spaceborne radar devoted to microphysical studies.

CloudSat provides very high-quality and high-resolution data for cloud detection,

and a simple algorithm is applied to the radar powers to diagnose profiles of cloud

fractions. These cloud observations show a very binary behaviour. Unfortunately

CloudSat cannot be used operationally because of the delay in data dissemination.

One conclusion from this work is that spaceborne cloud radar should be encouraged

in designing next-generation of polar-orbiting satellites. Extending the radar viewing

geometry to off-nadir profiles to increase data coverage would also be of obvious

benefit to Numerical Weather Prediction purposes.

A re-tuned large-scale condensation scheme based on a cloud cover-relative hu-

midity relationship has been used to compute cloud fraction values at observation

location from the background within the Bayesian analysis. Despite its simplicity

compared to many advanced microphysical schemes that are currently implemented

in medium-range forecast models, this condensation scheme is able to sufficiently

reproduce the cloud fields in terms of both vertical structure and horizontal exten-
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sion.

The results of the assimilation trials are positive, especially for the improve-

ment of verification scores of dynamical parameters (wind, geopotential). For rel-

ative humidity and temperature, scores against independent radiosondes show an

improvement in the middle atmosphere, a weak impact in the high atmosphere and

a negative impact in the lower part of the atmosphere. The large-scale condensa-

tion scheme may be inappropriate in the regions of the atmosphere characterised

by important convective activity. This weakness can be overcome in the future by

implementing a more advanced cloud scheme.

Despite the small amount of CloudSat data, we find that the impact of the

pseudo-observations is significant in data-sparse area, like over the sea, and that

the self-sensitivity of the analysis with respect to CloudSat data is comparable with

radiosonde measurements of humidity. However, we did not find important im-

provements during severe weather events and it is consequently difficult to show a

real case where CloudSat observations played an important role in the analysis and

forecast system. The forecast system seems to have a short memory of humidity

pseudo-observations, so changes to humidity fields vanish soon.
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Figure 4.14: Cross-sections of difference of CloudSat experiment forecasts minus No-
CloudSat experiment forecasts for the case-study of Figure 11: temperature (a, c, e, g)
and specific humidity (b, d, f, h) at analysis time (a, b) and at +06 (c, d) +24 (e, f) and
+ 48 (g, h) hours since analysis time. Full lines refer to positive differences while dashed
lines to negative differences. Vertical axis is the pressure in hPa. Contours are plotted
every 0.3 K and 0.3 g Kg-1 for temperature and specific humidity respectively.
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Figure 4.15: Temporal evolution of forecast biases and standard deviation of CloudSat
experiment forecasts minus NoCloudSat experiment forecasts for the entire simulation
period: temperature (a), specific humidity (b) and cloud fraction (c). For each parameter
bias and standard deviation are plotted in the left and right panel respectively. Full lines
with black solid circles refer to analysis time; dashed lines with solid bullets to 6-hour
statistics; dotted lines with circles to 12-hour statistics; dash-dotted lines with squares to
24-hour statistics; long-dashed lines with diamonds to 48-hour statistics.
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Figure 4.16: Verification against SYNOP stations surface pressure: (a) RMSE and bias
timeseries and (b) RMSE and bias against forecast length (right panel). Black lines refer
to the CloudSat experiment while grey lines to the NoCloudSat experiment; full lines
denote RMSE and dashed lines denote bias.
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Figure 4.17: Radiosonde verification skill scores: contour of differences between RMSE of
reference experiment (NoCloudSat) minus RMSE of CloudSat Experiments for (a) geopo-
tential; (b) wind intensity; (c) temperature; (d) relative humidity. Full lines denote pos-
itive values, dashed lines denote negative values and the tick full line corresponds to the
zero contour line. Positive values indicate that CloudSat assimilation decreases the root
mean square error. Contour intervals are 0.03 m, 0.02 m s-1, 0.004 K and 0.08 % for
geopotential, wind intensity, temperature and relative humidity respectively.
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ATTENDANCE OF CONFERENCES AND MEETINGS

Appendix A

Attendance of conferences, meetings and schools

• ALADIN 3D-Var Working Week at Hungarian Meteorological Service, Bu-

dapest, Hungary (June 2006).

• NetFam Summer School on “Non-hydrostatic dynamics and fine scale data

assimilation”, St. Petersburg, Russia (June 2006).

• HIRLAM/ALADIN/AROME Mesoscale Working Week at FMI, Helsinki, Fin-

land (November 2006).

• Eumetsat 2006 Fellow Day, presenting “Status of the ABC project”, Darm-

stadt, Germany (December 2006).

• HIRLAM 4D-Var Training Week for observation experts, presenting “Assimi-

lating binary cloud cover data”, Norrkoping, Sweden (February 2007).

• Eumetnet Workshop on “High resolution data assimilation with emphasis

on the use of moisture-related observations”, presenting “Preliminary study

for assimilating binary cloud cover data from AVHRR”, Norrkoping, Sweden

(March 2007).

• ECMWF Training Course on “Data assimilation and use of satellite data”,

Reading, UK (April 2007).

• Eumetsat 2007 Fellow Day, presenting “Status of the ABC project”, Darm-

stadt, Germany (December 2007).

• 2008 Eumetsat Meteorological Satellite Conference, presenting “Assimilation

of remote-sensed cloudiness observations”, Darmstadt, Germany (September

2008).

• Eumetsat 2008 Fellow Day, presenting “Status of the ABC project”, Darm-

stadt, Germany (December 2008).
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DOCUMENTATION AND PUBLICATION

Appendix B

Documentation and publications

• Storto A. and Tveter F.T., 2006. Theory for assimilating binary cloud

cover, Met.no Research Note, 11/2006.

• Storto A., 2007. Preliminary study for assimilating binary cloud cover data

from AVHRR radiometers. EUMETNET/SRNWP Workshop on High resolu-

tion data assimilation, 21 - 23 March 2007, Norrkoping, Sweden.

• Storto A. and Lindskog M., 2007. Experiences with the ALADIN 3D-

VAR. HIRLAM All-Staff Meeting/17th ALADIN Workshop, 23 - 26 April 2007,

Oslo, Norway

• Storto A. and Randriamampianina R., 2008. Sensitivity of the

ALADIN-HARMONIE/Norway analysis and forecast systems to different ob-

servations. HIRLAM All-Staff Meeting/18th ALADIN Workshop, 7 - 10 April

2008, Bruxelles, Belgium.

• Randriamampianina R. and Storto A., 2008. Aladin-Harmonie/Norway

and its assimilation system. HIRLAM All-Staff Meeting/18th ALADIN Work-

shop, 7 - 10 April 2008, Bruxelles, Belgium (in HIRLAM Newsletter 54).

• Randriamampianina R. and Storto A., 2008. Investigating the assimi-

lation of IASI data in a limited area model. XVI International TOVS Study

Conference, 7 - 13 May 2008, Angra dos Reis, Brazil.

• Storto A. and Randriamampianina R., 2008. Use of satellite data in

ALADIN/HARMONIE-Norway. XVI International TOVS Study Conference,

7 - 13 May 2008, Angra dos Reis, Brazil.

• Storto A., 2008. Assimilation of cloudiness observations. Eumetsat Meteo-

rological Satellite Conference, 8 - 12 September 2008, Darmstadt, Germany.

• Randriamampianina R. and Storto A., 2008. Monitoring the use of IASI

data in a limited area assimilation system. Eumetsat Meteorological Satellite

Conference, 8 - 12 September 2008, Darmstadt, Germany.
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DOCUMENTATION AND PUBLICATION

• Storto A. and Tveter F.T., 2008. Assimilating Humidity Pseudo-

observations Derived from the Cloud Profiling Radar Aboard CloudSat in

ALADIN 3D-Var, submitted to Meteorological Applications.
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SOFTWARE PRODUCED

Appendix C

Software produced

• Preprocessing of AVHRR-PPS software for comparison with model-equivalents

cloudiness data.

• Processing of SEVIRI infrared radiances (cloud-masking, brightness tempera-

ture re-calibration, geographical thinning) for use in three-dimensional varia-

tional assimilation.

• Processing of CloudNet ground-based cloud-radar data for comparison with

model-equivalents cloudiness data.

• Preprocessing of GPS-ZTD data for use in three-dimensional variational as-

similation.

• Processing of conventional data for use in HARMONIE-3DVar.

• Processing of CloudSat data for computing humidity pseudo-observations to

use in HARMONIE-3DVar.
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INTERNATIONAL COOPERATION

Appendix D

Main international cooperation

• CloudSat Data Processing Center (CDPC) of the Cooperative Institute for

Research in Atmosphere (CIRA).

• Météo-France/GMAP for the implementation and optimisation of the AL-

ADIN/HARMONIE model.

• Swedish Meteorological and Hydrological Institute (SMHI), Danish Meteoro-

logical Institute (DMI), Finnish Meteorological Institute (FMI) for the HAR-

MONIE model.
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