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1 Introduction

As part of the MERSEA Strand 1 project (hereafter Mersea.S1), the Norwegian Meteorolog-
ical Institute (met.no) has performed simulations of the oil spill from the tanker “Prestige”
in the winter of 2002-03. The purpose of the exercise is to demonstrate the current capabil-
ities of oil spill monitoring and prediction services in Europe, using existing ocean models
and observations. It is an element in the overall aim of Mersea.S1, which is to investigate the
current state-of-the-art in European operational oceanography and illuminate its strengths and
weaknesses.

One of the specific aims of Mersea.S1 is to compare four currently operational basin-scale
ocean circulation data assimilation systems in order to elucidate the degree of agreement in
their representation of the ocean dynamics and thermodynamics. This type of system is the
backbone of the planned pan-European operational oceanography system, and the quality of
the ocean predictions is crucial to all downstream applications in the production chain. For oil
spill fate prediction, the ocean circulation variables required are 3-dimensional currents and
hydrography (temperature and salinity).

In this demonstration, two parallel simulations have been performed in which the only
difference is the ocean circulation data used. The two data sources are the Mercator system
(Bahurel et al.(2002)) run by Mercator Ocean (www.mercator-ocean.com.fr/en/), and the
FOAM system (Bell et al.(2000),Bell et al.(2003)) run by the Met.Office (www.met-office.-
gov.uk/research/ocean/). In both simulations, the current and hydrographic data from these
system are used to force the oil spill fate model directly, i.e., there is no nesting of a high-
resolution ocean model to downscale the forcing to local scales. Thus, differences in the
resulting oil spill predictions are directly attributable to differences in the Mercator and FOAM
forcing data.

2 The "Prestige" accident

On 13 November 2002 off the coast of Galicia (Spain), the Greek-owned tanker “Prestige”
suffered hull damage and began leaking oil. It was carrying 77,000 tons of heavy fuel oil.
The ship was towed first north and then southwest until 19 November, when it broke in two
and sank. The sunken wreck lies just southwest of the Galicia Bank at approximately 3600 m
depth. The path of the leaking ship is shown in Fig. 1.

Estimates of the amount of oil leaked are uncertain, but the following are best estimates
obtained from CEDRE:

1. During the tow and breakup: 12,000 to 17,000m3;

2. During the descent and hitting the sea floor: 5,000 to 10,000m3;

3. Leakage on the seabed: 3,000 to 6,000m3 @ 125m3 per day till end of January 2003.

The oil has been characterized as IFO-650 (Daling and Moldestad(2003)): a very heavy
fuel oil (burner oil) with a viscosity of 650 cSt at 50oC and a density of 0.995 kg/l.
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3 The oil spill fate prediction system at met.no

Figure 1: Map of the Galicia coast and Galicia Bank showing the tow route (red line) of the
“Prestige” and where it sank. Also shown is surface oil distribution on 17 November
2003 derived from SAR imagery. [Courtesy UNEP-WCMC 2002]

3 The oil spill fate prediction system at met.no

Simulation of oil spill fate has been an ongoing activity atmet.nosince the 1970’s.met.no’s
Marine Forecasting Centre provides a 24-hour service for the Norwegian National Coastal Ad-
ministration (KV) and the oil companies operating in the Norwegian sector. The user specifies
the simulation on a request form. The response time is maximum 30 minutes. In 2002 the ser-
vice was extended to simulation of oil drift from oil spills in deep water, using the DeepBlow
module developed by SINTEF (Trondheim, Norway).

The oil fate model OD3D can be applied both for instantaneous and continuous releases.
The changes in the mass of oil and emulsion as a result of evaporation and emulsion are
computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into
account. The properties of the oil depend on the oil type, and in the present version 64 different
types of oil can be simulated. The drift, dispersion and weathering of the oil are determined
by hindcast/forecast data from numerical prediction systems for the atmosphere (surface wind
and air temperature), ocean circulation (3-dimensional currents, temperature and salinity) and
surface waves (Stokes drift, significant wave height and mean wave period). Surface wind
and air temperature are used to estimate evaporation and water uptake exposure, as well as
whitecapping effects on mixing. Wave data are applied in calculating turbulent diffusivity
and vertical dispersion, and for determining oil droplet size. Temperature and salinity data
determine the vertical density stratification which is used to find the rate of rise or sinking for
oil particles.
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In the operational national service, the oil fate model uses “best available” forcing data
from met.no’s operational model system. For forecast out to +60 hours, atmosphere data
are obtained from HIRLAM, thereafter to +168 hours from the ECMWF. Ocean circulation
and wave data are supplied by the MIPOM and WAM models, respectively, both using the
atmospheric forcing just described.

The result of the oil drift simulations are plotted on sea charts used for navigation, either
as trajectory plots or particle plots showing the situation at a given time, including a budget
of oil and emulsion. The results may also be disseminated as data files to be included in the
user’s own GIS system.
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4 Model setup for the "Prestige" case

4 Model setup for the "Prestige" case

The OD3D model is considered well-suited to the “Prestige” case, since it includes facilities
for both surface and sub-surface releases. However, a number of modifications were necessary
to perform the hindcast simulations. Details of the changes and of the forcing data applied are
given in the following.

It will become apparent in the following that the simulation setup and the forcing data
used are not optimal with respect to what is potentially available. This is partly due to the
short timeframe of the project and partly the desire to obtain some results for the “Prestige”
case while the accident is still fresh in mind. It is also instructive in relation to the MerseaS1
objectives in that it demonstrates the currently realistic capabilities of interfacing various Eu-
ropean components of an oil spill fate service.

4.1 Model domain

The met.no operational model setup is focused on Norwegian waters and the service auto-
matically usesmet.no’s operational ocean circulation model grid as its domain. However, this
grid does not extend far enough south to cover the accident area. Thus, there was no option of
nestingmet.no’s model into the Mercator and FOAM grids. Instead, a special horizontal grid
covering the area (see Fig. 2) was specified and all forcing data fields were interpolated to it.
The grid is polar-stereographic with approximately 10 km grid-spacing; the spacing is about
the same as the finest grid in the forcing data. In addition, OD3D is configured to expect all
forcing data variables on the same grid points, so there is no staggering of the velocities.

4.2 Current and hydrographic data

4.2.1 Mercator data

The Mercator team ran two dedicated hindcasts to supply data for the demonstration: an initial
hindcast for the period 12 November 2002 to 31 January 2003, and a second hindcast for the
period 12 November 2002 to 31 March 2003. In both cases, data were obtained from the
Mercator North Atlantic system, which is run on a rotated grid with approximately 6 km grid
spacing. The model assimilated altimeter data. The model fields were interpolated to a 1/12o

(≈ 10 km) grid before transmission tomet.no.
In the first hindcast run, the data consisted of daily snapshots, i.e, instantaneous fields at

00 utc. Snapshots were extracted because, in the early phase of the project (winter 2002-03),
this was the only immediately available type of data. The initial results gave rise to concern
that the data might be degraded by aliased inertial oscillations (see discussion in 6). There-
fore, in the second hindcast, carried out in the fall 2003, daily mean fields centered at 12 utc
were calculated. In both runs, the data were delivered with the u and v variables interpo-
lated to the T and S grid points, and on 43 fixed depths (3.13, 9.765777, 17.01684, 25.08886,
34.14732, 44.3913, 56.05698, 69.42432, 84.82568, 102.6503, 123.3546, 147.4681, 175.6007,
208.448, 246.7941, 291.5095, 343.5449, 403.9166, 473.6866, 553.9279, 645.6872, 749.9391,
867.5318, 999.1409, 1145.225, 1305.993, 1481.394, 1671.114, 1874.604, 2091.114, 2319.739,
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4.2 Current and hydrographic data

Figure 2: The special oil spill grid used by the oil spill fate model. Contours show the bottom
topography (NB! not equidistant contour intervals).

2559.469, 2809.242, 3067.985, 3334.651, 3608.249, 3887.857, 4172.639, 4461.847, 4754.821,
5050.982, 5349.833, 5650.943 m).

4.2.2 FOAM data

Two sets of data were also obtained from the FOAM team. The initial data set, which covered
the period 12 November 2002 to 15 January 2003, was obtained from the Live Access Server
maintained by the University of Reading (www.nerc-essc.ac.uk/las/main.pl). These data are
daily snapshots at 00 utc (analysis time) archived from the daily operational runs of the FOAM
system. They were the most quickly available FOAM data early in the project. In the fall of
2003, the FOAM team ran a new hindcast to supply data for the demonstration: for the period
8 November 2002 to 31 March 2003.

In both cases, data were obtained from the FOAM North Atlantic system, which is run on
a 1/9o (≈ 12 km) grid. The 1/9o grid is nested in a 1/3o grid of the Atlantic and Arctic, which
in turn is nested in a 1o global grid. The model assimilated altimeter, SST and temperature
profile data. Data were delivered with the u, v, T, S data on the model’s staggered horizontal
grid and on 20 fixed vertical levels (5, 15, 25, 35, 48, 67, 96, 139, 204, 301, 447, 666, 996,
1501, 2116, 2731, 3347, 3962, 4577, 5192 m).
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4 Model setup for the "Prestige" case

4.3 Atmospheric data

Atmospheric forcing data were obtained from the NWP system at the European Centre for
Medium-range Weather Forecasts (ECMWF). The data consist of wind at 10 m height (U10)
and air temperature at 2 m height (T2M) extracted from archived 6 hourly operational analy-
ses.

4.4 Surface wave data

Surface wave data were obtained frommet.no’s regional wave model which is a version of
WAM, run at 0.45o resolution. The data consist of significant wave height (Hs), mean wave
period (Tm) and Stokes drift extracted every 6 hours from archived operational model runs.
The model is driven by atmospheric fields frommet.no’s operational NWP model HIRLAM.

4.5 Data preparation

The Mercator and FOAM daily fields were obtained, as described above, as netCDF or GRIB
files, which were converted tomet.no’s internal file format. The fields were then horizontally
interpolated to the special grid using a combination of bilinear interpolation, in open water,
and “nearest neighbor” replication, near the landmask. In the initial simulations, land and bot-
tom masking of the current and hydrographic fields was derived from the delivered Mercator
and FOAM data and was not matched after interpolation. This uncovered some discrepancies
between the the land masks that are retained in the initial simulation results. For the final sim-
ulations, a common landmask was used in order to give more comparable results, particularly
stranding. This landmask was obtained by interpolating the ETOPO5 topographic database to
the special grid and manually adjusting the resulting field to better match a coastline database.

The OD3D system requires surface (0m depth) fields of current, temperature and salinity,
but these were not available in the Mercator and FOAM deliveries. Therefore, the uppermost
fields - 3.3m in Mercator and 5m in FOAM - were simply “moved” to 0m depth. In order
to keep memory use manageable for these relatively long simulations, only nine other depths
were selected from the original deliveries. Preliminary simulations of the leakage from the
sunken wreck indicated that the oil rises quite quickly to the surface. Therefore, the depth
levels used are weighted toward the upper 200 m.

The atmosphere and wave fields were interpolated to the special grid using a modified
16-point Bessel algorithm.

The daily ocean data were time interpolated to 3-hourly intervals, while the 6-hourly in-
tervals of the atmosphere and wave data were retained.

4.6 Hindcast simulation

The “Prestige” spill event can be considered in two phases: 1) the surface release, from the
time the ship was damaged until it sank, and 2) the bottom release, from the time the wreck
reached the bottom. These phases were simulated separately and the results combined to give
an overall picture.
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4.6 Hindcast simulation

4.6.1 Surface release phase (13-19 November 2002)

The OD3D system is currently only able to treat point sources and not moving sources. Thus,
the continuous release of oil from the drifting/towed ship had to be approximated. Fig. 3
shows a map of the ship’s movements for 13-19 November 2002. From this map and spill
amount estimates supplied by CEDRE a timeline for the simulated release of the oil was
constructed as follows: The estimated 17,000m3 of oil released during the tow is assumed
evenly distributed over time (135m3 per hour), as a surface spill. At each of nine waypoints
along the tow, all the oil estimated to have leaked out in transit from halfway from the previous
waypoint to halfway to the next waypoint is released at the current waypoint over the elapsed
time period. During the breakup and descent to the bottom, it is believed that 5000-10000
m3 of oil was released. Thus, at the last waypoint, an additional 5000m3 of oil was released
at 1000 m depth over a span of 5 hours; the DeepBlow module was invoked for this release.
Separate runs of the model system were performed for each waypoint, with oil released for
the appropriate time span; each run was thereafter continued up to the end of the simulation
period to follow the fate of the released oil.

Figure 3: Map showing the tow route and timeline of the “Prestige” accident. Used to deter-
mine oil release in the model simulations. [Courtesy CEDRE]

This procedure is certainly a crude approximation, but probably a rather realistic procedure
for a real-time simulation of such an incident. In any event, there is no accurate data available

9



4 Model setup for the "Prestige" case

on how the oil was in fact released during the event.

4.6.2 Bottom release phase (from 19 November 2002)

A single final run of the OD3D system was performed for the period 12 utc 19 November
2002 to the end of the simulation period. In this case, the DeepBlow module was invoked to
handle the evolution of the oil from the bottom to the surface layer. The estimate of 5m3 per
hour was used for the continuous outflow of oil at the final position shown in Fig. 3. After 31
January 2003 the leakage from the wreck is believed to have been stopped and the simulated
outflow was turned off. As with the surface releases, the simulation proceeded with no oil
input until the end of the simulation period.

10



5 Observations of the oil spill

Most of the observations of the oil slick emanating from the Prestige are visual sightings
made from ships and aircraft. These are invaluable for showing the evolution of the slick
from day to day and for estimating the amount of oil, but it can be difficult to construct an
overall distribution map. The best data for mapping the surface oil distribution are satellite
SAR imagery and aircraft SLAR imagery.

ITOPF (International Tanker Owners Pollution Federation) constructed situation maps us-
ing available information from ships in the area and aircraft overflights (see www.itopf.com/-
prestige.html). Three of these maps are shown in Fig. 4. They show that 1) oil stranded on
the Spanish coast from Cape Finisterre to La Coruna before 18 November; 2) there was no
significant extension of stranding eastward along the northern coast from 18-24 November;
and 3) that there was some new stranding to the east on 24-25 November. The maps also show
the oil slick as a filament stretching eastward from the tanker and following the shelf break
along the northern coast.

Figure 4: Situation maps of the “Prestige” oil spill on 18, 24 and 25 November 2002. [Cour-
tesy ITOPF (International Tanker Owners Pollution Federation)]

Fig. 5 shows the oil slick on 17 November 2002, two days before the ship sank. The plume
from the towed tanker separates into two filaments that are convoluted by the drift history. The
broader (southern) filament appears to be connected with oil stranding on the coast, while the
thinner (northern) filament seems to be associated with the tow trajectory (see Fig. 1). There
are also likely large patches of oil south of Cape Finisterre. However, it is not possible to
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5 Observations of the oil spill

reconstruct how the oil was released from this picture alone. Note that, according to ESA
(earth.esa.int/ew/oil_slicks/galicia_sp_02/), this image was generated on 20 November, i.e.,
three days after the satellite overpass.

Figure 5: Envisat ASAR image showing the distribution of the surface oil slick at 10:45 utc
on 17 November 2002. The dark areas indicate surface oil, and the Galicia coast is
at the right. [Courtesy ESA]

The only other readily available SAR image is a RADARSAT image showing the oil along
the northern coast on 18 November 2002 (Fig. 6). The image indicates oil lying close to the
coast and probably stranding at several places. This may be contrasted with the map drawn by
ITOPF for the same day (Fig. 4 left-hand panel), which shows the slick lying offshore.
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Figure 6: RADARSAT image showing the distribution of surface oil at the north coast of Gali-
cia on 18 November 2002. P. del Roncudo is at right center. The dark areas indicate
surface oil. [Courtesy RADARSAT International, Aurensa S.A]
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6 Initial simulations - daily snapshot ocean fields

6 Initial simulations - daily snapshot ocean fields

In the initial simulations, the Mercator and FOAM current data were daily snapshots. In
general, the current fields exhibit similarities in the coastal currents and the slope current
along the shelf break, but significant differences are also evident, especially in the deep water
areas. This is exemplified in Fig. 7. At this time, which is 2 days into the spill, there are large
differences in the current direction and strength in the deeper regions and especially in the
vicinity of the oil spill. There is better agreement nearer the coast, where both models show
southward surface flow. Note also the strong northwestward current in the Bay of Biscay in
Mercator; this is a persistent feature that is not seen in the FOAM fields. The most striking
feature of both data sets, however, is the large day-to-day current variability, leading to the
suspicion that there is significant sub-diurnal variability in the model currents. Since there
are no tides in either model, a likely candidate is inertial oscillations induced by strong wind
events during the period. If this is the case, aliasing of the sub-diurnal currents would be an
important source of error in the drift calculations, especially in the deep areas. In addition,
it could also explain much of the difference in the models’ current fields, since the models
almost certainly produce inertial oscillations differently.

The resulting oil distributions also show both similarities and differences. In the surface
release phase, shown in Fig. 8, the simulations agree fairly well for the first few days. Both
result in oil moving toward the coast, but stranding occurs much sooner in the Mercator-driven
simulation. on the coast north of Cape Finisterre. Later, when the tanker was towed away from
the coast, larger differences develop. This corresponds to moving the oil source from the slope
current area, where the two models agree fairly well, to the deep ocean, where they differ more.

14



Figure 7: Comparison of snapshot surface current fields on 16.11.2002 00 utc. Blue = Merca-
tor, Red = FOAM. Current fields have been interpolated to the special grid. Every
second current vector is shown.
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6 Initial simulations - daily snapshot ocean fields

Figure 8: Distribution of oil from Prestige spill on 17.11.2002 00 utc (upper) and 20.11.2002
00 utc (lower), simulated by OD3D with Mercator (left) and FOAM (right) snapshot
current fields. Colored dots represent oil super-particles; blue = surface, green =
subsurface. “X” represents oil stranded on coast. Gold symbols indicate waypoints
along the ship’s drift/tow path where oil is released in the simulation (see text).
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7 Final simulations - daily mean ocean fields

The results of the initial experiments raised the concern that the differences seen in the oil drift
patterns were more an artifice of the temporal sampling of the model fields than a reflection of
fundamental differences in the ocean model dynamics. To come to grips with this, the second
set of simulations applied daily mean fields from Mercator and FOAM, as opposed to the daily
snapshots used in the initial simulations. The daily mean data sets were calculated from new
hindcast runs of the Mercator and FOAM systems performed in the Fall of 2003.

The mean surface current fields differ significantly from the snapshot fields, as exemplified
in Fig. 9 compared with Fig. 8) for the surface release phase. Furthermore, the Mercator
and FOAM mean fields are overall in rather better agreement with each other than are their
snapshot fields. In the area of the oil release, both models produce a general southward flow
and, in particular, a southward current near the west coast. The main differences are: a) FOAM
has stronger southward flow at the coast; b) Mercator has an anticyclonic eddy in the tow area,
probably connected with the Galicia Bank, while FOAM does not; c) on 20 November, the
FOAM currents turn more easterly, notably at the north coast. It is also evident that Mercator
generally produces a more textured eddy field than FOAM, which is likely attributable the
finer grid-spacing used in Mercator - 6 km compared to 12 km in FOAM. These differences
result in significant differences in the simulated oil drift and stranding. The Mercator-driven
simulation has oil stranding north of Cape Finisterre by 17 November, and more yet by 20
November. In the FOAM-driven simulation, no drifting oil has yet stranded by 20 November,
but oil has drifted further south near the coast. It is also evident that the eddy in Mercator is
moving some of the offshore oil southward, while the FOAM currents are moving the oil more
toward the Bay of Biscay.

As the simulations progress through December 2002 and January 2003, the two current
models agree well on the gross features of the oil distributions (see Fig. 10): both models
predict oil from the surface release phase moving into the Bay of Biscay and stranding along
the north coast of Spain and west coast of France; and both agree that nearly all oil from the
bottom release phase remains at sea. Yet, there are significant differences, the most striking of
which is the amount of drifting oil visible. Much more of the FOAM-driven oil has stranded,
and did so on more limited stretches of coast. Note that an “x” symbol is drawn for each
oil superparticle when it advects onto the landmask, and it is retained throughout the rest of
the simulation. With the large number of particles used in these simulations, many symbols
are overlaid and it is not possible to “see” the amount of stranded oil. The particle budget in
Fig. 11 shows that, during the first week after the accident, there is considerable stranding
in the Mercator case and very little in the FOAM case. This is oil that is spilled early in
the surface release phase and strands quickly on the west coast. Thereafter, stranding in the
FOAM simulation increases and surpasses that in the Mercator simulation. This is oil from
later in the surface release phase that has drifted along the coast and strands on the north
coast. In both simulations, the stranding increases episodically in time, reflecting on-shore
advection events. From about day 35 (18 December 2002) and onward, there are twice as
many stranded particles in the FOAM case. Since the amount of sub-surface oil is the same
in the two simulations, the amount of surface oil in the FOAM case is much less than for
Mercator. With more oil on the surface, and exposed to weathering processes, the Mercator
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7 Final simulations - daily mean ocean fields

Figure 9: Distribution of oil from Prestige spill on 17.11.2002 00 utc (upper) and 20.11.2002
00 utc (lower), simulated by OD3D with Mercator (left) and FOAM (right) mean
current fields. See caption for Fig. 8.

18



case also loses more oil particles in total.
Other striking differences between the simulations include: a) the FOAM-driven simula-

tion shows oil stranding south of Cape Finisterre; this is oil from the early release that initially
advected southward with the coastal flow (cf. Fig. 9); b) the Mercator-driven oil strands along
most of the northern coast of Spain, while in the FOAM simulation stranding is limited to the
western part; c) at the end of January 2003, there is much more oil drifting northward in the
Bay of Biscay in the Mercator simulation, while the FOAM-driven oil tends more to strand
on the coast of France; d) a small amount of oil from the bottom release phase reaches the
Spanish coast in the FOAM simulation, but none does so in the Mercator simulation; this is
largely due to the eddy at Galicia Bank in Mercator.

Figure 10: Distribution of oil from Prestige spill on 30.12.2002 00 utc (upper) and 30.01.2003
00 utc (lower), simulated by OD3D with Mercator (left) and FOAM (right) mean
current fields. See caption for Fig. 8.

8 Comparison with observations

The observations available indicate stranding of oil on the coast north of Cape Finisterre by 17
November (Fig. 5), and extending northward to La Coruna by 18 November (cf. Figs. 6 and
4). Also, there are no observations of oil stranding on the coast south of Cape Finisterre during
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8 Comparison with observations

Figure 11: Time series of number of oil superparticles for two Prestige simulations: Mercator-
forced (solid lines) and FOAM-forced (dashed lines). Three classes of particles are
shown: surface (red), sub-surface (blue) and stranded (green); the total is shown in
black).

this phase of the release and up to 25 November. Compared with Fig. 9, it appears that the
Mercator-driven simulation gives better agreement than the FOAM-driven one for the surface
release phase. It seems that the southward coastal flow in FOAM is too strong in the area
of the initial release. On the other hand, both model simulations show oil moving eastward
toward the north coast of Spain, which is in gross agreement with the offshore slick shown in
Fig. 4.
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9 Discussion and conclusions

Two sets of twin numerical simulations of the “Prestige” accident have been performed in
order to illustrate the current state-of-the-art in operational oil spill fate prediction in Europe.
The twin simulations consist of runs of themet.no oil spill fate model OD3D in which the
only difference is ocean forcing data provided by the two leading North Atlantic ocean circu-
lation models FOAM and Mercator. In the first (“initial”) set, the most readily available data
products from two ocean models at the time of the accident are used; for both models, the
data are daily instantaneous fields (snapshots). These data are not optimal for the purpose,
but numerical forecasting models are still expected to be superior to the available alternatives,
i.e., climatological background currents. In the second (“final”) set, the FOAM and Mercator
models were rerun in hindcast mode and produced dailymeanfields, which are expected to be
more suitable than the daily snapshots.

The motivation for applying two competing ocean models is to demonstrate the sensitivity
of oil drift prediction to “best available” ocean model forcing data, and thereby shed light on
the reliability of the predictions. The motivation for running the second set of simulations is to
elucidate the improvement possible when targeted data products are extracted from the ocean
models.

The initial data sets from FOAM and Mercator showed considerable differences in the
current fields, which, in turn, led to more striking differences in the oil drift, especially for
the important issue of oil stranding. It was also evident that both models exhibited large day-
to-day variability, leading to the suspicion that much of the difference was due to aliasing of
inertial oscillations, which is an error source in its own right. The daily mean fields used in
the final simulations showed better agreement between the models for large-scale currents, al-
though there were still significant differences. The most important differences for oil drift are
the opposing near shore currents during the early stage of the oil spill and the persistent eddy
near the Galicia Bank in the Mercator fields. Causes of these differences are most likely to be
found in the model setups, rather than the numerical codes: a) Filtering out the inertial oscil-
lations revealed that there is generally more mesoscale texture in the Mercator fields, a result
attributable to the fact that Mercator was run at higher horizontal resolution than FOAM. This
can explain the more persistent anticyclone near Galicia Bank in Mercator, with corresponding
ramifications for oil drift. b) The two model systems assimilated different observations. Most
notable is the lack of altimeter assimilation in the FOAM runs. c) Atmospheric forcing data
differed; FOAM used Met Office Unified Model data while Mercator used ECMWF analyses.

The improved agreement in the ocean forcing fields led to somewhat better agreement in
the simulated oil distributions. There are, however, still significant differences between the
simulations and these differences are of the same type as in the initial simulations. Most im-
portant is the difference in stranding: its amount, timing and location. Removing the aliasing
of high-frequency variability does not remove these differences, so there are other aspects of
the model data and the interfacing to OD3D that play significant roles. It has been clearly
shown here that there are still differences in the mean current fields, and especially in the
near-shore currents in the critical first days of the incident. This is certainly the main reason
why, for example, FOAM yielded stranding south of Cape Finisterre and Mercator did not.
On the other hand, there is the interpolation of the FOAM and Mercator current data to the
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9 Discussion and conclusions

special grid which, like any interpolation, is also a potential source of error. It was quite clear
that the FOAM and Mercator data were delivered on grids in which the land-masks differed
considerably from each other and, of course, both differed to a degree from the land-mask of
the special grid to which the data were interpolated. Compared with the coastline contour used
atmet.no, the FOAM land-mask extends further offshore (less wet area), while the land-mask
of Mercator lies further onshore (less wet area). The latter may be due to the interpolation
from the native Mercator grid to a regular geographic grid prior to delivery tomet.no (cf.
Section 4.2.1). In either case, interpolation (and partly extrapolation) to the near-coastal wet
points in the special grid is difficult and carries with it an inevitable degradation of the data.
Unfortunately, stranding in the oil drift model is very sensitive to the currents in just this area
where the interpolation is most suspect. How much the data interpolation might have to say for
oil stranding in these simulations has not been investigated rigorous in this study. Addressing
the issue would require adapting OD3D (and the wind and wave data) to the native grids of
FOAM and Mercator; this is outside the scope of the Mersea Strand 1 project.

A major weakness of these simulations is that the ocean forcing fields do not include tides,
which are well known to be considerable along the Iberian coast (see e.g., www.oce.orst.edu/-
po/research/tide/). Neither FOAM nor Mercator include tides and tidal currents were not
added in any form. In normal operations in Norwegian waters, OD3D is forced bymet.no’s
operational ocean models which do include tides. The impact of added tidal currents on the
drift and stranding in the simulations can only be speculated upon. At the least, it is likely
that the oscillating tidal flow along the coast would tend to spread the oil in the along-isobath
direction. However, the full effect of the tides can only be estimated through comparative
simulations, e.g., using a nested hydrodynamic model with tidal forcing added at its lateral
boundaries.

The main conclusions and recommendations (in italics) of this study are summarized in
the following. Conclusions concerning the service chain for oil spill fate forecasting:

• The currently running European global ocean forecast models FOAM and Mercator can
deliver ocean data to drive oil spill fate models in a crisis situation. In the present case,
this means 3-dimensional fields of currents, temperature and salinity. However, as the
sole source of ocean currents, the data used here were not optimal for the task. For
one thing, neither model directly produces currents at the surface, which presently is a
requirement for OD3D. In addition, the most readily available data from both FOAM
and Mercator at the time of the “Prestige” accident were daily snapshots, which were
most likely degraded by aliased inertial oscillations, leading to large discrepancies.

• Spatial interfacing of the FOAM and Mercator data sets to the OD3D oil fate model was
not optimal. Horizontal interpolation was necessary in order to comply with the OD3D
system. This inevitably led to a degradation of the current data near land in the oil model
grid, which, in turn, influenced how the oil stranded at the ocean-land boundary.

• The usefulness of satellite imagery, chiefly SAR, for monitoring the “Prestige” oil slick
and assessing the drift forecasting has been limited. During this study, only two useful
SAR images were found during the crisis period 13-20 November 2002. In addition,
the better of the two images was apparently not generated until three days after data
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acquisition. This unexpected scarcity is unfortunate inasmuch as there were three SAR
instruments in operation at the time of the accident and the information they can provide
is potentially excellent. To be fair, two of the SAR instruments are carried on satellites
- ERS2 and ENVISAT - that are not classified as operational.

Recommendations concerning the oil spill fate prediction service chain:

• Global ocean data sets must be tuned to the specific oil fate application with respect to
spatial coverage, temporal frequency and filtering, timeliness and forecast length. This
is especially true if they are used to drive the oil drift model directly, e.g., in remote
ocean areas.

• The problems of grid interfacing between the global ocean data and the oil spill model
may be ameliorated either by improving the grid interpolation or by dynamical down-
scaling, i.e., driving the oil drift model with a compatible hydrodynamic model nested
within the global models (recommended where possible). In either case, it is essential
that the issue of grid compatibility with the oil drift model be resolved optimally as part
of an operational implementation.

• Downscaling of the global ocean data requires setting up and maintaining local nested
hydrodynamic models ready for oil spill incidents. This can, in some cases, be done by
spinning up a new nested model grid as part of the initialization procedure at the onset
of a spill event. However, the recommended solution is using an operational local model
that is integrated into a nested global-to-local production chain.

• A global response capability will still require the ability to apply the global ocean model
data directly in the oil drift model, as was done here. Therefore, optimal methods for
grid interpolation and/or accommodation of the oil drift model to the global ocean data
are needed.

• The oil spill fate service chain should have assured real-time access to analyzed SAR
imagery, both for routine monitoring and detection in critical regions and for emergency
response globally.

• The conclusions and recommendations above point to a need for a structured and in-
tegrated operational service chain for oceanographic model and observation products
covering global down to local scales.

Conclusions concerning the quality of the oil spill fate simulations:

• The oil drift simulations show fairly good qualitative agreement with the observations
of oil drift and stranding. Both FOAM and Mercator drive the oil onto the coast near
the accident site, and they advect the oil eastward into the Bay of Biscay, with strand-
ing along the north coast of Spain. There are, however, significant differences in the
location, timing and amount of oil that is stranded and oil that remains afloat; the dif-
ferences are excessive in relation to the needs of coastal oil pollution combatment. In
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the final simulations, the Mercator-driven simulation appears to replicate the early oil
stranding better than the FOAM-driven simulation. There are also differences in strand-
ing and transport of floating oil in the Bay of Biscay, but it is not known how well the
simulations agree with observations.

• The discrepancies in oil drift in the two simulations are directly related to the current
fields from FOAM and Mercator, which show disturbingly large differences, even in
the daily means. Direct current measurements are not available to shed light on the
differences. The most likely causes of the differences are thought to be lack of al-
timeter assimilation in FOAM and higher horizontal resolution in Mercator. Within the
Mersea.S1 project, a comparison is presently being performed, but the focus is not on
high-frequency shelf and coastal currents.

• The simulations do not include the effects of tides on the oil drift, since the global
ocean data used do not include tides and it was not feasible, within the operational
constraints of the project, to implement an independent source of tidal forcing. This is a
potentially serious deficiency, the ramifications of which can only be assessed through
further comparative simulations.

• Met.no’s OD3D oil spill fate model currently requires data on a specific type of grid,
which in the present simulations necessitated interpolation of all forcing fields to that
grid. Interpolation degrades the data, and the problem is especially acute for the ocean
model data, since a) interpolation at the land-sea boundary is particularly difficult, and
b) stranding of oil in the oil drift model is sensitive to the near-shore currents.

• Detailed local topography (bottom depth and coastline) is important for providing the
best possible forecasts of oil drift, especially stranding location.

• The OD3D model system does not have the capability of simulating a continuous, mov-
ing oil source, as is the case for the surface release phase of the “Prestige” accident. This
type of oil spill accident is not unusual. In these simulations, the continuous release has
been approximated by a series of point releases along the ship’s track. The resulting oil
particle distributions are thus not able to replicate well the continuous filaments of oil
seen in satellite and aircraft imagery.

Recommendations concerning the quality of the oil spill fate simulations:

• A careful comparative validation of the FOAM and Mercator products used for oil fate
modeling is needed. More generally, any global ocean model used in the oil spill service
chain must be supported by updated measures of accuracy.

• Tidal currents must be included in the current forcing fields. This may be done in two
ways: a) add independent tidal data to the global ocean data; b) use a high-resolution
hydrodynamic model, nested in the global data, that includes tidal forcing, to supply
currents to the oil drift model. The second solution is recommended since it allows for
greater resolution of the near-coastal tidal currents. What is more, adding tides to the
global models is not feasible and probably not desirable.
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• Nesting of a local, high-resolution hydrodynamic model in the global ocean data (down-
scaling) to provide forcing data to the oil spill fate model is recommended, if possible,
since: a) higher resolution allows more accurate definition of local topography and
coastline, as well as better representation of mesoscale dynamics; b) tides are facili-
tated; c) grid-interfacing problems are moved away from the area of interest; d) the
local model will often be tuned to the needs of the oil spill model Note that downscaling
of the ocean fields must be accompanied by corresponding downscaling of the atmo-
sphere and wave model data.

• A moving source capability is a recommended enhancement of the OD3D oil spill fate
model.
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