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A brief review of seasonal forecasting studies relevant to the Scandinavian region is presented. Seasonal
forecast products from the European Centre for Medium-Range Weather Forecasts (ECMWF) have been
evaluated against interpolated 2-meter temperature for Oslo. The assessment suggests a small but positive
anomalous correlation coef£cient, indicative of some skill of statistical signi£cance at the 5% level. The
assessment was compared with ECMWF’s own veri£cation, showing a good agreement. Seasonal fore-
casts from ECMWF were compared with simple empirical-statistical model results from the Norwegian
Meteorological Institute, the latter indicating similar, albeit slightly lower, correlation.
Additional external seasonal forecasting resources are also presented. Some examples of how seasonal
forecasts may be presented are also given.I �BJ:KD�;�?L9$
Seasonal forecasting, ECMWF products, empirical models, evaluation.
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Reliable seasonal forecasts are valuable (Førland et al., 1999), and a number of various studies have attempted
to identify precursory signals that may be utilised in seasonal forecasting. ’Modern’ seasonal forecasting,
based on scienti£c methods and climate models, initially had a focus on the Tropics and the El Niño Southern
Oscillation (ENSO) phenomenon in particular, as the associated regional anomalies tend to have well-de£ned
structures and a degree of persistence. The higher latitudes are associated with stronger high-frequency
’noise’ and was conceived to be more dif£cult due to stronger non-linear effects (the Coriolis force, presence
of strong fronts, effects of ice and snow, etc). The large-scale wind patterns and rainfall in certain regions
of the tropics are strongly determined by the sea surface temperature (SST) and are not sensitive to initial
(previous) conditions of the atmosphere (Shukla, 1998). The lack of sensitive dependence on the initial
conditions provides a scienti£c basis for long-range forecasting of tropical climate variations. Shukla (1998)
suggests that the latitudinal dependence of the rotational force and solar heating give rise to the unique large-
scale tropical circulation structure which is stable for a given SST structure. After an El Niño onset, the
growth and maturation for the following 6–9 months seem to be predictable.

Here, the the term ’predictor’ is the input (X(t) or x) and ’predictand’ is the forecast variable (e.g. y

in y(t + 1) = F [X(t)]). This report gives a brief summary of some previous work, following a quasi-
chronological order, and presents an evaluation of the ECMWF seasonal forecasts for Europe and the Nordic
region.
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Attempts to make long-term forecasts at the Norwegian Meteorological Institute can be traced back to Evjen
(1956) who explored the persistence in sea level pressure (SLP) through lagged correlations and lagged
regressions in terms of empirical-statistical monthly forecasts. Here both predictors as well as predictand were
SLP from station series. He looked at a selection of stations (Vardø in Norway and Stykkisholmur in Iceland)
and found month-to-month lagged correlations rxy in the range 0.27–0.54 (the respective number of pairs were
n = 81 & 26). For the summer months (x/y is May/June, June/July, July/August, and August/September) at
Vardø Evjen (1956) derived the following lagged regression equation for SLP: y + 0.09 = 0.25× (x + 0.53),
and rxy = 0.48, for n = 60).

In the winter 1982–1983 a record-strong El Niño event took place which was not detected before it
already was in a mature phase because aerosols from the El Chichón eruption (Mexico 17.3◦N,1982 March–
April) interfered with satellite observations. The weather around the world showed an unusual behaviour,
which surprised meteorologists until the realisation that an El Niño was taking place (Canby, 1984). Despite
early attempts, it was the objective to forecast El Niño events that probably provided the strongest impetus
for modern seasonal forecasting. There were two types of approaches to the prediction problem: statistically
based schemes and dynamical models. In some cases, a hybrid model, a combination of the two, was adopted.
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Barnett & Preisendorfer (1987) had used Canonical Correlation Analysis (CCA) to explore the potentials
for seasonal forecasting over the United States, but seasonal prediction of ENSO has also utilised empirical-
statistical models (Barnston & Ropelewski, 1992; Barnston, 1995; van den Dool, 1995; Zhang & Pan, 1995;
Jiang et al., 1995; Penland & Sardeshmukh, 1995) and served as a benchmarking of the various schemes.
Førland & Nordli (1993) examined autocorrelations in temperature and precipitation series from Norwegian
climate stations. They found a signi£cant degree of persistence in late winter (Jan/Feb rxy ≈ 0.5–0.6, Fig 3.3)
and summer (Jul/Aug rxy ≈ 0.4–0.5, Fig 3.8) temperature along the coast of southern Norway and southeast-
ern part of the country respectively. The highest persistence in precipitation was found near the west coast of
Norway (e.g. Jan/Feb rxy ≈ 0.3–0.4, Fig 4.1b). Johansson et al. (1998) analysed a number of meteorological
£elds (surface air temperature, local SST, northern hemispheric 700-hPa geopotential height, and quasi global
SST) in order to identify the level and origin of seasonal forecast skill for surface air temperature in North-
ern Europe. The most skillful forecasts were, according to this study, for the winter season with a weaker
secondary peak in skill during summer, and the geopotential heights gave the best scores. Sutton & Allen
(1997) suggested that there may be predictability on decadal scales associated with propagating anomalies
in the North Atlantic. Colman & Davey (1999) applied a statistical scheme to predict the July–August pre-
cipitation, surface temperature and pressure over Europe from January–February SSTs in the North Atlantic.
They suggest that the minimum and maximum July–August temperature over much of northwest Europe is
predictable using a lagged linear regression with anonaly correlation coef£cient (ACC) in the range 0.4–0.7.
The July–August rainfall and pressure were found to be less predictable. Predicted warm summers were as-
sociated with the movement of high SST anomalies across the North Atlantic from the east coast of the USA
to the northwest of Europe during spring months. The predicted cold summers, on the other hand, tended to
follow low spring-time SST in the vicinity of the British isles. A coherence analysis between winter SST and
summer temperatures was strongest at 7–8 year time scales.

Vautard et al. (1999) explored space-time principal components (multichannel singular spectrum analysis,
MSSA) in empirical-statistical prediction schemes for North American surface temperatures. They proposed
using so-called linear error in probability space (LEPS) as well as correlation as a measure of skill. When
they compared the MSSA method with similar predictions based on CCA, they found the predictions derived
from MSSA to be marginally superior, possibly due to the non-seasonal nature of the MSSA model and over-
£tting problems inherent to CCA. The CCA model may produce spurious negative correlations over large
areas. The overall skill was found signi£cant for winter, spring and summer predictions, but close to zero
during autumn.

Martis et al. (2002) reported strong relationships for up to 4 months lag between El Niño Southern Oscil-
lation (ENSO) and October–January rainfall on the leeward islands Aruba, Curecao, and Bonaire. Analysis
of the circulation suggested that the main factors in¤uencing the precipitation are the upper-level divergence,
vorticity and lower-level veering of the trade winds.

Lloyd-Huges & Saunders (2002) explored ENSO teleconnections to European spring precipitation. They
found strongest ENSO links across the central European region (45◦N–55◦N, 5◦W–35◦E). They suggested
using the F-distributed Chow test statistics for evaluating the model because stability in time is fundamental
to the utility of empirical forecast schemes. This statistic gives the ratio of the sum of squares from the
full regression to the sum of squares from two adjacent subsets. They reported 14–18% improvement over
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climatology when utilising the ENSO teleconnections in a lagged linear multiple regression scheme.
Kharin & Zwiers (2003) explored different methodologies for optimising the predictive skill for an

empirical-statistical scheme for making probability forecasts, using 700-hPa temperature and 500-hPa height
as predictors.

Colman & Davey (2003) used a statistical scheme involving a combination of CCA, nearest neighbour
regression (combined multi-method forecast scheme) and SST to forecast global SST. They found it hard to
beat persistence in the extra-tropics. The combined multi-method scheme was an improvement to simpler
individual schemes.

Mo (2003) proposed that a method termed ’ensemble canonical correlation’, using global SST and SLP,
surface temperature and soil moisture as predictors respectively to forecast the mean surface temperature
over the United States at 1–2 seasons lead. Their forecasts were the weighted average of these individual
forecasts. The use an ensemble mean is an improvement to the individual forecasts, which tend to have skill
over different parts of the globe.

Blender et al. (2003) used linear regression to predict monthly mean temperature in regions of England,
Germany and Scandinavia, using monthly mean teleconnection indices, North Atlantic SST, and European
climate variables as predictors. A parallel study was conducted with data from a 600-year integration with
the ECHAM/HOPE AOGCM. They found high skill for February–March (ACC=0.6) and August–September,
with somewhat lower scores for the simulations (ACC ≈ 0.5) and a different seasonal dependency for skill.

van Oldenborgh et al. (2003) compared empirical-statistical models with ’dynamical forecasts’ from Eu-
ropean Centre Medium-Range Weather Forecast (ECMWF) Atmosphere-Ocean General Circulation Model
(AOGCM). They suggested that the dynamical ECMWF models show better skill in 2-meter temperature
forecasts over sea and the tropical land areas than the statistical scheme based on persistence and lagged
regression. Their evaluation did not encompass northern Europe, as they claim that much of the seasonal
climate variability in mid-latitudes is unpredictable and that seasonal predictability of precipitation is mainly
based on ENSO teleconnections (the skill is higher during strong El Niño and La Niña events than during
neutral conditions). van Oldenborgh et al. (2003) also proposed that some of the errors from the AOGCM
may be corrected for by a downscaling technique.
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The prediction of ENSO pioneered the use of coupled ocean-atmosphere models (McCreary & Anderson,
1991; McCreary, 1983; McCreary & Anderson, 1984; Zebiak & Cane, 1987; Kirtman et al., 1995; Ji et al.,
1994; Ji & Leetmaa, 1995; Zebiak & Cane, 1995). Many of the early coupled models were so-called ’hybrid
models’ where one component consisted of a dynamical/thermodynamical model (e.g. the ’Zebiak model’)
and one part (often the atmosphere) of a statistical model (Barnett et al., 1993, 1995; Balmaseda et al., 1994).
A review of the prospects for seasonal forecasting in general was presented in Palmer & Anderson (1994),
Barnston et al. (1994), Latif et al. (1994), and Anderson (1995). There have been several studies on the
predictability on seasonal time scales: Eckert & Latif (1997) and Moore & Kleeman (1997) used AOGCMs
to study the effect of high-frequency weather noise on the ENSO onset.

Krishnamurti et al. (1999) and Yun et al. (2003) explored the use of multi-model ’superensembles’ (AMIP
data set), and found that the superensemble outperformed all individual model forecasts for multi-seasonal,
medium-range weather, and hurricane forecasts. They used multiple regression to preform a collective bias
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removal (a kind of weighted averaging) and showed that the superensemble had higher skill than forecasts
based solely on ensemble averaging. Palmer et al. (2000) explored seasonal prediction in multi-model en-
sembles based on the results from the PROVOST project.

Mo & Strauss (2002) examined the added value in combining a statistical scheme to correct for errors
in the past performance of a AOGCM (COLA) and found that such an approach removes the systematic
structural (distortion) errors.

Feddersen (2003) evaluated seasonal forecasts for precipitation for the Nordic region and reported marginal
skill. The most skillful predictions can be made in spring (April–June) and the SST in both tropical Paci£c
and Indian oceans and the North Atlantic may have some in¤uence. The in¤uence of the North Atlantic
Oscillation (NAO) on the spring-time temperature may also have an effect on the Scandinavian precipitation.
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Hawkins et al. (2002) suggested a link between the North American snow-cover and the North American
Monsoon system. They suggest that the areal extent of monthly and seasonal snow cover over North Amer-
ica is correlated with precipitation totals, precipitation frequency and severe weather associated with North
American Monsoon.

Kumar & Yang (2003) found a systematic in¤uence of snow variability on the atmospheric winter mean
on extra-tropical latitudes in the Northern Hemisphere, and they suggested that cause for the variability in the
lower troposphere was related to the dependence of surface albedo on snow depth amount.

Ueda et al. (2003) studied the role of snow-cover for the subsequent season’s weather, and its relevance
to seasonal and inter-annual variations of atmospheric circulation.
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Thompson et al. (2002) suggested that a dynamical coupling between the stratospheric and tropospheric circu-
lation may result in the potential predictability for extreme cold events throughout the Northern Hemisphere
both on month-to-month and winter-to-winter time scales. They proposed that a substantial weakening of
the wintertime polar vortex tends to be followed by low surface temperatures and an increased probability of
extreme cold events over North America, northern Europe and eastern Asia. These anomalies may persist for
up to ∼2 months. Furthermore, the easterly phase of the quasi-biennial oscillation (QBO) appears to bias the
probability to more frequent cold events and vice versa.

Baldwin et al. (2003) used an empirical-statistical model to explore the skill of forecasts beyond 10 days
lead of the monthly-mean Arctic Oscillation (AO). They found precursory signals in the lower stratospheric
circulation anomalies that were most skillful during boreal winter. They proposed that these anomalies may
affect the troposphere by affecting the upper tropospheric waves and hence inducing surface pressure changes.
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The large number of recent papers related to seasonal prediction suggest growing interest and activity around
seasonal prediction. There has been some activity on the seasonal prediction problem at the Norwegian
Meteorological Institute where Benestad (2002, 2001b, 1999) explored various empirical-statistical seasonal
prediction strategies for the Nordic countries. However, this work has not yet been part of a network or been
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coordinated with other weather/climate major centres. Recently, the World Meteorological Organisation
(WMO) in a note (SSP/RA VI.SRO/44 ’Operational Provision of Long-Range Forecast (LRF) products for
Region VI, Geneva, 12 November 2003) informs about plans to establish a system for LRF based on four
centres: ECMWF, Mètèo-France, Moscow and the UK Met Of£ce, starting from January 2004.

The likelihood of a anthropogenic climate change (Houghton et al., 2001) makes good seasonal fore-
casts more essential. If severe events, such as the exceptionally wet autumn 2000 (November: 564mm
at Bjørnholt near Oslo which was 470% of the 1961–90 climatology) (Benestad & Melsom, 2002) or dry
August–September 2002 (August 71mm = 60% and September 51mm = 40% at Bjørnholt) become more
commonplace, or if heat waves such as in the summer of 2003 in Europe (Schär et al., 2004) become more
frequent, then it is important for societies to be prepared. Furthermore, progress in climate change research
and seasonal forecasting can lead to mutual synergy effects. One example is the impact research on seasonal
forecasting on coupled atmosphere-ocean modelling.

� � "$�%" � � � ���� 
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Seasonal forecasts in the form of gridded £elds of monthly means of forecast means were retrieved from
ECMWF. Each forecast comprised of an ensemble of £ve members. These data were compared to monthly
means of daily means of 2-meter temperature for the interval September 1994–August 2002. All data were
retrieved as GRIB £les and converted to netCDF format in order to read the data into the � environment for
further analysis.

Climatological values were estimated from each ensemble run and for the ERA40 control, and anomalies
were derived by subtracting the respective climatological values from the £elds of each member/analysis
(hence the climatology may vary slightly among the members). In this context, a ’£eld’ is a time series of 2D
maps (a 3-dimensional matrix holding gridded data: X(t,y,x)).

Anomalous correlation coef£cients (ACC) were estimated for the entire ensemble by concatenating the
anomalies of the individual ensemble members along the time axis and correlating this combined set with a
corresponding £eld of EC analysis of similar length by repeating the same £eld 5 times (along the time axis).

� � �)(%��! �%(

Figure 2 presents an evaluation of the ECMWF seasonal forecasts done at ECMWF and for all of Europe,
and these graphics were obtained from the URL: http://www.ecmwf.int/. This evaluation indicates some skill
at 2–4 month lead (positive ACC), but the scores are not very high for 2m temperature (a), precipitation (b)
or SLP (c). The evaluation does not give any indication of whether some European locations are associated
with higher degree of predictability than others. The relatively high ACC score for the SST predictions (d) are
interesting, and brings up the question whether these can be used with e.g. a statistical downscaling technique
to provide improved seasonal forecasts (Benestad & Tveito, 2002).

Figure 3 shows a set of evaluation results obtained at the Norwegian Meteorological Institute. The cor-
relations analysis was applied to anomalies for all calendar months with monthly (as opposed to 3-monthly)
values and for one-month lead predictions. The evaluations shown in both Figure 2 and Figure 3 involve only
a few degrees of freedom, and are subject to uncertainties due to sampling ¤uctuations. Although the map

	



of correlation scores in Figure 3a indicates highest scores over the North Sea, the regional dependency of
skill remains somewhat uncertain due to the short lengths of the series. The time series shown in Figure 3b–c
present (bilinearly) interpolated values for the location of Oslo. Empirical-statistical based forecasts are also
shown (green), and both ACC and root mean square error (RMSE) (Wilks, 1995) are presented. Figure 3b
shows the results with no further statistical processing, whereas a MOS is applied to Figure 3c, where the low
correlation results in a dramatic reduction of the amplitude (variability) of the ECMWF forecasts. The ACC
scores are nevertheless roughly in line with those reported by ECMWF and shown in Figure 2 and with van
Oldenborgh et al. (2003). A comparison between the distribution of the analysis (also interpolated) and the
ECMWF members and ensemble mean (Figure 3d) suggest a realistic range and roughly similar distributions.
The fact that the ensemble mean (red) follows the observations and individual ensemble members so closely
is due to a high correlation among the members (which may have implications for the degrees of freedom
and the signi£cance associated with the correlation analysis, as the different members are not independent of
each other). The high inter-member correlation may suggest that there is a strong precursory signal and that
there is a great potential for seasonal forecasting (assuming the forecast model gives a good representation of
the real world).

The empirical-statistical model forecasts shown in Figure 3 gave slightly lower ACC, but higher RMSE
scores than the ECMWF seasonal prognosis. Figure 4 shows how the ACC scores from the empirical-
statistical model varies with lead time (also referred to as ’lag’). The highest scores were obtained for 0-lag
and one month’s lead time, as expected, but were generally low for longer lead times. Since this evaluation
only involved SLP, it doesn’t rule out the possibility of predictability for longer lead times based on other
parameters (e.g. SST, sea-ice, stratospheric conditions).
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a b

c d

Figure 2: Validation (1987–2003) performed by ECMWF for the entire European region (aggregated) based on anoma-
lous correlation coef£cient. The validation was for 3-monthly anomalous means and a lead time of 1 month.
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a b

c d

Figure 3: Evaluation of the ECMWF seasonal forecasts carried out at the Norwegian Meteorological Institute. The
analysis was applied to one month with one month lag. a) map of ACC for all ensemble members, b) time series
representing Oslo, c) Model Output Statistics for Oslo T2m, d) the distribution of T2m. Also shown are results from
empirical-statistical forecast model calibrated for Oslo-Blindern. The coloured regions in panel a represent regions
where the correlation is signi£cant at the 5% level (default setting for ����� �����
	�� in the  -package � 	���������� ��� ). The
evaluation interval was September 1994–August 2002.
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a b

Figure 4: Test of a empirical-statistical forecast model calibrated for Oslo-Blindern. ACC shown as a function of lag:
a) without annual weights, b) with annual weights. The empirical-statistical model was developed by Benestad and the
predictor was SLP.
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The National Center for Environmental Prediction (NCEP) and the International Research Institute (IRI) at
Coloumbia University, in the United States, also carry out seasonal forecasts on an operational basis (see the
appendix for an example), as does the UK Met Of£ce.

The Bureau of Meteorology (BOM) in Australia disseminates seasonal forecasts (’Seasonal Outlook’) for
ENSO, based on a number of different forecast models, and the Experimental Long-lead forecast bulletin
(URL: http://grads.iges.org/ellfb/home.html) has provided a forum for operational seasonal forecasts (last is-
sue available on-line was March 2003 with 15 different articles). The Dutch Meteorological Institute (KNMI)
Climate Explorer (URL: http://climexp.knmi.nl/) is another resource for empirical seasonal forecasting.

The Danish Meteorological Institute gives updated seasonal forecasts for the temperature in Denmark and
southern Greenland (not shown) and present these as probability density functions (pdf). These predictions
are derived from ECMWF seasonal forecasts, post-processed through further statistical analysis. This type
of preprocessing could involve empirical-statistical downscaling or model output statistics (MOS). There is
also some activity on seasonal forecasting at the Swedish Meteorological Hydrological Institute (SMHI), but
their products are presently not placed on their home pages.

When presenting seasonal forecasts it is important to show the past performance and skill scores, so that
the user can get an idea of how reliable these predictions are. One way to do so is to provide results from
evaluations, e.g. in form of a contingency table (Figure 5a). It is also important to show a comparison between
predictions made in the past and the actual values in a form of a time series plot, together with the present
forecast (e.g. Figure 5b).

Figure 6a shows a series of box-whisker plots for an ensemble of forecasts and past skill. The results
presented in this £gure were generated using a random sub-sampling technique to calibrate 100 different
empirical-statistical models on different data values. This approach may be one way to deal with observational
errors or non-linearities that may corrupt the empirical models. The forecasts from an ensemble of models
can be presented as a distribution, here shown as a histogram of values obtained for the prediction (Figure 6b).

Empirical-statistical downscaling similar to the method proposed by Benestad (2001a) can be applied to
the SSTs from ECMWF seasonal forecast products (which showed reasonable skill in Figure 2d, using two
different data sources for calibration and prediction.
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Figure 5: a) Contingency table example. b) Example of time series plot. From Benestad (2002).
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Figure 6: A sample graphic presenting a seasonal forecast. This example is based on a ’ran-
dom sub-sample’ (RS) forecast model, referred to as a ’REM’ model by Benestad (2002).
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A quote from the Danish Meteorological Institute Internet pages: � �����	��
�������
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�E���C�J� ���B+�� ����HJ� & � �B�D�K!%)L4�M)N4$�O�������
��	�	����
��JP�� underlines the new impetus on seasonal forecasting and the
increased efforts to improve our seasonal forecasting capability. Although the present results suggest only
marginal skill over northern Europe, a dedicated research effort is likely to lead to improvements over time,
but it is not yet clear whether seasonal forecasting eventually will have practicable skill for northern Europe.
Improved observations and longer observational records may provide more accurate initial conditions for
AOGCMs as well as leading to better calibration of empirical-statistical models. The studies in the past point
toward the use of large ensembles and a weighted combination of the individual members according to their
past skills. Downscaling of e.g. forecasted SST may also be a promising approach. A better coordination
and compilation of various data sources (from the oceans, cryosphere, stratosphere and of solar activity)
may contribute to further progress. Improved data assimilation methods, new advanced numerical modelling
schemes, improved knowledge, and growing computational resources/capacities may result in more reliable
models in the future.� �RQ0�.��K�����L�N���� �����
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