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Ole Einar Tveito1, Svetlana An, iskeviča4, John Cappelen6, Erik Engström2, Herdis Motrøen Gjelten1,

Caroline Drost Jensen6, Pauli Jokinen3, Elinah Khasandi Kuya1, Cristian Lussana1, Antti Mäkelä3,

Kaupo Mändla5, Kairi Vint5, Lennart Wern2, Viesturs Zandersons4

1Norwegian Meteorological Institute, 2Swedish Meteorological and Hydrological Institute, Sweden, 3Finnish Meteorolog-

ical Institute, Finland, 4Latvian Environment, Geology and Meteorology Centre (LVGMC), Latvia, 5Estonian Environment

Agency, 6Danish Meteorological Institute, Denmark





Contents

1 Introduction 4

2 Data set 5

2.1 Observation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Merging data series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Filling gaps in time series 11

3.1 Spatial interpolation methods . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Nearest neighbour . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Averaged neighbour anomalies . . . . . . . . . . . . . . . . . 12

3.1.3 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.4 Inverse distance weighting . . . . . . . . . . . . . . . . . . . . 13

3.1.5 Geostatistical spatial interpolation . . . . . . . . . . . . . . . 15

3.2 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Linear regression methods . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Principal component analysis . . . . . . . . . . . . . . . . . . 17

3.2.3 Testing PCA as gapfilling method . . . . . . . . . . . . . . . . 18

3.3 Gap filling applying gridded data . . . . . . . . . . . . . . . . . . . . 24

4 Some words on homogenisation 28

5 Conclusions and recommendations 30

3



1 Introduction

Climate normals are defined by WMO (WMO, 2017) as 30-year representative averages

of climate variables referring to the most recent 30-year period finishing in a year ending

with 0. This definition replaces the previous definition of consecutive non-overlapping 30

year periods (1901-30, 1931-60, 1961-90 and the upcoming 1991-2020).

Calculation of the climate normals is, given that the input data series are complete and

of good quality, a straightforward procedure. But the reality is that many series are in-

complete and/or inhomogeneous. Since the normals are sensitive to the averaging period,

efforts have to be made to secure a robust and consistent basis for calculations of climate

normals.

In all Nordic countries the observation network has been drastically changed over the

last 15-30 years. This has caused challenges for the calculation of climate reference val-

ues (the normals) as they require complete and preferably homogeneous data series. To

be able to calculate representative climate normals efforts has to be taken to (i) fill in gaps

in incomplete data series and (ii) assess and adjust for inhomogeneous and inconsistent

data series.

The Nordic region is characterized by large variations and gradients in weather and

climate caused by different topographical and coastal influences. The areas along the na-

tional borders are sparsely covered by meteorological stations, and data exchange across

these borders will provide a better data basis for calculation of stations normals in the

region. The climate services in the Nordic countries have a long and profound history

of collaboration within climatology. Organized under the Nordic Framework for Climate

Services (NFCS), ClimNorm will be a continuation of this tradition, focusing on estab-

lishing a high quality homogenized reference data set, evaluating gap filling methods and

assessing spatial and temporal trends and variability, producing a Nordic climate atlas for

the 1991-2020 normal period.

This report describes the compilation of a pan-Nordic temperature observation data

set that will form the basis for activity. It describes the data set, and the challenges with

incomplete data. Further are some possible methods for filling gaps in time series pre-
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sented and discussed. A few examples of applying and comparing some of these methods

are also presented. Finally are some effect of homogenisation highlighted.

2 Data set

2.1 Observation data

The first ClimNorm data set contains long term monthly temperature data series from the

Nordic region during the period 1901 until near present (2018). It is compiled applying

data from the national meteorological services in Latvia, Estonia, Finland, Sweden, Den-

mark and Norway. Figure 1 shows the location of the available temperature observation

series. Figure 2 shows the number of stations with observations each year during the

period 1901-2018. In the early part of the last century the number of available observa-

tions is rather low. Since around 1960 the number of observations has increased with a

maximum around 1970. Then there was a decrease until 2000. During the last 20 years

the number of observations has increased considerably, especially due to automation and

access to observations from organisations and governmental institutions other than the

national meteorological services. The number of series with complete or almost complete

records for the entire 1961-2018 period are however relatively few compared to the total

number stations that have been in operation during this period (Figure 3).

Most of the analyses in ClimNorm will demand complete data series. Figure 4 shows

the distribution of series with 30 consecutive years of observations within the period 1901-

2018, showing that there are not too many series that covers the entire period. It is however

quite obvious that many of the shorter series are due to relocations, and that merging of

data series for such stations should make it possible to increase the number of series with

complete, or almost complete, data coverage. For series with gaps, gap filling methods

could be applied to fill in the missing data. In the next sections, the steps to complete

observation series are described and discussed, they include the merging of short series

and the application of different approaches for filling gaps in data series.
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Figure 1: Locations of all the stations in the ClimNorm temperature data set
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Figure 2: Number of stations pr. year

2.2 Merging data series

When considering stations that have been relocated there is a possibility to generate longer

observation time series. We have merged series according to the following principles:

• horizontal distance <10 km

• maximum vertical distance ± 100 m

• partial series should have a substantial length. How long must be considered in

each case. (subjective assessment)

The merging was carried out semi-automatically. First, all series having more than 10

observation years within the 1961-2018 period were automatically scanned to identify

neighbouring series fulfilling the requirements listed above. The target series were plotted

together with the potential partner series. Figure 6 shows the connection between the

current operational weather station 47024890 Nesbyen, Norway and the historical series

from the same neighbourhood.

These plots were manually inspected and used to match series that could be merged.

No series could be used in more than one final series. The series having the most re-

cent observations are kept as the target for the final series, and the merged series keep
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Figure 3: Data coverage 1961-2018.
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Figure 4: Frequency of observation series lengths for the period 1901-2018

Figure 5: Frequency of observation series lengths in the period 1961-2018, before (left)
and after (right) merging of station series
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Figure 6: Visualisation of the series used to merge the series 47024890 Nesbyen, Norway
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the Name/ID of the target series. After the merging procedure 693 series remained for

the further analyses and method testing. Figure 5 shows the distribution of series length

before and after merging in the period 1961-2018.

3 Filling gaps in time series

Climatic time series are often incomplete due to a number of reasons: break in commu-

nication, technical errors at the station, temporary close down, relocation of observation

locations, etc. It is therefore often a need to fill missing values in these time series to

establish a robust, consistent and possibly homogeneous data basis for addressing climate

variability and change. In this report, we present different methods that can be used to fill

gaps in time series. The short review presented here is based on a literature survey as well

as experiences gained applying different methods within the Nordic countries.

Filling gaps is in principle data estimation, and often an analysis of the existing time

series is needed. Many of the general principles and main methods applied to analyse cli-

mate data are presented in WMO (2018). We have to differentiate between interpolation

and extrapolation of data. When data exists both before and after the gap we interpolate

data. If gaps are filled in one of the ends of the time series only, data are extrapolated.

There are a number of different approaches that can be applied for filling gaps in time

series, and they can coarsely be grouped into the following groups:

• Spatial neighbourhood

• Spatial interpolation

• Statistical methods

• Downscaling methods

In the following, these different approaches will be presented and discussed. Some

examples on how they might perform on monthly time series in Fennoscandia will also

be presented and discussed.
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3.1 Spatial interpolation methods

This group of methods assumes that geographical vicinity can be applied for filling gaps

in time series. The methods that fall in under this category are

• Nearest neighbour (Thiessen/Voronoï)

• Triangulation

• Inverse distance weighting

• Geostatistical methods

The common denominator of these methods is that they take the spatial distance into

consideration when an interpolated value is assigned.

3.1.1 Nearest neighbour

This is the simplest method. The interpolated value is taken from the nearest observation

with a valid value. Thiessen polygons or the Voronoï diagram method are algorithms that

can be applied to find the nearest data point. These two methods are theoretically simi-

lar, but are developed and applied within different communities. The Thiessen polygon

method has been widely applied to estimate areal precipitation for engineering and hy-

drological applications, while the Voronoï approach is more common within mathematics

and computer science.

In these algorithms every point in space is assigned to the nearest observation point,

forming a polygon (area) around each observation that will be assigned with the same

value as the observation point. The result will become a discontinuous surface. See an

example in figure 7.

3.1.2 Averaged neighbour anomalies

A rather simple method based on averaging neighbouring values, normalized by dividing

them with their respective mean values. This method is applied among others by the

climatol package (Guijarro, 2018).
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Figure 7: Nearest neighbour estimation (Thiessen/Voronoï)

3.1.3 Triangulation

Triangulation is strongly related to the Voronoï diagram method. Triangulation is in fact

used to determine the polygons. But instead of making discrete polygons, triangulation

creates a continuous faceted surface built up by triangles between the observation points

(Figure 8).

The slope of the surface along with the distance to the three corners will give an

interpolation value at any point within the triangle. The estimate ẑD in point D shown in

figure 9 will then be a combination of the slope of the surface and the values at the corners

A, B and C as expressed in equation 1.

α = (xC− xA) (yB− yA)− (xB− xA)(yC− yA)

zdx = ((yB− yA)(zC− zA)− (yC− yA)(zB− zA))/α

zdy = ((xC− xA)(zB− zA)− (xB− xA)(zC− zA))/α

ẑD = zA +(xD− xA)zdx +(yD− yA)zdy

(1)

3.1.4 Inverse distance weighting

Inverse distance weighting (IDW) is often included in the group of statistical spatial inter-

polation methods despite the fact that it only takes the distance to the n nearest observation

points into consideration. The estimate is a linear combination of the n nearest observa-

tions where the weight of each observation is proportional to the inverse of the distance

13



(a) Observation points (b) TIN

Figure 8: Establishing a triangular network (TIN) from point locations.
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Figure 9: Estimation by triangulation

between the prediction point and the observation points.

z0 =
∑

n
i=1 wi(x)ui

∑
n
i=1 wi(x)

(2)

where

wix(i) =
1

d(x0,xi)p (3)

x0 is the prediction point, while ui are the observation points. d denotes the distance

between x0 and xi, and p is the power of the distance weighting. Higher p-values give

higher weight to the closer points, lower value will give a larger influence of the more

distant observation points. The most commonly used p-value is 2.

When applying IDW it is possible to adjust for anisotropies (trends) in data, as well

as defining a proper neighbourhood. A disadvantage of IDW, which is also the case for

other spatial neighbourhood methods, is that it is limited to provide estimates within the

observed minimum and maximum value interval at the observation stations.

3.1.5 Geostatistical spatial interpolation

The geostatistical approach differs from the methods described above since they also con-

sider characteristics of the observed field in addition to the geometric features of the ob-

servation points. The main assumption for this type is that they assume spatial covariance

structure, where the covariance depends on the distance (h) between the observations. To

this group of methods we can count in kriging and optimal interpolation (OI). OI is a well

known concept in atmospheric sciences as the fundamental principle for data assimila-

tion. The problem was formulated by Eliassen (1954) and further developed by Gandin
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and Hardin (1965), and therefore often referred to as Gandin interpolation. Kriging is

a similar approach developed for mining applications. The spatial covariance structure

applied in OI is a correlogram, while kriging applies a semivariogram. Kriging is devel-

oped for processes where the number of realisations are few, or even only one, while OI

takes advantage of multiple realisations. Creutin and Obled (1982) gives a nice overview

of several spatial interpolation methods, showing that even if they are based on different

theories and assumptions they can be broken down to similar mathematical expressions.

3.2 Statistical methods

Statistical methods are often used to model timeseries, and can thus be applied also for

filling gaps in time series. Statistical models will only consider the statistical properties,

and will not consider the geographical locations (unless these are included in the predictor

fields as described by e.g. Tveito (1998)).

3.2.1 Linear regression methods

Linear regression is maybe one of the most applied approaches to model a process, and

to fill time series. It is basically a line fitting technique, assuming an underlying gaussian

distribution. Mathematically it can be expressed as

X̂ = a+bY (4)

When more predictors (e.g. other times series) are applied the mathematical expression

takes this form:

X̂ = a+
n

∑
i=1

biYi (5)

When filling gaps in time series X̂ the predictors Yi are usually other time series. The

selection of predictor series is normally based on one, or a combination of these criteria:

• Covariance

• Distance

• Representative neighbours
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3.2.2 Principal component analysis

One possible concept to fill gaps in time series is to apply principal component analysis

(PCA). This method, also often referred to as empirical orthogonal functions (EOF), is

in principle a data reduction method used to identify spatial and temporal patterns in a

data set (e.g. a set of time series). Even though it is regarded as a multivariate statistical

method, it does not assume an underlying statistical distribution nor does it depend on any

statistical tests. The components (or functions) are found by calculating the eigenvectors

and eigenvalues of the anomaly covariance matrix. That means that the input data are

normalized before the eigenvalues/eigenvectors are calculated. The eigenvalues show the

explained variance of each mode (eigenvectors) of the input data. The principle applying

PCA for gap filling is a bit similar to the linear regression approach, but the predictors are

PCs instead of time series. PCA is a multivariate statistical method where a set of corre-

lated data series are transformed into a set of orthogonal (and thus uncorrelated) principal

components that describe the total variance in the original time series. Mathematically

this can be expressed as:

X ′k(t) =
m

∑
i=1

hikβi(t) (6)

where X ′k(t) is an observation series, βi(t) are the temporal principal components describ-

ing variations in time. hik are the spatial components that weight the βi(t) according to

their influence in the series. The weight factors h will thus give a spatial signal of the

influence of the individual components. i denotes the component number, and k is the

location index. The βi(t)’s are sorted meaning that the one explaining most of the total

variance is the first, the second most second etc. Since most of the original total variance

is explained by the first principal components, this method can be applied for reducing

the dimensionality in large correlated dataset. Thus a few PCs will be applied to explain

most of the variance in the target series and be used to estimate missing data. The sum of

all weighted components will reproduce the original time series.

The principal components βi(t) describes the temporal variations. For each time series

these components are weighted hik .

Hisdal and Tveito (1993) showed that these weight coefficients can be estimated as:

h′ik =
ρ(x′k(t

′)bi(t ′))
σ(βk(t ′))

(7)
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This relation can be applied to fill gaps in incomplete time series by calculating h′ik
from the common period between the time series and the principal components. The final

series is derived from

X̂k =
n

∑
i=1

h′ikβi(t) (8)

The PCA concept can thus be applied to reconstruct dataseries in data sparse periods

based on periods having good data coverage given that a joint calibration period between

the high resolution and lower resolution datasets exist (Schiemann et al., 2010). Hisdal

and Tveito (1993) also showed that regionalization of the data series into regions (or

classes) with the same characteristics gave more robust principal components with regard

to gap filling, since all components then will contain significant information for the series

to be completed. The hik’s often show a spatial pattern, and are thus representations of

regional climate signals. Hisdal and Tveito (1992) demonstrated that the hik’s can be

estimated applying a spatial interpolation method (e.g. kriging) to estimate timeseries at

locations without calibration data.

3.2.3 Testing PCA as gapfilling method

By nature, the EOFs are not correlated, and can therefore be treated as independent predic-

tors. The EOFs are quite often calculated from timeseries with the same climatological

characteristics as the candidate series. Therefore a classification of the temperature se-

ries into 12 regions where carried out by a k-means cluster analysis. The twelve classes

formed geographical regions as shown in Figure 10.

The PCA was carried out both as a global analysis, including all 693 series and as an

analysis of each of the twelve regional data sets. In order to avoid impact of the annual

cycle signal in the temperature series, the input series are normalised by the monthly

mean values. The PCAs are also performed for each of the months individually. This

means that the twelve PC-analyses are carried out for each region. Tables 1, 2 and figure

11 shows that the regional PCs explain more of the variance by the first few components

than the global analysis for most regions. The exception is region 5 (dark green line)

which includes the Arctic series. For this region more components (4-5) are needed to

cover 95 % of the variance than for the other regions.
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Table 1: Proportion of variance explained by the first principal component

Region Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec
Global 0.800 0.841 0.833 0.708 0.711 0.674 0.732 0.738 0.776 0.729 0.732 0.797

Region 1 0.957 0.952 0.958 0.944 0.934 0.937 0.93 0.921 0.945 0.947 0.941 0.950
Region 2 0.926 0.936 0.959 0.951 0.949 0.911 0.905 0.914 0.958 0.948 0.923 0.947
Region 3 0.935 0.929 0.908 0.882 0.826 0.833 0.877 0.902 0.928 0.897 0.925 0.945
Region 4 0.974 0.980 0.972 0.943 0.960 0.960 0.953 0.938 0.971 0.972 0.972 0.978
Region 5 0.766 0.679 0.790 0.785 0.758 0.688 0.688 0.691 0.801 0.793 0.748 0.743
Region 6 0.981 0.981 0.974 0.916 0.922 0.926 0.957 0.933 0.961 0.959 0.960 0.975
Region 7 0.958 0.964 0.973 0.962 0.957 0.957 0.957 0.953 0.973 0.976 0.956 0.973
Region 8 0.939 0.953 0.950 0.919 0.922 0.912 0.938 0.940 0.926 0.922 0.909 0.941
Region 9 0.955 0.961 0.966 0.937 0.927 0.934 0.939 0.944 0.959 0.967 0.948 0.956

Region 10 0.953 0.966 0.961 0.936 0.919 0.924 0.926 0.932 0.936 0.938 0.936 0.949
Region 11 0.967 0.966 0.960 0.925 0.881 0.855 0.927 0.936 0.920 0.931 0.926 0.956
Region 12 0.981 0.978 0.965 0.919 0.908 0.931 0.954 0.939 0.961 0.968 0.976 0.980

Table 2: Proportion of variance explained by the first five principal components

Region Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec
Global 0.961 0.963 0.962 0.934 0.926 0.921 0.943 0.939 0.949 0.950 0.936 0.960

Region 1 0.991 0.991 0.991 0.987 0.991 0.992 0.992 0.990 0.990 0.990 0.985 0.990
Region 2 0.991 0.992 0.994 0.990 0.993 0.993 0.994 0.988 0.993 0.993 0.990 0.993
Region 3 0.985 0.985 0.981 0.975 0.968 0.970 0.975 0.981 0.983 0.976 0.982 0.987
Region 4 0.997 0.997 0.995 0.991 0.992 0.992 0.992 0.985 0.991 0.996 0.997 0.997
Region 5 0.982 0.981 0.982 0.979 0.968 0.968 0.964 0.958 0.983 0.985 0.982 0.985
Region 6 0.997 0.997 0.993 0.983 0.983 0.984 0.989 0.982 0.988 0.990 0.994 0.996
Region 7 0.998 0.998 0.998 0.996 0.997 0.996 0.998 0.994 0.996 0.998 0.998 0.998
Region 8 0.989 0.991 0.988 0.979 0.980 0.978 0.981 0.982 0.978 0.984 0.984 0.988
Region 9 0.991 0.993 0.992 0.985 0.983 0.987 0.987 0.985 0.989 0.992 0.991 0.992

Region 10 0.990 0.993 0.992 0.986 0.985 0.984 0.986 0.983 0.984 0.985 0.988 0.988
Region 11 0.993 0.993 0.988 0.977 0.968 0.958 0.977 0.974 0.973 0.978 0.983 0.990
Region 12 0.998 0.998 0.995 0.989 0.987 0.988 0.990 0.987 0.992 0.994 0.996 0.997

19



Figure 10: Twelve temperature series classes defined by a k-means cluster analysis

The analyses are validated by a cross-validation. Each series is extracted from the input

data set before the PCA is carried out for the remaining series. The weight coefficients

are estimated using 1961-90 as calibration period and 1991-2018 as verification period.

Figure 12a shows the root mean square error (RMSE) for the global analysis. The average

global RMSE is 0.37, minimum is 0.21 and maximum is 1.15. For the regional analysis

the mean is 0.23, the minimum 0.11 and the maximum 0.91. This clearly indicates that

the regional analysis provides more exact estimates than the global analysis. Figure 13

shows that except for one station (358101464) located in the Gulf of Bothnia, all stations

achieve lower RMSE when regional PCAs are applied compared to the global. Figure 14

shows the typical behaviour at a single station. Values predicted by global PCA are more

scattered than the ones estimated by the regional PCs. They are closer to the straight line

indicating a perfect match. The maps in figure 12 confirm this. These maps also show

that the lowest RMSEs, and thus the best results, are obtained in the south eastern parts of

the study domain, in southern Sweden, Finland and the Baltic countries. These are areas
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Figure 11: Cumulative proportion of variance explained by the first eight PCA’s for the
global (thick black line) and the twelve regional PCAs (coloured, see fig. 10) for each
month 21



with quite high station density and relatively small topographical variations.

The largest RMSE values are found for the mountain regions and northern parts of the

study area. The absolutely highest RMSEs are for the Arctic stations, where the distances

between the stations are huge.

(a) Global PCA (b) Regional PCA

Figure 12: RMSE of estimation of timeseries applying PCA.

Figure 12b shows the performance for the regional analysis. The higher number of

dark green dots across the study domain show that the RMSE is lower, and that the re-

gional analysis improves the estimates especially in the western and northern parts of

the domain where station density is low. The climatic characteristics in these areas are

suppressed in the global analysis due to the more numerous observation series in the

south-eastern part of the study domain. For the Arctic series the RMSE are reduced, but

still quite large.
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Figure 13: RMSE of global PCA vs regional PCA

Figure 14: Observed vs predicted values by global and regional PCA at station 46052230
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3.3 Gap filling applying gridded data

Grid-based interpolation is a method to calculate values in places where one has no obser-

vations. At MET as well as many other data providers, spatial interpolation methods have

been developed which are used to produce observation-based gridded data (Tveito et al.,

2000, 2005; Engeset et al., 2004; Lussana et al., 2018a,b). Such algorithms can also be

used to calculate point values, as described above. The advantage of such observation

based gridding is that they often provide data with a very high spatial resolution and that

they cover quite long time periods (several decades).

Gridded data sets offer a unique possibility to achieve complete data records. These

data sets are complete in terms of spatial and temporal coverage. There are several ap-

proaches to establish gridded data. The most used in climatology are either observation

gridding where the major data sources are in-situ observations of the climate element of

interest. In the Nordic countries FMI (Aalto et al., 2016), DMI (Wang and Scharling,

2010) and MET Norway all produce such data. One pan Nordic dataset of this type cur-

rently exists, the Nordic Gridded Climate Dataset NGCD (Lussana et al., 2018a; Tveito

et al., 2005) that is a part of the C3S surface climate observation monitoring service.

NGCD is produced by MET Norway and is updated every 6 months. The advantage

of observation gridding is, given that the number of input data points is sufficient and

relatively evenly distributed, that they provide quite precise data at a very high spatial res-

olution. As an example, NGCD provides daily values of temperature and precipitation at

a spatial resolution of 1 x 1 km. The main disadvantages are that the physical consistency

between parameters are lost, and that data are extrapolated outside the input data sample

domain.

The other dominating approach is the use of atmospheric models for reanalysis or hind-

casts. These models provide physically consistent data but often at lower spatial resolution

due to the heavy computer demands. State of the art global reanalysis such as (Hersbach

et al., 2020; C3S, 2017) has a spatial resolution around 30 km. Regional reanalyses like

CERRA (Europe) and CARRA (Arctic) that are under development will provide data with

6 km or less resolution. Some reanalyses provide ensemble data, mostly with a lower res-

olution than the deterministic product.
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When applying gridded data for gap filling the bias between observations and the es-

timates from the gridded data set needs to be corrected. A common way to do this is to

apply a linear regression model. This is maybe one of the most applied approaches to

model a process, and to fill time series. It is basically a line fitting technique, assuming

an underlying gaussian distribution. Mathematically it can be expressed as

X = a+bY (9)

where X is the observation, Y is the predictor (in this case the grid model value) and a

and b are model parameters. This model describes the relation as a straight line. It can be

further developed to describe a curve by

X = a+bY + cY 2 (10)

To demonstrate this we have fitted data for the 621 ClimNorm stations that are inside

the NGCD coverage by downscaling ERA5 and NGCD type values. Figure 15 shows

the histograms of RMSE of the downscaled mean daily temperatures at these locations.

It is easy to see that (i) the raw NGCD estimates are more precise than the ERA5 values.

This should be expected since the input data to NGCD to a large extent are the same as

in the ClimNorm dataset. The spatial distribution of the RMSE of the raw estimates 16a

and 16d shows that both methods provide quite precise estimates in areas with small to-

pographical variations. Along the Norwegian west coast and in the mountains the RMSE

is considerable, especially for ERA5. The NGCD2 estimates have lower RMSE, mainly

because the gridded data set has a high spatial resolution (1x1 km) and that it is based on

observations only. Both data sets show a bias, and the bias adjustment, both linear (16b

and e) and polynomial (16c and f), improves the estimates. For ERA5 is there a large

improvement. Applying a polynomial fit gives estimates that are slightly more precise

than the linear fit. For NGCD2 fitting a linear model also leads to a real improvement

of the estimates, and the polynomial fit shows slightly better estimates than the linear fit.

One possible danger applying a polynomial function to adjust biases that values at the end

of the distribution function is that the fitted curve might deviate from the true distribution

due to undersampling at the end of the tails of the distribution compared with the central

part of the distribution (extrapolation effect).
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Figure 15: Distribution RMSE of downscaled temperatures from ERA5 and NGCD type
2. The black line shows the raw downscaled values while the red dashed line shows the
bias-adjusted values using the linear adjustment described in equation 9. The blue dashed
line represents the polynomial fit by equation 10.
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(a) ERA5. (b) ERA5 linear fit. (c) ERA5 polynomial fit.

(d) NGCD2. (e) NGCD2 linear fit. (f) NGCD2 polynomial fit.

Figure 16: RMSE of downscaled datasets.
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4 Some words on homogenisation

When analysing trends in observation series it is important that the series are homoge-

neous and only represent trends and changes in the weather and climate. Observation

series can be severely influenced by external factors such as relocations, change of instru-

ments, change of observers and/or observation practices and changes in the environment.

The latter include buildings, land use and vegetation. These external factors might intro-

duce an inhomogeneity in the series, either as an abrupt shift or as a gradual change. The

first type of inhomogeneity is often caused by relocation, new equipment or new building

nearby. Removal of vegetation close to the sensors is also a cause in this category. When

vegetation is growing or the land-use is gradually changing the inhomogeneity will appear

slowly, as a trend.

The first type of inhomogeneities are relatively easy to detect and adjust. There are

a number of well tested methods developed for this purpose. The most applied methods

for homogenisation in Europe are HOMER (Mestre et al., 2013), ACMANT (Domonkos,

2019) and SNHT (Alexandersson, 1986). The SNHT method is implemented in the Cli-

matol (Guijarro, 2018) R-package for analysing climate data.

The ClimNorm data set has not been completely homogeneity tested. The Norwe-

gian series in the dataset is however tested and homogenized (Kuya et al., 2020) applying

HOMER. In the analysis series from Sweden and Finland were included to make the anal-

ysis of series near the national borders more robust. Only nine of the Norwegian series

were found homogeneous throughout the 1961-1990 period. The most common reasons

for inhomogeneities were relocations (43.8% of the breaks), automation (14.4%), new

instruments (13%), new radiation screen (13%) and painting of radiation screen (9.1%).

The effect of the homogenisation can easy be illustrated by comparing maps of the

change of monthly normal values between 1961-1990 and 1991-2020 based on "raw" un-

homogenised series with maps based on homogenised series for January (Figure 17). The

homogenised dataset shows a smooth change, representing regional climate trends, while

the raw data result in a map with local variations. The maps based on homogenised data

are clearly more trustworthy in explaining the large-scale climate variations that should

explain the change of "normal" climatologies.
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(a) Unhomogenized data. (b) Homogenized data.

Figure 17: Difference between the 1961-1990 and 1991-2020 mean monthly January
temperature.
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5 Conclusions and recommendations

The ClimNorm project aims to support the national NMHS in the Nordic region in the

calculation of new climate normals. For that purpose a joint climate dataset of monthly

timeseries is established. This report has presented the temperature dataset, and methods

to fill gaps. Two methods are actually applied and the results are compared. The pre-

liminary investigations indicate that the method based on a principal component analysis

tends to give more accurate estimates than applying bias-adjusted downscaling of gridded

data. This is especially evident in areas where there are large local and regional variations

in temperature due to elevation and coastal gradients. The PCA should be further tested

by implementing and comparing the RSOI method (Schiemann et al., 2010) and self or-

ganising map (SOM) algorithms that can estimate PCAs from series with missing data.

A homogenisation of the Norwegian and some Swedish and Finnish observation stations

for the period 1961-2018 has shown that homogenised series shows more distinct regional

patterns, and therefore can be regarded as better to describe climate variability and change

than series that might be affected by artificial and environmental disturbances.

Further work should include:

• Update the ClimNorm data until 2019, and later also 2020.

• Test RSOI and SOM for filling gaps in time series

• Establish a gapfilled data set based on a recommended method.

• Homogenise the 1961-2020 data set.

• Analyse and homogenise longer time periods, e.g. 1901-2020.

• Study regional and temporal trends applying the gap-filled and homogenised data

set.
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