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Abstract
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Introduction

The seNorge version 2.0 collection of observational griddatasets for temperature and
precipitation (in brief,seNorge® has been released by The Norwegian Meteorological
Institute (MET Norway) as an improvement of the previous @efe version 1.1Tveito
and Fgrland 1999;Tveito et al, 2000;Mohr, 2008).

The new version has been developed in collaboration withNidrevegian Water Re-
sources and Energy Directorate (NVE) within the frameworkhe Felles aktiviteter
NVE-MET tilknyttet nasjonal flom- og skredvarslingstjeaest

The objective of this report is to describe $eNorge2wo-meter gridded temperature
datasets, which are based on the observations from the MEXaY& Climate database
(KlimaDataVareHusebr KDVH).

The three temperature datasets, or products, develossiNiorgezare:

e TEMP1h Hourly Air temperature at time of observation (hourly sdimgp rate).
Input: variableTA (i.e. hourly Air temperature at time of observation) in KDVH
Time range: from 2010 to the present day;

e TEMP1d Daily mean temperature in the time period 06-06 UTC. InAKMRR
(i.e. daily mean temperature in the time period 06-06 UTChim KDVH. Time
range: from 1957 to the present day;

e TEMP1d24h Daily mean temperature as the arithmetic mean of 24 hoailyes in
the time period 06-06 UTC. InpuEEMP1handTAMRR Time range: from 2010
to the present day.

The observations are interpolated on an high-resolutigulae grid. The grid spacing
is 1x1Km (in both northing and easting coordinates) andvec® the Norwegian main-
land plus an adjacent strip of land along the Norwegian brondeuding parts of Finland,
Sweden and Russia.

The gridded dataset is primarily intended to be used in ¢bifogical and hydrological
applications. The grid spacing of 1Km has been chosen asojgefdy represent the
Norwegian drainage network.

The spatial interpolation is based on a Bayesian method. Byu3ptimal Interpo-
lation (Ol; Gandin and Hardin(1965)) the observations and the background (i.e. prior



information) are combined into the analysis field, which &sd® available to the users on
grid points and at station locations.

In the case oTEMP1hand TEMP1d the statistical interpolation procedure follows
a scale-separation approach: the prior information or gedaackground is estimated
from the observations and it is meant to describe the effeicegmospheric dynamics
on a coarse scale with a fine scale given by the local observdgnsity as a reference
length-scale.

The TEMP1d24hproduct refers to the same quantity BEMP1d In TEMP1dthe
background field is obtained fro'AMRRdata, whereas inEMP1d24tthe background
field is obtained by averaging the correspondind EMP1hfields. As a consequence, the
TEMP1d24Hields are available only from 2010 onwards, whHilEMP1ddata is available
back to 1957. TEMP1d24hhas been included iseNorge2o investigate the benefit of
using an alternative background in our Ol scheme. It is waatharking that if the 2ZA
observations are available in KDVH then the correspondililgiRRobservation is always
present. However, the opposite is not true: for some statanty the daily averaged
temperaturd AMRRIs available in KDVH, while the correspondiricA observations are
not measured. As a result, one should expect significamrdifces betweerEMP1d24h
andTEMP21dfields in the surroundings of those stations whefd/IRRIs available but
TA has not been measured.

The main products for thiseNorge2elease areTEMP1dfor the daily mean tem-
perature and EMP 1hfor the hourly temperature. In other words, our efforts anabpti-
mization of the spatial interpolation method are aimed atexing the better quality for
these two products, whilEEMP1d24hwill be improved in the futureseNorgeZeleases.

The work described in the present document further devédlepQl scheme intro-
duced byUboldi et al. (2008). The current application implements that concept av
much wider spatial domain by introducing a global pseudgkgeound field, which is the
blending of several regional pseudo-background fieldsdtiten, the computation of a
single regional pseudo-background field has been modifieddiyding a generalization
of the function introduced ifrei (2014) to approximate the regional vertical temperature
profile.

To prevent from entering the spatial interpolation procedinose observations af-
fected by gross-measurement errors, we must use all thialaleaguality information
stored in theKDVH. Furthermore, the automatic Spatial Consistency Test ibestin
Lussana et al(2010) is included in the Ol procedure.



Section 2 describes the observations used to estatdilorge2 In Section 3 the
spatial interpolation method is described and in Sectida dpplication is presented on a
test case. Finally, in Section 5 a detailed evaluation ofititasets is reported.

Input data

The input data considered in this study are allTheand TAMRRobservations available
in the MET Norway'’s Climate database (or KDVH).

The station network comprises manual and automatic weatadons managed by
several different public institutions, such as: The Nora&agMeteorological Institute
(MET Norway); The Norwegian Water Resources and Energy Dirate (NVE); The
Norwegian Public Roads Administration (Statens Vegvesie) Norwegian Institute of
Bioeconomy research (NIBIO); the Swedish Meteorological Hgdrological Institute;
the Finnish Meteorological Institute; among others.

The network covers a portion of Fennoscandia, with a focugeMNorwegian main-
land. The station distribution is uneven for all the meady@ameters with more stations
in the Southern part of the domain and a sparser network iNgreh and in the moun-
tains, as shown in Figs. (2) and (4) foA and TAMRR respectively. The consequences
of such inhomogeneities in the station distribution on tiagistical interpolation are dis-
cussed in Section 3 and evaluated in Section 5.

The data availability in time folfA and TAMRRIs shown in Figs. (1) and (3), re-
spectively. The number of stations is not constant in tinenetheless the time series
for TAMRRshows a reasonably stable behavior back to year 1957 withca@ase in the
number of available stations in recent years. In Figuret{ig,evolution in time of the
station network measurinfAis shown. For each hour from 1957 to 2010, Fig. (1) shows
one red point marking the number of available observatiblosvever, for years previous
to 2010 it is possible to recognize three distinct "linestery day at 6 UTC, 12 UTC
and 18 UTC (i.e. the timing for the collection of synoptic ebstions) the number GiA
observations shows its peaks (the "line” marking the daigximum value); then for all
the other hours of the day, the numbef@fobservations is significantly lower (for some
hours of the dayfA has not been observed until year 1975). After 2010, the tiiress”
merge into a single "line”, which give us the idea of a mordammn and stable behaviour
for the wholeTA station network.

We've decided to start our production of hourly temperafigtls from the 1st of



January 2010.

The availability in time for stations outside Norway is shoiw Fig. (5) and it is quite
evident that MET started to import these stations in KDVHydiolr recent years: these
stations would play an important role in reducing the boefercts along the Norwegian
mainland and it is planned to include more stations in fuseforgezeleases.
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Figure 1: TA. Number of available observatiomstime (1 point=1 hour), for the Norwe-
gian stations. Time interval: (left) 1957-2015; (right)@02015. Note that in the interval
from 1957 to approximately 2010 the maximum number of olzt@u is available at: 6
UTC, 12 UTC and 18 UTC.
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Figure 2. TA (status at 2014.11.01). Stations on the Norwegian mainisttibution of:
(left) station elevations; (right) station latitudes.
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2009-2015. Products: (lefAMRR (right) TA.

The Statistical Interpolation method

The filtering theory deals with the problem of estimating timknown true state of the
system from noisy observations (skEewinski(2007) for a review on filtering theory). In
our case, the state is the surface (2-meter above the greemggerature on the regular
grid (or at station locations) and the observations aresctdld by a network of weather
stations, as described in Section 2.

The conditional probability density function of the stateeg the observations is the
complete solution of the filtering problem. A so-called Bagagoint of view is adopted
here, in that a prior information (background) is taken imtcount. Because of the prob-
ability densities in our assumptions are Gaussian, we att@nvihe linear estimation
theory, and the conditional probability density functi@m the true state is Gaussian too.
Note that Gaussian densities are totally characterizedhéiy imnean vectors and covari-
ance matrices. As a consequence, the estimate of the ttaesthe system is the mean
vector for the conditional probability density functiontbie state given the observations
and considered the background. In fact, the choice of thedstisnate for Gaussian den-
sities is quite easy compared to the non-linear case bethesaean, the mode (peak)
and median are equivalent, moreover the maximum likelin@ayesian) estimate is the
same as the minimum variance estimate. In our work, we'vd @y@imal Interpolation
(Ol) Gandin and Hardin(1965) to obtain the desired mean vector, which in this cdnte
is calledanalysisvector.
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The Ol scheme is described in detail in Section 3.1 and it kas lapplied for all the
products:TEMP1h TEMP1dandTEMP1d24halthough with some distinctions.

As mentioned in théntroduction in the case of EMP1handTEMP1dour Ol scheme
differs from the classical Ol because the prior distribut{pe. our background) is esti-
mated from the observations, such as in empirical Bayesignads. In the following, we
will refer to the background fofEMP1dandTEMP1has pseudo-background to empha-
size its link with the observations. The models chosen toest the pseudo-background
field and its error covariance matrix are both key elementeendetermination of the fi-
nal analysis quality. Two issues related to the introductibthe pseudo-background in
our Ol scheme need to be discussed. First, as in classicar@®ufation we still rely
on the assumption that observation and pseudo-backgrounid @re uncorrelated ran-
dom variables. The validity of this assumption, which isachg an approximation, is
discussed itJboldi et al.(2008) andParrish and Derber(1992). Second, in the calcula-
tion of our pseudo-background several parameters needdstimeated (see Section 3.2).
Our optimization procedure focus on the determination eirtexpected values, without
considering the associated uncertainties. In other wahéspseudo-background field is
implicitly assumed to have always the same quality, altiong expect it to constitute a
better representation of the actual atmospheric configur&r some cases than in oth-
ers. As a consequence of the aforementioned two issuesn#igse error covariance
matrix derived directly from the classical Ol formulatioraynbe regarded as a question-
able estimate for the actual analysis error covarianceixn&tor this reason, to evaluate
the analysis uncertainty several diagnostic variablesnéreduced in Section 3.3.

In the case oTEMP1d24hthe background is obtained by averaging the correspond-
ing 24 TEMP1hfields. However, it is possible that some of th& hourly temperature
observations used in tHREEMP1hOI procedure could have been used to obtain the corre-
spondingTAMRRvalue, then also fof EMP1d24hhe background should not be consid-
ered independent from the observations.

The Spatial Consistency Test implemented in the statistitatpolation is described
in Section 3.4.

The notation ofde et al.(1997) is used whenever possible. The state veatbias/e
dimensionn (i.e. number of grid points). Thg-vectors at timg; have dimensiom;
(i.e. number of observations or station points or stati@afions) and, typicallyp; < n.
Matrices are specified through bold upper-case Roman Iéiter« is the Kalman gain
matrix). The operato{...]j will specify the j-th vector component and similarly the

13



3.1

operatof|.. .]ij will specify the matrix components-th row, j-th column). A vector will
always be a column vector. Superscript T denotes the ventatrik) transpose. The
three dimensional spatial coordinates associated witmargepoint in the space are
specified as triplet&, y, z). Itis implicitly assumed that thieth grid point has coordinates
(Xi,Yi,z) and thej-th station point has coordina(aj,yj,z,-). For station locations, the
vertical coordinate is the real station elevation stored as a metadata in KDV Hgwihe
elevation for grid points is obtained from an high-resantdigital elevation model.

Optimal Interpolation
Consider the background, i.e. a priori information, avdédinth at then grid points and
at p; station locations:

X =x"+nP (1)

Yo =y'+e (2)
where:x? is the background at grid points® is the unknown true atmospheric state;
n® ~ N(0,B) is the background error, which is assumed Gaussian (the wedar is
assumed to b, that is the background is an unbiased estimate of the taie; & is
the covariance matriXBJ;; being the background error covariance between a pair of grid
points).

Similarly, y? is the background at the station locatioyisis the unknown true temper-
ature state at station locations? ~ N (0,S) is the background error, which is assumed
Gaussian (each component of thex p; matrix S is the background error covariance
between a pair of station points).

Let the pj-vector observationg® be given by:

yo=y'+e° (3)
where the non-linear observation operator is implicit afd- N (0,R) is the obser-
vation error, goj-vector, which is assumed Gaussian and its covariancexmsttenoted
by R.
The discrete filtering problem consists of computing amesstiex? for the true state
x! based ory°. The Ol scheme assumes a linear relation between the anadgsement
x2—xP and the innovatioy® — y®:

14



Xa:Xb+K <y0_yb> (4)
WhereK is then x p; (suboptimal) gain matrix. Then, by minimizing the variance
of the analysis erron® = x2 — x' with the implicit assumption of independence between
observation and background errors, the Ol expression besom

X=x"+G(S+R)? (yo—yb> (5)

Where the gain matriK = G (S+ R)‘l is expressed by means of the error covariance

G = <<xb—x‘) (yb—y‘>T> = <nb(6b)T> 6)
S = <(yb—y‘) (yb—yt)T> = <£b (sb)T> (7
R = <(y°—yt) (y°—yt)T>=<8°(8°)T> (8)

the angular brackets represent the expectation value esiect to an appropriately

matrices:

defined statistical ensemble. Each component ointkep; matrix G is the covariance
between the background error at a grid point and the backgdretror at a station point.
The true state is unknown and so are the covariance matrities.estimates of these
matrices, which are specified by means of analytical carogldunctions, determine the
characteristics of the analysis field.

The Ol analysis on station points is:

Y=y W (0 y) ©)
WhereW is the p; x pj influence matrix. Once again, by minimizing the variance of
the analysis errog® = y2 — yt, the Ol expression becomes:

Y=y’ +S(S+R) (v -y) (10)
We assume the observation error covariance m&trim be diagonal and all the ob-

servation errors have the same variawge(it is a quantity characterizing the network
globally rather than each single station):

R = o2l (11)

15



The function of horizontal and vertical distances that iscduto estimate the back-
ground error correlation between the two generic paints(x;, i, z) andrj = (xj,Y;, zj)
in the three-dimensional space is:

2 2
v(ri,r,-;D“,DZ>=eX|o —% (d(r[')—hr’)> +<%) (12)

Whered (rj,r;) is the horizontal distance between the two points, Anfti,r) is
the difference between their elevations above sea I®kandD? are the de-correlation
distances in the horizontal and vertical directions, respely.

The effect of different choices dd" and D? in defining the values of the station-
gridpoint correlations (see Eq. (12)) is shown in Figs.(@)for 3 stations.
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If the background error varianag? is assumed to be uniform, then the background
error correlation matrice§ andS can be written a6 = 02G andS= o2S. The analysis
on the grid points is then obtained from Eq. (5) as:

x=x"+G (§+£2I)_l (yo—yb> (13)

Where the scalag? = 02 /0 is the ratio between the background and the observation
error variances. In this way the components of the gain matri= G (5+21) ™, only
depend on the three parametdd$; D, ande?.

From the definition o&?, it is clear that? = 0 implies assuming perfect observations,
hence exact interpolation. On the other hand, settfng 1 implies a greater confidence
in the background field rather than in the observations.

The Ol analysis on station points is obtained from Eq. (10):

y2=y*+S(S+ ,szl)_1 <y°—yb> (14)

Ol parameter values. Inthe remaining of this Section, our choices for the Ol pagten
are described.

For the three productBEMP1h TEMP1dandTEMP1d24hthe values of the Ol pa-
rameters are exactly the same:

e D"=60Km
e D?=600m
o £2=02/02=05

Furthermore, these values are fixed for the entire time gderidhe main motivation for
using the same values for all the three variables and forikgdixed values in time, is
that an important application ageNorgezproducts would be the derivation of temporal
trends for temperature -and its derived indexes- and tlee-camparison of these trends
across Norway. As a matter of fact, our choice would simgiifg inter-comparison of
the analysis results in time and space, and even betweeriffigreot products, because
the presence of any difference in the temperature statistitme and/or space should be
attributed either to the climate or to a significant variatio the MET Norway'’s observa-
tional network but it can’t be the result of a variation in tbeconfiguration.
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In practice, the Ol parameter values have been chosen byngutime spatial inter-
polation procedure with a reasonable selection®¥;, D and €2 values. The heuristic
procedure adopted has been aimed at achieving an Ol corfggurasulting in a reason-
able quality of the final products: our OI should correct thekground values by means
of the available observations for most of the grid pointsnewben and where the station
network is sparse, such that possible inhomogeneitiesrgxis the data distribution only
marginally affects the Ol filter.

The drawback of this choice is that we limit the levels of aecy and precision
potentially achievable for the analysis for those caseshithva dense station network is
available.

The impact on the analysis quality of our choices for the Qhpeeters is discussed
in Section 5.

3.2 The global pseudo-background field estimation

The global (i.e. valid for the whole domain) large-scalettewhich is used in the sta-
tistical interpolation ofTEMP1dand TEMP1h is obtained by blending several regional
trends through a weighted mean.

In fact, abrupt variations in the global blended pseudd<geaund field are avoided,
or at least strongly attenuated, by means of weights basdaedntegral Data Influence
concept (IDI, see Section 3.3).

The mainidea is that the spatial domain is divided in sevaratlapping sub-domains;
each of them ranging from a few tens to a few hundreds of kiterseén both zonal and
meridional directions. In our interpolation scheme, thaperature field is regarded as
a composition of coarse scale and fine scale effects withim@abed scale-separation
approach. The local station density plays a key role in tlsirdition between coarse
and fine scales. The pseudo-background field is meant toildesice temperature spatial
trend due to the coarse scale effects.

In this Section, the computational steps involved in thecpdure are described in
detail. In Section 4 an example is presented.

3.2.1 Blending of regional Pseudo-background fields

1. The spatial domain is divided iD overlapping sub-domains (or regions), each
containing approximately 10% of the available stations hading an extension
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dependent on the station density (i.e. sparse observagas avill result in larger
sub-domains). The maximum number of stations included inbad®main is set
to 50. The minimum number of stations allowed to define a suiain is set to
5. A single station may be part of more than one sub-domaire Stib-domain
extension has a predefined limit: the distance between eanbrsand a reference
station located at the center of the sub-domain must be hess200Km. Letyy
be the set of stations included in tHeh sub-domain, then the associated regional
pseudo-background field is obtained as described in 3.h& cdrresponding IDI-
vectorx"@'P! is computed as in Eq. (20) for all of tmegrid points (both inside and
outside thed-th sub-domain). The parameter values used to conp@atg' are:
DM = 70Km; D? = 1000m;e? = 0.5.

. Forthe Norwegian mainland, an ensemblB @pseudo-background fiele[sxg}d:1 b
together with a set of pseudo-background values at stanimtibns{yg}d:l D 7
are computed. The genevi@ IS ann-vector anwg is apj-vector, both are ob'Eai7ned
using only the observations collected by stations includedy. Elaboration over
different sub-domains are performed independently.

. The final pseudo-background fiel is a linear combination of th® pseudo-
background fields weighted by the corresponding IDI fieldssttsi-th component
[x]. is given by:

5.4 s,

[Xb] i 5D [x%aDI] } (15)

Analogously, thg-th component of the final pseudo-background ve@@]j Is:

ZD: yb (de,IDI)T )
[y L = ;Ig)j [y¥aiDT], LJ (16)

Suppose theth grid point is far away from all the statioiYg defining thed-th sub-
domain, then[x¥@'P!]. shall be close to zero and tieth pseudo-background field
will have a very low influence on the fin@kb] i value, as desired. On the other hand,
if the i-th grid point is in the middle of an overlapping area betwseweral sub-
domains then the IDI-weighted mean would generate a smoatisition between
neighboring local trends, depending on the station distioD.
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3.2.2 The regional pseudo-background field

Consider the generid-th sub-domain (or region), the trend is determined by fittan

parametric function of the spatial coordinates to the sebskrvation¥y making up the

d-th sub-domain. Three different parametric functions aresaered as plausible pseudo-

background models, thus three possible pseudo-backgmuettors are obtaineg2’,

ygl andygz. The best estimate should have the property of producindl emars, then

the pseudo-background model which minimizes the root meaars error (i.e. best

fitting the observations belongingYg) is chosen to generate the pseudo-background field

associated with thé-th sub-domainxg, given the grid points coordinates and elevations.
The three parametric functions of the spatial coordinatesilas plausible pseudo-

background models are:

o ygo. Linear parametric function of the spatial coordinates:
[ygo} j = Teonst+ O (Xj _)_() +B (yj _37) + YZj

Where the parametersiconsy a, B andy are computed by using a least-square
based minimization procedurg;andy are the arithmetic means gfandy spatial
coordinates considering only stationsyin

Constraints:

— |a| < 8-107°°C/m = 8°C/100Km and 3| < 8-107°°C/m
— —0.008C/m < y < —0.001°C/m, the default value ig = —0.006°C/m
° ygl. The background value at thjeth station location is obtained by the composi-

tion of two distinct linear regressions, thus allowing fgraund-based temperature
inversion in the vertical at elevatiag, (Uboldi et al.(2008)):

Y= Ty, + (Xj *y) +Ba (YJ 77) +Va (Zj - Zinv) ,Zj > (Znv +42)
Mi ]j =1 {y?°"€[zj — (zny — B2)]| + Y2 [(zny +02) — 7] } / (282) (2w —D2) < Zj < (ziny +D2)
YPOIOW = Ty + ap (Xj *X) +Bo (yj *y) +% (Zj - Zinv) ,Zj < (Znv—A2)

Where the parameter$;,, (temperature at elevati@y), Znv, Qa, Ba, Ya: b, Bo, Vb
andAz, are computed by using a least-square based minimizataoegurex and

y are the arithmetic means wfandy spatial coordinates considering only stations
in Yy.

Constraints:
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— quantilg x{Zj } .y, < Znv < quantilggo{z} .y,

— |aa| < 0.00008°C/m (8°C,/100km) and|ap| < 0.00008'C/m (8°C/100km)
— —0.012°C/m <y, < —0.0001°C/m and—0.012°C/m < y, < 0.010°C/m
— 40m< Az < 60m

° ygz_ The background value at theth station location is obtained also in this case
by the composition of two distinct regressions, allowingddemperature inversion
(ground-based or not) in the vertical between elevatigandh; (as described in
Frei (2014), with the inclusion ok andy dependency):

To+a (X —X) +Ba (y; =Y) + v2 Z>hy
{ygz]j _JTotyzi— 3 [1+cos(nfjl:2°)] +..

0
[aa (x5 —%) +Ba (vi )] fire + [a6 (6 ~%) +Bo (v —9)] hiry -ho<z <hu

1—ho

To+ap (X —X)+Bo(Yj—y) +Vzi—a .z < hg

Where the parameter$ (temperature at = 0), hg, h1, aa, Ba, Ab, By, ¥ @anda (the
two sections, abovie; and belowhy, are shifted against each other by a temperature
contrasta), are computed by using a least-square based minimizatmsegure;

X andy are the arithmetic means &fandy spatial coordinates considering only
stations inYjy.

Constraints:
— quantilgy 5o {z; }jeYd < hp < quantilgy gq{z; }jeYd
— |aa| <0.00008°C/m (8°C/100km) and|ap| < 0.00008°C/m (8°C/100km)
— —0.012°C/m < y < —-0.0001°C/m
— 50m< (hl — ho) < 300m
- —-10°C<a<10°C
In addition to the previous (:onditionysg1 andyg2 are considered only if:

e the number of observations in theth sub-domain is not less than 20.

o quantilg g {z };., —quantilgo{z};., >50m

These two further constraints are imposed so to achieveust{ite. stable with respect to
outliers) procedure in the calculation of complex vertigadfile of temperature. If these
two conditions are not simultaneously valid tmﬁq is the only admissible solution.
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3.3

3.3.1

3.3.2

Diagnostic of the Statistical Interpolation
Leave-one-out Cross-Validation (CV)

Given the j-th station, the corresponding leave-one-out Cross-\Vi@tléCV) analysis
V] j Is defined as the analysis estimate obtained forj ttfeobservation by using all the
other observations, but without using th¢h observation itself. The CV analysis can be
written as Uboldi et al.(2008)):

1

[ya]j = [yo]j + T—[W[.

- ([ya] i~y j) (17)
ji

The CV analysis vectop? is the pj-vector having the CV analysis as components.
Fixed a time-stamp, The CV-score is defined as the root mearexgjdifference:

1 Pi . 2
CVscore= J E Z ([ya]j — [yO]j> (18)

=]

The CV score represents an estimate of the analysis errod bashe idea that each
observation is used as an independent verification of thigsiadield. The error estimate
IS conservative because in its calculation we're not cansid all the available informa-
tion, thus performing an implicit degradation of the locagolution of the observational
network. The CV analysis is also useful for data quality conpurposes (see Section
3.4).

Integral Data Influence (IDI)

The Integral Data Influence (IDI) of the subset of statiompeY = {(X«, Yk, Z) bk=1... k
on thej-th station location is{va'D'}j and it is written as:

a] K

K .
[yY’IDl]j = kgl ]lj( = kgl (W] (19)

The IDI indicates the sensitivity of the analysis in a pomvariations in the observed

aly
ay°

values measured at the stations belonging.tdhe IDI value depends both on the station
distribution and on the error covariance models assumddmiite Ol but it is indepen-
dent of the actual observed values.
The IDI vectory”'P! is the pj-vector having componen{va'D'}j with j =1,...,pi.
Similarly, [x¥'P'] . is the IDI of the subset of station points= {(X, Y, z) }k1.. x
on thei-th grid point and it is written as:

25



a
YIDI 9 [x7
0

[Klik (20)
=1

The IDI vectorx” P! is then-vector havmg[xY"D'}i as components, with=1,....n
Note that the IDI field corresponds to the analysis field atgdiwhen all observed values
are set to 1 and all background values are set to 0 (see Eqnd5p)). If thei-th grid
pointis in a dense station area (given the set of staWymee would havex¥'P']. close to
1. On the other hand, grid points located in sparse statiessawvould result in having an
IDI value close to 0. In region of sharp transition betweeryfferent station densities
it may be possible to have IDI values greater than 1. Noteftraa completely isolated
observation the IDI value ify": 'D'} =1/ (1+€?) (seeLussana et al(2010), Eq. (23))
and not 0 as for a completely isolated grid point.

The combination of leave-one-out cross-validation andd@icepts lead tgy*'®'] j
which is the Cross-Validated IDI (CV-IDI) of the subset of statpointsY = { (X, Yk, Z) b1«
on thej-th station location and it is written as:

K oy 1
gYiD!] z AL = — T <[yY,IDIL_ _1> (21)

The CV-IDI vectory"'P! is the pj-vector havingy""'P' | j

interpretation is similar to the IDI one, except that in tlase of an isolated station point

as components. The CV-IDI

the corresponding component of he!®' would be close to 0 instead of a variable critical
threshold, depending on the scaddr= 02/0?, as in the case of IDI.

Fixed a time-stamp, in the following we will use as a measurée overall data
influence for the entire domain the average of J#iéP! vector components, wheh
coincides with all the stations providing valid observasdor that time-stamp:

o L2 yvipl

CVIDI_Ejzl[yf L. (22)
The closer the value @V DI to 1 the larger the average area in the analysis field semsitiv
to differences between observations and background. Bsercthe value oEVIDI to 0
the larger the spatial portion of the analysis field that widag equal to the background
(i.e. the larger the number of stations that may be considasdsolated stations). Note
that CVIDI is not a direct measure of the analysis quality, rather ithinlge used to

interpret analysis characteristics.
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3.3.3

3.4

Maximum-likelihood estimation of the observation-e rror variance o2

Given a sequence of time stefis};_; . the maximum-likelihood estimate of con-
strained by the assumptions made in the Ol scheme on thegavariance matrices can
be written asl(ussana et al(2010)):

-yl o-y?),
Oy = N .
2i=1Pi

It is possible to rewrite this expressiona$ = 3 ; (05),, where (o) can be inter-

(23)

preted as therg estimate for thg-th station location and can be written as:

_NJ' o_a__/ O_bt--
(ag)j_z.l{[(y y>t.l\}lj, [ y),L,} o

WhereN; < N denotes the number of available values for b observation.

Spatial Consistency Test

A spatial consistency test (SCT) is applied to the tempegatbservations as described
in Lussana et al(2010). The SCT’s purpose is twofold: preventing gross sr(@Es)
from entering automatic numerical elaboration and rehgra quality flag to an external
quality control system. The algorithm is based on Bayesiacepts and exploits the ex-
isting objective analysis scheme by comparing each obdesaieie with the correspond-
ing leave-one-out cross-validated analysis value (seaglPaph 3.3). Local data density
is automatically taken into account to allow a less regsuectest for isolated stations
that provide precious information on poorly observed ar&athis first implementation,
thresholds and parameters are estimated through a subjadthoc tuning.

Consider thep; observations available at tinte the SCT implementation for theth
observed value can be written as:

([yo]j - [ya]j>2 > T2 (O-cij + 6§j) (25)
Or given our assumptions on Ol (see Sec. 3.1):
(vl = 57);) (7] - ;) > 202 (26)

Where the observation error variance is setifo= 3°C? andT? = 20. Each observa-
tion affects the CV analysis at nearby stations (see Eq..(B8p consequence, if more
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than one observation simultaneously fails the SCT then drdyone having the largest
square residual (left-hand side of Eq. (26)) is flagged. #dI€V analysis are then recom-
puted without using the flagged observation and the SCT isatedeuntil no observation
fails the test.

Note that our Ol scheme assumes implicit knowledge of thembson-error vari-
ance,02, as only the ratio between observation- and backgrourat-eariances actually
enters the interpolation scheme. For the SCT, as stated i(2E).the value ob? must
instead be explicitly estimated and it can be done as destnbSec. (3.3.3).

In Figs. (9) and (10) the distributions of observed minus C¥lgsis values{yo]j —
[ya]j are shown folTEMP1hand TEMP1d respectively. We point out thatAMRRob-
servations undergo a manual data quality control procedefere entering the spatial
interpolation procedure and for this reason the SCT flags fesvyobservations as being
affected by GEs. In the case ©A, due to the high frequency of GEs occurrence, shown
in Fig. (9), the presence of a SCT is of fundamental importdootk to deliver real time
products and to facilitate the historical data quality contNote that the bell-shaped tail
of SCT-rejected observations shown in Fig. (9) is due to olagemns collected by a few
stations belonging to the same sub-network, which is thentareaged by The Norwegian
Public Roads Administration-Statens Vegvesen.
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Figure 9: TA. Spatial Consistency Test results. Distributior{)é’l]j — [ya]j values. Gray:
all observations. Red: observations flagged as affected digsgneasurement errors
(GEs). Statistics based on 1 year of data, from 2013.09.@D14.08.31, for the Nor-
wegian mainland. Number of observations used219.230; number of observations
rejected as probably affected by GEs: T8 (6.2%).
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Figure 10: Spatial Consistency Test resultsTOMRR Distribution of [y°]; — [y¥]; val-
ues. Gray: all observations. Red: observations flagged astedf by gross measurement
errors (GEs). Statistics based on 11 years of data, from.@0@8L to 2014.08.31, for the
Norwegian mainland. Number of observations used:.232, number of observations
rejected as probably affected by GEs: 40344%).

Test Case: 2015, January 1

A challenging situation has been chosen as a test case fgpédtial interpolation scheme:
the first of January 2015, characterized by a significant egatpre inversion (i.e. an in-
crease in temperature with height) in Southern Norway. éndaily mean temperature,
the temperature inversion is evident bothT&MP1din Fig. (11) and foTEMP1d24hn
Fig. (12). Note thaT EMP1d24hbenefits from the inclusion of observations outside Nor-
way, which are not included IREMP1d as it is shown in the corresponding IDI Fig. (13)
(100« IDI is actually shown). In the case of hourly temperafiEMP1h the analyses
are shown in Figs. (14)-(16) at a 3-hourly step. The localpgerature inversions in the
valleys of Eastern Norway last for the whole 24h period. Togesponding IDI fields
are shown in Figs. (17)-(19). The Figs. (20)-(70) refer ® ¢bnstruction of the blended
pseudo-background field f@EMP1d In particular, Figs. (20)-(22) show all the regions
(42 in this case) where regional pseudo-background fielel€@mputed independently,
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together with the weight each regional pseudo-backgrowid fias in the total blended
pseudo-background field. The Figs. (23)-(25) show theaarprofile of temperature for
a selection of regional domains. Each of the three Figuresslan example of the three
different formulations for the regional pseudo-backgmbiiald (see Sec. 3.2.2). By com-
paring the central panel of each Figure with the correspandght panel, it is possible
to have an idea of the effect the blending has on the computati the final pseudo-
background field (see Sec. 3.2). In Fig. (23) an example ofiamal pseudo-background
field computed as a linear parametric function of the spaiardinates (i.e.yg is
shown. Note that this formulation has been often appliedartiNern Norway, where the
station network is sparser. In Fig. (24) an example of a regjipseudo-background field
obtained as the composition of two distinct linear regssias inJboldi et al.(2008) is
shown (i.e.ygl). In Fig. (25) an example of a regional pseudo-background fibtained
as the composition of two distinct linear regressions d3@n (2014) is shown (i.eygz).

In the case of these two last formulations, the spatial tiartle horizontal allows the
vertical temperature profile to be adapt locally within éifint areas of the sub-domain
under consideration. Further examples of the vertical lerofitemperature for a selection
of regional domains are reported in Appendix A.
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Figure 11: TEMP1dAnalysis field for the day 2015/01/01.
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Figure 12:TEMP1d24hMAnalysis field for the day 2015/01/01.
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Figure 17:TEMP1hIDI field for the day 2014/12/31. Left panel: 09 UTC. Central ari2 UTC. Right panel: 15 UTC.
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Figure 18: TEMP1hIDI field. Left panel: 2014/12/31 18 UTC. Central panel: 202431 21 UTC. Right panel: 2015/01/01 00 UTC.
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Figure 20: Test case 2015/01/0I'EMP1densemble of regional pseudo-background
domains. station distribution (circles)y set of stations included in thd-th sub-
domain (black dots); IDI-based weights used for blendifg®' /5 2_; xY¢!P! (shaded,
see Fig. (51) for the legend).
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5 Evaluation

The performances of the spatial interpolation procedueesgaluated both at station lo-
cations and at grid points.

Consider the following variables, which are commonly usedata assimilation for
the evaluation of an analysis procedure:

e CV-residuals O-CVA/L — y& observation minus CV-analysis (see Sec. 3.3.1).
e analysis residual O-A° — y?: observation minus analysis (see Sec. 3.1).
e innovation O-By° — yP: observation minus pseudo-background (see Sec. 3.2).

By means of the CV-analysis the quality assessment done fiorstacations with
the analysis is extended to the grid points, where the obderalues are not available.
Given thej-th station, the assessment of a specific variable, forriestg® — y°, is

based on the set df) values{ ([yo]j - [yb}j>t } , Wheret; is the time index.
) i=1, N

Note that the number of available observatidhss station dependent. In the following
we would often refer to accuracy and precision, which arateel to the statistical bias
and the root mean square error:

bias = Niz( ¥ |y L) 27)

rmsgq = \/Nijlz([yo]j_[yb]jﬁ (28)

In particular: the accuracy is related to the presence desyatic errors and it is
guantified by means of the bias value; the precision is a ggor of random errors, a
measure of statistical variability, and it is quantifiedoingh the root mean square error.

For all the quantities, the bias should be close to zero Isechath the observations
and the pseudo-background are assumed to be unbiasedtestofhthe true atmospheric

state and no bias is introduced by the OIl. However, it is wogtharking that the pres-
ence of systematic errors in either the observations or skeeigo-background field can
influence the parameter estimation, typically leading tcom@restimation of the error
variances.
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5.1 Density plots

The density plots in Figs. (26)-(28) show the distributidivalues of: CV-analysis, anal-

ysis and background at station locations as a function obbserved value. The range
of values of both the observation and the dependent varie@sdeen divided in bins of
1°C width and the number of pairs falling in eactClby 1°C cell (i.e. the collocations)

Is shown in the figures.

About the density plots in Figs. (26)-(28), it is worth meming that the numbers
defining the intervals reported in the legends are the sapgsilzentiles of the set of col-
location values, such that: the first interval span the rarig®llocation values up to the
first quartile; the upper limit for the second interval is thedian of the distribution; the
upper limit for the third interval is the third quartile; thgper limit for the fourth inter-
val is the ninth decile; the last interval includes the higballocation values up to the
maximum value, which is reported as the largest value ingbend.

Consider the analysis. If we define the ev®rds having observed a value of temper-
ature between ando+ do and the evenf as our spatial interpolation procedure having
estimated an analysis value betweeanda+ da, then the density plots are related to
P(ONA), which is the probability of the joint eve@ andA.

In addition, because the conditional probabilityafivenO can be written aB (A|O) =
P(ONA)/P(O)thenitis possible to extract the conditional probabiligndities from the
density plots by normalizing the collocations in the plotregponding td® (ONA) for
the total number of collocations involving the occurrenteventO.

Similarly, we proceed for the background and the CV-anallygidefining the events
B andCVA respectively.

The empirical conditional probability density functioB¥Fs) forCVAandA given
O are shown in Figs. (29) and (30) for several observed values.

To quantify the uncertainty and the systematic error of thpigcal conditional PDFs
show in the Figures, the Normal PDF which better approxireatdé conditional PDF has
been computed and its parameters are reported in Tables2. and

As expected, Figs. (26)-(28) systematically show A& N B) is characterized by
the higher dispersion around the 1:1 line, that is the bakut is a less precise estimate
of the observations because we wanted it to be representdtan area rather than of a
point observation.

The analysis results in a far more precise estimate of therebd value compared

48



to the background. In this case, the spread around the E1slimdicative of the obser-
vation representativity error, which is the component obaserved value due to small
scales that the spatial interpolation scheme, with thecpiteed error covariance models,
IS unable to resolve.

By means of the CV-analysis it is shown that also for grid pdinésspatial interpola-
tion do provide a significant improvement over the backgcbun

Perhaps, the improvement is less evident in the ca3&dfP1d24hin Fig. (27) the
density plots forCVA andB are more similar than for the other products. This fact is
pointed out by several evaluation scores and we’ll disduisshe following.

A second relevant common feature of both hourly and dailyegged temperature,
as shown in Figs. (26)-(28), is that CV-analysis, analyststzackground provide a more
accurate and precise representation of the truth for pesiéimperature values than for
negative values.

The accuracy of the results is rather stable across the @ngienatological values,
except for the most extreme negative values (values bel8@°C) where the Figures
suggest the presence of a systematic warm bias in all thabkas. We think that ex-
treme negative values of temperature result from atmogppbenomena characterized
by length scales lower or comparable to the local statiositherwhich makes these situ-
ation particularly challenging to represent.

For the CV-analysis and the analysis these effects are dgednith Tables 1 and 2,
respectively.

In the case oTEMP1h from Tables 1 and 2 it is possible to recognize a warm bias in
P (A|O) below—20°C while forP (CVAO) the value is-15°C. The uncertainty, as quan-
tified in the tables by the standard deviationboth forP (A|O) andP (CVAO) follows
the shape of an "hourglass” across the possible range ofvelosealues: higher uncer-
tainties for the most extreme negative temperature vakigsd¢ = 2.4°C for P(CVAO)
whenO = —30°); then, it decreases gradually and the narrow part of thergtass" is
located for temperatures betweetand 15C; finally, it rises again for the higher ob-
served temperatures, yet reaching only half of the unegytassociated with the negative
temperatures. It is worth remarking that the interval whkesestimates are more precise
is probably the most relevant for hydrological applicasion

In the cases of EMP1dandTEMP1d24hthe analysis has almost no bias except for
the most negative temperatures. The uncertainty followsstiape of a "funnel”, with
the higher uncertainties for negative temperatures (@.g. 2.3°C for P(CVAO) when
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O = —-20°C, in the case oTEMP14, then the analysis gradually becomes more precise
as the temperature increases.
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P(CVAO) ~N (u,0?)

TEMP1d TEMP1d24h TEMP1h
OPCl | u[°Cl | a’C] | u[°C] | a[°C] | u[°C] | o[°C]
-30 — — — — —27 2.4
—25 — — — — —23 2.4
—-20 | —19 2.3 -19 2.6 -19 2.3
—-15 | -14 17 -15 1.7 —14 2.0
—-10 | -10 14 -10 12 -10 15

-5 -5 1.0 -5 0.9 -5 11
0 0 0.8 0 0.7 0 0.9
5 5 0.7 5 0.6 5 0.9

10 10 0.7 10 0.6 10 0.9
15 15 0.7 15 0.6 15 0.9
20 20 0.8 20 0.7 20 11
25 — — — — 24 12
30 — — — — 29 13

Table 1: Normal probability density functiop (s the expected value araf is the vari-
ance) obtained by fitting to the empirical conditional proibity density function for the
CV-analysis given the observed valQefor years 2010-2015 (see also Fig. 29).

51



P(A|O) ~ N (u,0?)

TEMP1d TEMP1d24h TEMP1h
OFCl] | ul°C] |a[’C] | u[°C] | a[°C] | u[°C] | o [°C]
-30 — — — — —29 13
—25 — — — — 24 15
—-20 | —19 15 -19 16 -19 15
—-15 | —-15 11 -15 11 —-15 13
—-10 | -10 0.9 -10 0.8 -10 11

-5 -5 0.7 -5 0.7 -5 0.8
0 0 0.6 0 0.6 0 0.7
5 5 0.5 5 0.5 5 0.7

10 10 0.6 10 0.5 10 0.7
15 15 0.5 15 0.5 15 0.7
20 20 0.6 20 0.6 20 0.9
25 — — — — 24 0.9
30 — — — — 29 11

Table 2: Normal probability density functiop (is the expected value araf is the vari-
ance) obtained by fitting to the empirical conditional proibity density function for the
analysis given the observed valOefor years 2010-2015 (see also Fig. 30).
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5.2

Variations of accuracy and precision of the analysis in t ime

The evolution in time of the accuracy and precision of théed&ént productSfEMP1d
TEMP1d24hand TEMP1his illustrated in Figs. (31)-(36).

The accuracy of CV-analysis, analysis and background an&ss of the true tem-
perature state is shown by the time series of the bias of Hgndstic variables: O-CVA,
O-A and O-B. The corresponding precision of the estimatesvisngby the root mean
square deviations of the diagnostic variables (see thedattion of Sec. 5).

The results are consistent with the outcomes of the evaludiased on the density
plots. FOrTEMP1dandTEMP1h the spatial interpolation provide up to ten times more
accurate estimates of the true atmospheric state compatee background, as can be
seen from Figs. (31) and (33) by comparing the O-CVA bias with®@-B bias.

Basically, both the CV-analysis and the analysis can be asbasenbiased estimates
of the true temperature.

The CV-analysis and analysis precisions are shown in Fig$- (36): for theTEMP1h
analysis (CV-analysis) it is around'@ (1.5°C); for theTEMP1danalysis (CV-analysis)
itis around 08°C (1.1°C). The analysis precision depends on the season: in winten w
local weather phenomena play a more important role thanharateasons, the analysis
is on average a less precise estimate than in summer.

Our choice of keeping constant values for the Ol parameteadi the products and
for the entire period under examination yields a ratherlstplecision for analysis, CV-
analysis and background estimates throughout the wholedoer

In the case oTEMP1d the time series for the bias shown in Fig. (31) is remarkably
stable for all the diagnostic variables from year 1957 tay2805-2006, then there is a
general reduction in the bias values. Because of this remiuistpresent in the background
too, the increase in the accuracy of the estimates is mady like effect of a variation in
the MET Norway network management or in the quality contystem. The precision of
the TEMP1destimates as shown in Fig. (34) is stable for the whole parmatiit seems
to be more influenced by climatic conditions than other fescttn fact, the higher values
of the root mean square deviations, which are reported farsyaround 1980, are in
correspondence with the occurrence of rather cold win@ses.

In the case oTEMP1h the gradual increase in the number of stations reportingiyno
measurements results in: a more accurate analysis and Qxé@nestimates, as can be
seen in Fig. (33); a slightly more precise analysis and C\lyaisestimates, as can be
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seen in Fig. (36) from the reduction in the amplitude for teasonal cycle of the root
mean square deviations.

The case o EMP1d24hdeserves a separate discussion. The O-CVA bias appears to
be higher than the innovation bias, which in turn is rathealsoompared to the case of
TEMP1d as can be seen in Fig. (31) whdeMP1dand theTEMP1d24hare compared.
To sum up, foTEMP1d24tthe spatial interpolation rely on a more accurate backgfoun
compared to the one available fBEMP1d however we're not able to take advantage of
it as demonstrated by our evaluation showing a comparakl@sion betweedEMP1d
and TEMP1d24hanalysis. The OI configuration fafEMP1d24hmust be modified. In
fact, the background available foEMP1d24hrefers to the same fine scale of the anal-
ysis, as opposed to the backgroundT&MP1dwhich refers to a coarse scale than the
analysis, as a consequence the Ol decorrelation lengthssagaéd in the specification of
the background error covariance matrices should be set atlesnvalues compared to
the ones used fofEMP1d Otherwise, the filter properties of the spatial interpolat
scheme would regionalize the local signal present in th&dracind resulting in an anal-
ysis very similar to the average of ti&€MP1hfields (i.e. the background, for which the
decorrelation length scales are actually optimized).
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Figure 32: TEMP1d(top row) andTEMP1d24h(bottom row). time series of the daily bias of: (left) CV rasad (central) analysis

residual; (left) innovation, for years 2010-2015. Thiakds show the annual centered moving average.
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5.3 Typical year and seasonal variability

As reported in the previous Section, the analysis is an atewstimate of the true tem-
perature state. In this Section, we focus on the study of éas@nal variability for the
precision of the analysis and background estimates by congpthe typical year for
O-CVA, O-A and O-B. The daily time series for bias and RMSE arenshim Figs. (31)-
(36). The typical year for a diagnostic variable is obtaibg@veraging the corresponding
daily values and it is shown in Figs. (37) and (38).

As stated previously in our evaluation: the analysis precig higher in the summer
and up to two-three times smaller in winter both for grid geiand station locations.
Once again, it is quite evident that we have some probleifENP1d24h because the
background at grid points is a more precise estimate of tne temperature than the
CV-analysis (i.e. the root mean square deviation for O-CVAr&ater than for O-B).

The average difference between daily and hourly precisiahe analysis estimates
is illustrated in Fig. (37). In particular, it appears thiag tprecision for hourly analysis
shows a reduced annual variability compared to the daillyarsa during the summer it is
possible to recognize a drop in the root mean square dewigdiloies in the daily analysis,
which is less evident in the hourly analysis; during the @inbn average the hourly and
daily analysis precisions are rather similar, except farearely cold temperatures when
the hourly analysis precision can reachZ while for the daily values the upper limit in
the worst cases is about’Z.

Given the availability of the sub-daily temperature anslfE&EMP1Hh it is possible to
compute the daily cycle for the accuracy and the precisigdheénalysis and background
estimates as shown in Figs. (39)-(40). The winter seasorttendummer seasons are
considered separately. The average bias is shown in Fi}.af@® it is very close to
0.°C, nonetheless it is interesting to register the differeitaveour in the background
bias between winter and summer.

The average root mean square deviation for each hour of eatygay in shown in
Fig. (40). First, we found a further confirmation that the lgsia scheme yields more
precise estimates for the summer than for the winter. Sedonthe winter the analysis
precision is higher during daytime and smaller during rtigie, most likely because of
the occurrence of ground-based temperature inversioeiadrtical profile of tempera-
ture, which are more frequent during the night and in geneak difficult to represent
in the analysis. In the summer season, it is quite interggbmote that the analysis is
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more precise during sunset and sunrise hours when on avéragemosphere is more
stable (i.e. energy exchanges due the turbulent motioriesséntense).
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of: CV residual (black); analysis residual (blue); innowat{red), for years 2010-2015.
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5.4 The effects of station density variations in time and spa ce

In this Section we focus on the impact that the variationsme @and in space of the station
network collecting the observations have on the analysaditgu

In Figs. (1), (3) and (5), the variation in time of the numbérobservations used
for each analysis step is illustrated. The Integral Datauérfte (IDI) has been used to
investigate the impact of the variation in the station nekiyprescribed our fixed Ol con-
figuration, on the analysis quality both at grid points andtation locations. Remember
that a point having an IDI value close to 1 would be influengethe Ol by the neigh-
bouring innovation values. On the other hand, a point haamdDI value significantly
less than 1, or in other words a CVIDI close to 0, would resuéinranalysis value equal
to the background value (see Sec. 3.3.2).

The IDI and CVIDI are shown in Figs. (41)-(43) and (45) for th&edent prod-
ucts. TheCVIDI time series is shown in Fig. (41) fafFEMP1d which is valid also
for TEMP1d24hbecause both products are based on the same set of dailyatiises,
and forTEMP1h The variations in th€VIDI follow the station network evolution in
time and its average value over the whole domain are at eadgleptalues. ForEMP1d
on average th€VIDI value is between .85 and 090, with a sharp increase for recent
years. FOITEMP1h theCVIDI is gradually increasing from.8 to a value between. 80
and 095 in 2015.

The IDI spatial distribution is illustrated fafEMP1hin Fig. (43), as an average over
one year together with the corresponding standard dewiaind forTEMP1din Fig. (45)
only as an average over one year because the standard alewats not significant.

In general, the Norwegian areas where the analysis valugklwemain closer to the
background values without any particular benefit from thetigpinterpolation procedure
are: the mountain areas, and the highest peaks specifita#ygreas along the borders
especially for years where the station density results tower than its average value
(i.e., forTEMP1daround 2005; fofEMP1hin 2010-2011).

Consider the availability of data from stations located iigNorway. In the case
of TEMP1d the data has not been used for the years previous to 2015 lecomes
available in KDVH after our evaluation. In the caseT&MP1h the data is included
from year 2010 onwards but its availability in KDVH is lessalste in time than for the
Norwegian data, as it can be seen from the higher standaratides in Fig. (43).

The impact of station density on the analysis quality is reggbin Fig. (42) by means
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of boxplots of the absolute value of the CV-residuatsCVIDI for the winter and the
summer seasons, which are considered separately, for2@ms2015. Given that we're
considering CVIDI and CV-residuals, our evaluation is vabddrid points even thought
it has been conducted at station locations. The local stalgmsity in the surroundings
of a grid point is represented by the CVIDI, which has beenddiiin three classes:
CVIDI < 0.45 indicates isolated grid pointSyV IDI > 0.85 includes the vast majority of
the grid points which are strongly influenced by spatialiptéation, then an intermediate
transition class in present between those two classeseloabe offEMP1d in general
the precision of the analysis at grid points increases wi¢hihcrease in station density
and for grid points havingDl < 0.45 we should expect the median of the distribution for
the absolute value of the CV-residuals to be arousd© both in winter and in summer,
when in addition the distribution is less disperse. In theecaf TEMP1h the situation

is similar to TEMP1dwith the difference thal EMP1his characterized by a smaller
precision, especially for isolated grid points. Once agaiBMP1d24hstands out for
its peculiar performances: the two classes representmglénser station density areas
behave like the equivalent classes T&MP1d instead for isolated grid points the best
precision is achieved. That is, the background is indeedd gpproximation of the true
temperature state even for isolated areas whereas thalsptgrpolation scheme would
be revised for this product.
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5.5 Analysis increments

Our study of the analysis increments (i.e. analysis minukdraund) aims at investi-
gating the effects on the analysis of using our global pséaatixground field. In fact,
the analysis increment averaged over a long time periodlghmieverywhere close to
zero. However, any violation of our assumption on the bamligd being an unbiased
estimate of the true temperature state would result eithtra presence in the analysis
increment averaged field of areas showing positive/negatalues (i.e. corresponding
to positive/negative systematic corrections of the amglfgsld) or in areas exhibiting an
unusually high/low variability in the sequence of the as@yncrement fields.

In Figs. (44),(46)-(49) and (50), the analysis incremend fie shown for the different
products as an average either over a single year or over titenvmonths within a single
year. The winter season is considered independently beaube presence of inver-
sions in the vertical profile of temperature, which introdumportant local features thus
making the blending of regional pseudo-background fieldserpooblematic.

The years 2011 and 2015 have been chosen to perform an amgracison between
TEMP1h TEMPldandTEMP1d24h In the case oTEMP1d in addition to years 2011
and 2015 we considered also: 1957 as the beginning of theptamied; 1979 as one of
the coldest year, especially in winter; 1990 is represiatalf a typical year; 2003 as a
year characterized by a decrease in the observation aNialab

The fields of the analysis increment averaged over one yeanageneral rather uni-
form and they don’t show the presence of significant systiersatrections.

In winter, when the atmospheric situation is much more engjing for the pseudo-
background blending procedure, the analysis incrememtged field become "patchy”
showing an alternation of areas characterized by positiden@gative systematic correc-
tions; the size of each area being compatible with the size $ihgle regional pseudo-
background field.

However, the overall effect on the analysis is in generaitéthbetween-1.5°C and
1.5°C, especially foTEMP1hand TEMP1d24h For TEMP1d during the cold winters

-such as the in 1979- we have areas where the systematictonereach the absolute
value of 25°C.
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Figure 42: TEMP1d(left), TEMP1d24h(central) andTEMP1h(right). Box-plot of absolute values of CV residuals versus IDY-for
2014-2015: Winter (top), Summer(bottom).

<045 0.45:0.85 50.85
CV-IDI

<045 0.45'0.85 50.85
Ccv-IDI

o ]
o
<
O T
T — o]
T o ;
<0.45 0.45:0.85 >0.85 <0.45 0.45:0.85 50.85
CV-IDI CV-IDI
© 4
o |
-
O
{ ! : o !
<0.45 0.45-0.85 >0.85 <0.45 0.45'0.85 >0.85
CV-IDI CV-IDI




L)

IDI (mean value) IDI (standard deviation)

115
1.05,1.15]
5,1.05]
5,.95]
5,.85]
5,.75]
5,.65]
5,.55]
5,.45]
,-35]

v

W R OmN®O

S

IO EECEENEER

o

OOOODEEEN

IDI (mean value) IDI (standard deviation)

115
1.05,1.15]
95,1.08]
5,.95]

—

a
o™
o,

5,.75]
5,65]
5. 55]
5,.45]
.35]

WhOON®O

OOOEECENEER
S

OOOODEEEN

o
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mean field and (bottom-right) annual standard deviatiod figd year 2015.
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December 2015.
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Figure 47: TEMP1danalysis increment. Annual standar deviation field for ged©57-1979-1990 (top row, left to right); 2003-2011-

2015 (bottom row, left to right).
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Figure 48: TEMP1danalysis increment. Mean field for January-February-Ddésgm1957-1979-1990 (top row, left to right); 2003-

2011-2015 (bottom row, left to right).
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Figure 49:.TEMP1danalysis increment. Standar deviation field for Januaty-kay-December: 1957-1979-1990 (top row, left to right);

2003-2011-2015 (bottom row, left to right).
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6 Conclusions

TheseNorgedbservational gridded dataset for hourly and daily tentpeeancludes the
two main productsTEMP1h TEMP1dand the experimental produCEMP1d24h

The observations used feeNorgeare stored in the MET Norway’s Climate Databases
(KDVH) and both the station network density and the qualdgtcol system implemented
at MET Norway are sufficient to provide the final user with sganterpolation products
of reasonable quality all over the Norwegian mainland fertime range: from 2010 on-
wards forTEMP1h from 1957 onwards fofEMP1d The products are regularly updated.

A spatial interpolation procedure for hourly and daily tesrgiure values based on
Bayesian concepts and relying on observations only has bgaemented at MET Nor-
way. The spatial interpolation method is based on stadistiderpolation: the classi-
cal Optimal Interpolation (Ol) scheme has been modifiedngknto account a scale-
separation approach. In particular, a global pseudo-badkgl field is introduced in the
Ol. The global pseudo-background field is obtained by blegpdeveral regional pseudo-
background fields, each of them derived by observation efeding. The presence of
(small) discontinuities in the global pseudo-backgrouettlifintroduced by the blending
procedure field has a limited impact on the analysis quadiyyconstruction, the Ol con-
figuration is fixed in time and we used the same parameter ¥&ud@ EMP1h TEMP1d
andTEMP1d24tbecause the analysis statistics is required to be as muib agpossible
over time and to facilitate the intercomparison betweefeckht products.

Several diagnostics variables have been computed to madhéstatistical interpola-
tion performances and to assess the quality of the final sisdfields. In particular, the
concepts of: leave-one-out cross-validation and InteQedh Influence have been intro-
duced.

The analysis can be regarded as an unbiased estimate ofi¢heetnperature both at
grid points and at station locations. Only for the most exeenegative values (values
below —30°C) the evaluation suggests the presence of a systematic wasnmkall the
products. The analysis is a more precise representatidredfuth for positive tempera-
ture values than for negative values. The analysis staiatie reported in Tables 1 and 2,
for grid points and station locations respectively.

A Spatial Consistency Test (SCT) has been included in the Gdnseho prevent ob-
servations affected by gross-measurements errors froeniegtthe spatial interpolation
procedure. The SCT is a key component of the spatial intetipolprocedure, because it
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Figure 50: TEMP1d24hanalysis increment. (top-left) annual mean field for yeat12(qtop-central) mean field for January-February-
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2015; (bottom-central) mean field for January-Februargddeber 2015; (bottom-right) standard deviation field farukay-February-
December 2015.



guarantees the quality of analysis products in real-tinpdiegtions especially.

In the future, the uncertainties in the analysis should deceed through an objective
estimation of the Ol parameters, which at the moment arenastid with an heuristic
procedure. Analogously, the spatial consistency tesshuies should be estimated in
an objective way instead of the current trial-and-fail madare. Furthermore, possible
substantial improvements are the inclusion of non-euahd#istances in the computations
of Ol error covariance matrices and the use of numerical spimeric model fields as
background.

86



A

Appendix: Examples of regional pseudo-background
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Figure 51: Test case 2015/01/00EMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 52: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 53: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
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are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 54: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 55: Test case 2015/01/00EMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 56: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 57: Test case 2015/01/0IEMP 1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations

are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?

(cyan dots, only the 1% grid points more influenced by¥hetations are shown)



G6

Temperature [Celsius degrees]

Temperature [Celsius degrees]

Figure 58: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 59: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 60: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 61: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)

S . 8
o . ¥
o e o] 2 3 f—r L1
= o
o o (¢]
Qs "EE o o ? o b=
(0o <o o
® oo o £ o o N
o5 — -
@ o
=@
oﬁdg’ o o
8 (=3 o |
=4 S
o = - - LS
— 8 —-8 i
ER ES
c c
S S
go So
2 E=5
0 001,003) | [ © 3
O [0.031,0.051) - e ®»
O [0.051,0.072)
O [0.072,0.093) & o
O [0.093,0.114) S L] S o
o [0.114,0.134) ~ ~
o [0.134,0.155) ® -
o [0.155,0.176)
= [0.176,0.196) o . b= *
= [0.196,0.217) 21 87
= [0.217,0.238) s o e 4
= [0.238,0.259) . o . . *.°9 .
® [0.259.0.279) e o L4
m [0279,03) o . d e "o 5 900 o hd b o Sottnep |
= [0305)
= [05.1 ] ‘
S 2 4 6 8 2 4 8



66

[0.01,0.031)
[0.031,0.051
[0.051,0.072
[0.072,0.093
[0.093,0.114
[0.114,0.134
[0.134,0.155
[0.155,0.176
[0.176,0.196
[0.196,0.217
[0.217,0.238
[0.238,0.259
[0.259,0.279
[0.279,0.3)
[0.3,0.5)
[0.5,1)

EEEEEEEEEROOOOOOO

)
)
)
)
)
)
)
)
)
)
)
)

Elevanon [mj
600

1000 1200 1400

800

400

200

h .!.Mm
2 4 6 8

Temperature [Celsius degrees]

Elevation [m]
600

1000 1200 1400

800

400

200

Temperature [Celsius degrees]

Figure 62: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations

are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?

(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 63: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)




TOT

o o
® ZF =3
o e o] 2 - ® — L1
Lo 5 o (o}
B G0Z 5 B0 o % o o
00 o o
0 ® & P85 8 < 3V [aY]
& S ¥ o - ~
o < i
[] @ [=] (=]
s . o S | S
(=] (=]
5 - ee go - ® a0
£8 £8-
ES ES
c c
S S
© T
2S =R
0 [0.01,0.031) s e
J [0.031,0.051) (1] ® o
O [0.051,0.072)
0 [0.072,0.093) o (=2
£ [0.093,0.114) S S
0 [0.114,0.134) = ~
[ [0.134,0.155)
@ [0.155,0.176)
@ [0.176,0.196) 8 8
@ [0.196,0.217) b 4
= [0.217,0.238) o ‘ N
= [0.238,0.259)
m [0.259,0.279)
= [0.279,0.3) o . e o o O 200Ba e o . . o
m [0.3,0.5)
, ‘
=l 0 2 4 6 8 0 2 4 8
Temperature [Celsius degrees] Temperature [Celsius degrees]

Figure 64: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 65: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations

included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs

Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations

are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?

(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 66: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations

included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs

Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations

are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?

(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 67: Test case 2015/01/00EMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 68: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
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Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 69: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black dqtg)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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Figure 70: Test case 2015/01/0IEMP1dconstruction of the pseudo-background. Left panel: stadistribution (circles)yy stations
included in the sub-domain (black dots9¥e-'®' /5P x¥a!Dl (shaded). Central panel: regional pseudo-background terupe vs
Elevation a.m.s.l.: observed values (black do;g)(red dots)xg (pink dots, only the 1% grid points more influenced by Yhestations
are shown). Right panel: blended pseudo-background tetopenss Elevation a.m.s.l.: observed values (black dgfsjblue dots)x?
(cyan dots, only the 1% grid points more influenced by¥hetations are shown)
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