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1 Introduction

The seNorge version 2.0 collection of observational gridded datasets for temperature and

precipitation (in brief,seNorge2) has been released by The Norwegian Meteorological

Institute (MET Norway) as an improvement of the previous seNorge version 1.1 (Tveito

and Førland, 1999;Tveito et al., 2000;Mohr, 2008).

The new version has been developed in collaboration with TheNorwegian Water Re-

sources and Energy Directorate (NVE) within the framework of the Felles aktiviteter

NVE-MET tilknyttet nasjonal flom- og skredvarslingstjeneste.

The objective of this report is to describe theseNorge2two-meter gridded temperature

datasets, which are based on the observations from the MET Norway’s Climate database

(KlimaDataVareHusetor KDVH).

The three temperature datasets, or products, developed inseNorge2are:

• TEMP1h. Hourly Air temperature at time of observation (hourly sampling rate).

Input: variableTA (i.e. hourly Air temperature at time of observation) in KDVH.

Time range: from 2010 to the present day;

• TEMP1d. Daily mean temperature in the time period 06-06 UTC. Input:TAMRR

(i.e. daily mean temperature in the time period 06-06 UTC) in the KDVH. Time

range: from 1957 to the present day;

• TEMP1d24h. Daily mean temperature as the arithmetic mean of 24 hourly values in

the time period 06-06 UTC. Input:TEMP1handTAMRR. Time range: from 2010

to the present day.

The observations are interpolated on an high-resolution regular grid. The grid spacing

is 1x1Km (in both northing and easting coordinates) and it covers the Norwegian main-

land plus an adjacent strip of land along the Norwegian border, including parts of Finland,

Sweden and Russia.

The gridded dataset is primarily intended to be used in climatological and hydrological

applications. The grid spacing of 1Km has been chosen as to properly represent the

Norwegian drainage network.

The spatial interpolation is based on a Bayesian method. By using Optimal Interpo-

lation (OI; Gandin and Hardin(1965)) the observations and the background (i.e. prior
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information) are combined into the analysis field, which is made available to the users on

grid points and at station locations.

In the case ofTEMP1handTEMP1d, the statistical interpolation procedure follows

a scale-separation approach: the prior information or pseudo-background is estimated

from the observations and it is meant to describe the effectsof atmospheric dynamics

on a coarse scale with a fine scale given by the local observation density as a reference

length-scale.

The TEMP1d24hproduct refers to the same quantity asTEMP1d. In TEMP1d the

background field is obtained fromTAMRRdata, whereas inTEMP1d24hthe background

field is obtained by averaging the corresponding 24TEMP1hfields. As a consequence, the

TEMP1d24hfields are available only from 2010 onwards, whileTEMP1ddata is available

back to 1957.TEMP1d24hhas been included inseNorge2to investigate the benefit of

using an alternative background in our OI scheme. It is worthremarking that if the 24TA

observations are available in KDVH then the correspondingTAMRRobservation is always

present. However, the opposite is not true: for some stations only the daily averaged

temperatureTAMRRis available in KDVH, while the correspondingTA observations are

not measured. As a result, one should expect significant differences betweenTEMP1d24h

andTEMP1dfields in the surroundings of those stations whereTAMRRis available but

TAhas not been measured.

The main products for thisseNorge2release are:TEMP1dfor the daily mean tem-

perature andTEMP1hfor the hourly temperature. In other words, our efforts on the opti-

mization of the spatial interpolation method are aimed at achieving the better quality for

these two products, whileTEMP1d24hwill be improved in the futureseNorge2releases.

The work described in the present document further develop the OI scheme intro-

duced byUboldi et al. (2008). The current application implements that concept over a

much wider spatial domain by introducing a global pseudo-background field, which is the

blending of several regional pseudo-background fields. In addition, the computation of a

single regional pseudo-background field has been modified byincluding a generalization

of the function introduced inFrei (2014) to approximate the regional vertical temperature

profile.

To prevent from entering the spatial interpolation procedure those observations af-

fected by gross-measurement errors, we must use all the available quality information

stored in theKDVH. Furthermore, the automatic Spatial Consistency Test described in

Lussana et al.(2010) is included in the OI procedure.
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Section 2 describes the observations used to establishseNorge2. In Section 3 the

spatial interpolation method is described and in Section 4 its application is presented on a

test case. Finally, in Section 5 a detailed evaluation of thedatasets is reported.

2 Input data

The input data considered in this study are all theTA andTAMRRobservations available

in the MET Norway’s Climate database (or KDVH).

The station network comprises manual and automatic weatherstations managed by

several different public institutions, such as: The Norwegian Meteorological Institute

(MET Norway); The Norwegian Water Resources and Energy Directorate (NVE); The

Norwegian Public Roads Administration (Statens Vegvesen);the Norwegian Institute of

Bioeconomy research (NIBIO); the Swedish Meteorological andHydrological Institute;

the Finnish Meteorological Institute; among others.

The network covers a portion of Fennoscandia, with a focus onthe Norwegian main-

land. The station distribution is uneven for all the measured parameters with more stations

in the Southern part of the domain and a sparser network in theNorth and in the moun-

tains, as shown in Figs. (2) and (4) forTA andTAMRR, respectively. The consequences

of such inhomogeneities in the station distribution on the statistical interpolation are dis-

cussed in Section 3 and evaluated in Section 5.

The data availability in time forTA andTAMRRis shown in Figs. (1) and (3), re-

spectively. The number of stations is not constant in time, nonetheless the time series

for TAMRRshows a reasonably stable behavior back to year 1957 with an increase in the

number of available stations in recent years. In Figure (1),the evolution in time of the

station network measuringTA is shown. For each hour from 1957 to 2010, Fig. (1) shows

one red point marking the number of available observations.However, for years previous

to 2010 it is possible to recognize three distinct ”lines”: every day at 6 UTC, 12 UTC

and 18 UTC (i.e. the timing for the collection of synoptic observations) the number ofTA

observations shows its peaks (the ”line” marking the daily maximum value); then for all

the other hours of the day, the number ofTAobservations is significantly lower (for some

hours of the dayTA has not been observed until year 1975). After 2010, the three”lines”

merge into a single ”line”, which give us the idea of a more uniform and stable behaviour

for the wholeTAstation network.

We’ve decided to start our production of hourly temperaturefields from the 1st of
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January 2010.

The availability in time for stations outside Norway is shown in Fig. (5) and it is quite

evident that MET started to import these stations in KDVH only for recent years: these

stations would play an important role in reducing the bordereffects along the Norwegian

mainland and it is planned to include more stations in futureseNorge2releases.
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Figure 1:TA. Number of available observationsvs time (1 point=1 hour), for the Norwe-

gian stations. Time interval: (left) 1957-2015; (right) 2000-2015. Note that in the interval

from 1957 to approximately 2010 the maximum number of observation is available at: 6

UTC, 12 UTC and 18 UTC.
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Figure 2:TA (status at 2014.11.01). Stations on the Norwegian mainland, distribution of:

(left) station elevations; (right) station latitudes.
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Figure 3: TAMRR. number of available observationsvs time (1 point=1 day), for the

Norwegian stations. Time interval: (left) 1957-2015; (right) 2000-2015.
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Figure 4:TAMRR(status at 2014.11.01). Stations on the Norwegian mainland, distribu-

tion of: (left) station elevations; (right) station latitudes.
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Figure 5: Number of available observationsvstime for stations outside Norway, for years

2009-2015. Products: (left)TAMRR; (right) TA.

3 The Statistical Interpolation method

The filtering theory deals with the problem of estimating theunknown true state of the

system from noisy observations (seeJazwinski(2007) for a review on filtering theory). In

our case, the state is the surface (2-meter above the ground)temperature on the regular

grid (or at station locations) and the observations are collected by a network of weather

stations, as described in Section 2.

The conditional probability density function of the state given the observations is the

complete solution of the filtering problem. A so-called Bayesian point of view is adopted

here, in that a prior information (background) is taken intoaccount. Because of the prob-

ability densities in our assumptions are Gaussian, we are within the linear estimation

theory, and the conditional probability density function for the true state is Gaussian too.

Note that Gaussian densities are totally characterized by their mean vectors and covari-

ance matrices. As a consequence, the estimate of the true state of the system is the mean

vector for the conditional probability density function ofthe state given the observations

and considered the background. In fact, the choice of the best estimate for Gaussian den-

sities is quite easy compared to the non-linear case becausethe mean, the mode (peak)

and median are equivalent, moreover the maximum likelihood(Bayesian) estimate is the

same as the minimum variance estimate. In our work, we’ve used Optimal Interpolation

(OI) Gandin and Hardin(1965) to obtain the desired mean vector, which in this context

is calledanalysisvector.
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The OI scheme is described in detail in Section 3.1 and it has been applied for all the

products:TEMP1h, TEMP1dandTEMP1d24h, although with some distinctions.

As mentioned in theIntroduction, in the case ofTEMP1handTEMP1dour OI scheme

differs from the classical OI because the prior distribution (i.e. our background) is esti-

mated from the observations, such as in empirical Bayesian methods. In the following, we

will refer to the background forTEMP1dandTEMP1has pseudo-background to empha-

size its link with the observations. The models chosen to represent the pseudo-background

field and its error covariance matrix are both key elements inthe determination of the fi-

nal analysis quality. Two issues related to the introduction of the pseudo-background in

our OI scheme need to be discussed. First, as in classical OI formulation we still rely

on the assumption that observation and pseudo-background errors are uncorrelated ran-

dom variables. The validity of this assumption, which is clearly an approximation, is

discussed inUboldi et al.(2008) andParrish and Derber(1992). Second, in the calcula-

tion of our pseudo-background several parameters need to beestimated (see Section 3.2).

Our optimization procedure focus on the determination of their expected values, without

considering the associated uncertainties. In other words,the pseudo-background field is

implicitly assumed to have always the same quality, although we expect it to constitute a

better representation of the actual atmospheric configuration for some cases than in oth-

ers. As a consequence of the aforementioned two issues, the analysis error covariance

matrix derived directly from the classical OI formulation may be regarded as a question-

able estimate for the actual analysis error covariance matrix. For this reason, to evaluate

the analysis uncertainty several diagnostic variables areintroduced in Section 3.3.

In the case ofTEMP1d24h, the background is obtained by averaging the correspond-

ing 24 TEMP1hfields. However, it is possible that some of theTA hourly temperature

observations used in theTEMP1hOI procedure could have been used to obtain the corre-

spondingTAMRRvalue, then also forTEMP1d24hthe background should not be consid-

ered independent from the observations.

The Spatial Consistency Test implemented in the statisticalinterpolation is described

in Section 3.4.

The notation ofIde et al.(1997) is used whenever possible. The state vectorsx have

dimensionn (i.e. number of grid points). They-vectors at timeti have dimensionpi

(i.e. number of observations or station points or station locations) and, typically,pi ≪ n.

Matrices are specified through bold upper-case Roman letters(i.e. K is the Kalman gain

matrix). The operator[. . .] j will specify the j-th vector component and similarly the
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operator[. . .]i j will specify the matrix components (i-th row, j-th column). A vector will

always be a column vector. Superscript T denotes the vector (matrix) transpose. The

three dimensional spatial coordinates associated with a generic point in the spacer are

specified as triplets(x,y,z). It is implicitly assumed that thei-th grid point has coordinates

(xi ,yi,zi) and the j-th station point has coordinate
(

x j ,y j ,zj
)

. For station locations, the

vertical coordinatez is the real station elevation stored as a metadata in KDVH, while the

elevation for grid points is obtained from an high-resolution digital elevation model.

3.1 Optimal Interpolation

Consider the background, i.e. a priori information, available both at then grid points and

at pi station locations:

xb = xt +ηb (1)

yb = yt + εb (2)

where:xb is the background at grid points;xt is the unknown true atmospheric state;

ηb ∼ N(0,B) is the background error, which is assumed Gaussian (the meanvector is

assumed to be0, that is the background is an unbiased estimate of the true state; B is

the covariance matrix,[B]i j being the background error covariance between a pair of grid

points).

Similarly, yb is the background at the station locations;yt is the unknown true temper-

ature state at station locations;εb ∼ N (0,S) is the background error, which is assumed

Gaussian (each component of thepi × pi matrix S is the background error covariance

between a pair of station points).

Let thepi-vector observationsyo be given by:

yo = yt + εo (3)

where the non-linear observation operator is implicit andεo ∼ N (0,R) is the obser-

vation error, api-vector, which is assumed Gaussian and its covariance matrix is denoted

by R.

The discrete filtering problem consists of computing an estimatexa for the true state

xt based onyo. The OI scheme assumes a linear relation between the analysis increment

xa−xb and the innovationyo−yb:
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xa = xb+K
(

yo−yb
)

(4)

WhereK is then× pi (suboptimal) gain matrix. Then, by minimizing the variance

of the analysis errorηa ≡ xa−xt with the implicit assumption of independence between

observation and background errors, the OI expression becomes:

xa = xb+G(S+R)−1
(

yo−yb
)

(5)

Where the gain matrixK =G(S+R)−1 is expressed by means of the error covariance

matrices:

G =

〈

(

xb−xt
)(

yb−yt
)T
〉

=

〈

ηb
(

εb
)T
〉

(6)

S =

〈

(

yb−yt
)(

yb−yt
)T
〉

=

〈

εb
(

εb
)T
〉

(7)

R =
〈

(

yo−yt)(yo−yt)T
〉

=
〈

εo(εo)T
〉

(8)

the angular brackets represent the expectation value with respect to an appropriately

defined statistical ensemble. Each component of then× pi matrix G is the covariance

between the background error at a grid point and the background error at a station point.

The true state is unknown and so are the covariance matrices.The estimates of these

matrices, which are specified by means of analytical correlation functions, determine the

characteristics of the analysis field.

The OI analysis on station points is:

ya = yb+W
(

yo−yb
)

(9)

WhereW is thepi × pi influence matrix. Once again, by minimizing the variance of

the analysis errorεa ≡ ya−yt, the OI expression becomes:

ya = yb+S(S+R)−1
(

yo−yb
)

(10)

We assume the observation error covariance matrixR to be diagonal and all the ob-

servation errors have the same varianceσ2
o (it is a quantity characterizing the network

globally rather than each single station):

R = σ2
o I (11)
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The function of horizontal and vertical distances that is used to estimate the back-

ground error correlation between the two generic pointsr i = (xi ,yi,zi) andr j =
(

x j ,y j ,zj
)

in the three-dimensional space is:

γ
(

r i , r j ;D
h,Dz

)

= exp







−
1
2





(

d
(

r i , r j
)

Dh

)2

+

(

∆z
(

r i , r j
)

Dz

)2










(12)

Whered
(

r i , r j
)

is the horizontal distance between the two points, and∆z
(

r i , r j
)

is

the difference between their elevations above sea level.Dh andDz are the de-correlation

distances in the horizontal and vertical directions, respectively.

The effect of different choices ofDh and Dz in defining the values of the station-

gridpoint correlations (see Eq. (12)) is shown in Figs. (6)-(8) for 3 stations.
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Figure 6: Station-gridpoints correlation values for station 10380. Left panel:Dh = 50Km andDz = 250m. Right panel:Dh = 50Km

andDz = 750m.
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Figure 7: Station-gridpoints correlation values for station 31970. Left panel:Dh = 50Km andDz = 250m. Right panel:Dh = 50Km

andDz = 750m.
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If the background error varianceσ2
b is assumed to be uniform, then the background

error correlation matrices̃G andS̃can be written asG ≡ σ2
bG̃ andS≡ σ2

b S̃. The analysis

on the grid points is then obtained from Eq. (5) as:

xa = xb+ G̃
(

S̃+ ε2I
)−1
(

yo−yb
)

(13)

Where the scalarε2 ≡ σ2
o/σ2

b is the ratio between the background and the observation

error variances. In this way the components of the gain matrix, K = G̃
(

S̃+ ε2I
)−1

, only

depend on the three parameters:Dh, Dz, andε2.

From the definition ofε2, it is clear thatε2 = 0 implies assuming perfect observations,

hence exact interpolation. On the other hand, settingε2 > 1 implies a greater confidence

in the background field rather than in the observations.

The OI analysis on station points is obtained from Eq. (10):

ya = yb+ S̃
(

S̃+ ε2I
)−1
(

yo−yb
)

(14)

OI parameter values. In the remaining of this Section, our choices for the OI parameter

are described.

For the three productsTEMP1h, TEMP1dandTEMP1d24h, the values of the OI pa-

rameters are exactly the same:

• Dh = 60Km

• Dz = 600m

• ε2 ≡ σ2
o/σ2

b = 0.5

Furthermore, these values are fixed for the entire time period. The main motivation for

using the same values for all the three variables and for keeping fixed values in time, is

that an important application ofseNorge2products would be the derivation of temporal

trends for temperature -and its derived indexes- and the inter-comparison of these trends

across Norway. As a matter of fact, our choice would simplifythe inter-comparison of

the analysis results in time and space, and even between the different products, because

the presence of any difference in the temperature statistics in time and/or space should be

attributed either to the climate or to a significant variation in the MET Norway’s observa-

tional network but it can’t be the result of a variation in theOI configuration.

19



Figure 8: Station-gridpoints correlation values for station 45350. Left panel:Dh = 50Km andDz = 250m. Right panel:Dh = 50Km

andDz = 750m.
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In practice, the OI parameter values have been chosen by running the spatial inter-

polation procedure with a reasonable selection of:Dh, Dz andε2 values. The heuristic

procedure adopted has been aimed at achieving an OI configuration resulting in a reason-

able quality of the final products: our OI should correct the background values by means

of the available observations for most of the grid points even when and where the station

network is sparse, such that possible inhomogeneities existing in the data distribution only

marginally affects the OI filter.

The drawback of this choice is that we limit the levels of accuracy and precision

potentially achievable for the analysis for those cases in which a dense station network is

available.

The impact on the analysis quality of our choices for the OI parameters is discussed

in Section 5.

3.2 The global pseudo-background field estimation

The global (i.e. valid for the whole domain) large-scale trend, which is used in the sta-

tistical interpolation ofTEMP1dandTEMP1h, is obtained by blending several regional

trends through a weighted mean.

In fact, abrupt variations in the global blended pseudo-background field are avoided,

or at least strongly attenuated, by means of weights based onthe Integral Data Influence

concept (IDI, see Section 3.3).

The main idea is that the spatial domain is divided in severaloverlapping sub-domains;

each of them ranging from a few tens to a few hundreds of kilometers in both zonal and

meridional directions. In our interpolation scheme, the temperature field is regarded as

a composition of coarse scale and fine scale effects within a so-called scale-separation

approach. The local station density plays a key role in the distinction between coarse

and fine scales. The pseudo-background field is meant to describe the temperature spatial

trend due to the coarse scale effects.

In this Section, the computational steps involved in the procedure are described in

detail. In Section 4 an example is presented.

3.2.1 Blending of regional Pseudo-background fields

1. The spatial domain is divided inD overlapping sub-domains (or regions), each

containing approximately 10% of the available stations andhaving an extension
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dependent on the station density (i.e. sparse observation areas will result in larger

sub-domains). The maximum number of stations included in a sub-domain is set

to 50. The minimum number of stations allowed to define a sub-domain is set to

5. A single station may be part of more than one sub-domain. The sub-domain

extension has a predefined limit: the distance between each station and a reference

station located at the center of the sub-domain must be less than 200Km. LetYd

be the set of stations included in thed-th sub-domain, then the associated regional

pseudo-background field is obtained as described in 3.2.2. The corresponding IDI-

vectorxYd,IDI is computed as in Eq. (20) for all of then grid points (both inside and

outside thed-th sub-domain). The parameter values used to computexYd,IDI are:

Dh = 70Km;Dz = 1000m;ε2 = 0.5.

2. For the Norwegian mainland, an ensemble ofD pseudo-background fields
{

xb
d

}

d=1,...,D

together with a set of pseudo-background values at station locations
{

yb
d

}

d=1,...,D

are computed. The genericxb
d is ann-vector andyb

d is api-vector, both are obtained

using only the observations collected by stations includedin Yd. Elaboration over

different sub-domains are performed independently.

3. The final pseudo-background fieldxb is a linear combination of theD pseudo-

background fields weighted by the corresponding IDI fields, thus itsi-th component
[

xb
]

i is given by:

[

xb
]

i
=

∑D
d=1

[

xb
d

(

xYd,IDI
)T
]

ii

∑D
d=1 [x

Yd,IDI ]i
(15)

Analogously, thej-th component of the final pseudo-background vector
[

yb
]

j is:

[

yb
]

j
=

∑D
d=1

[

yb
d

(

yYd,IDI
)T
]

j j

∑D
d=1 [y

Yd,IDI ] j

(16)

Suppose thei-th grid point is far away from all the stationsYd defining thed-th sub-

domain, then
[

xYd,IDI
]

i shall be close to zero and thed-th pseudo-background field

will have a very low influence on the final
[

xb
]

i value, as desired. On the other hand,

if the i-th grid point is in the middle of an overlapping area betweenseveral sub-

domains then the IDI-weighted mean would generate a smooth transition between

neighboring local trends, depending on the station distribution.
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3.2.2 The regional pseudo-background field

Consider the genericd-th sub-domain (or region), the trend is determined by fitting a

parametric function of the spatial coordinates to the set ofobservationsYd making up the

d-th sub-domain. Three different parametric functions are considered as plausible pseudo-

background models, thus three possible pseudo-backgroundpi-vectors are obtained:yb0
d ,

yb1
d andyb2

d . The best estimate should have the property of producing small errors, then

the pseudo-background model which minimizes the root mean square error (i.e. best

fitting the observations belonging toYd) is chosen to generate the pseudo-background field

associated with thed-th sub-domain,xb
d, given the grid points coordinates and elevations.

The three parametric functions of the spatial coordinates used as plausible pseudo-

background models are:

• yb0
d . Linear parametric function of the spatial coordinates:

[

yb0
d

]

j
= Tconst+α

(

x j −x
)

+β
(

y j −y
)

+ γzj

Where the parameters:Tconst, α, β and γ are computed by using a least-square

based minimization procedure;x andy are the arithmetic means ofx andy spatial

coordinates considering only stations inYd.

Constraints:

– |α|< 8·10−5◦C/m= 8◦C/100Km and|β |< 8·10−5◦C/m

– −0.008◦C/m≤ γ ≤−0.001◦C/m, the default value isγ =−0.006◦C/m

• yb1
d . The background value at thej-th station location is obtained by the composi-

tion of two distinct linear regressions, thus allowing for aground-based temperature

inversion in the vertical at elevationzinv (Uboldi et al.(2008)):

[

yb1
d

]

j
=



















yabove≡ Tinv+αa
(

x j −x
)

+βa
(

y j −y
)

+ γa
(

zj −zinv
)

,zj > (zinv+∆z)
{

yabove
[

zj − (zinv−∆z)
]

+ybelow
[

(zinv+∆z)−zj
]}

/(2∆z) ,(zinv−∆z)< zj ≤ (zinv+∆z)

ybelow≡ Tinv+αb
(

x j −x
)

+βb
(

y j −y
)

+ γb
(

zj −zinv
)

,zj ≤ (zinv−∆z)

Where the parameters:Tinv (temperature at elevationzinv), zinv, αa, βa, γa, αb, βb, γb

and∆z, are computed by using a least-square based minimization procedure;x and

y are the arithmetic means ofx andy spatial coordinates considering only stations

in Yd.

Constraints:
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– quantile0.20

{

zj
}

j∈Yd
≤ zinv ≤ quantile0.80

{

zj
}

j∈Yd

– |αa| ≤ 0.00008◦C/m (8◦C/100km) and|αb| ≤ 0.00008◦C/m (8◦C/100km)

– −0.012◦C/m≤ γa ≤−0.0001◦C/m and−0.012◦C/m≤ γb ≤ 0.010◦C/m

– 40m≤ ∆z≤ 60m

• yb2
d . The background value at thej-th station location is obtained also in this case

by the composition of two distinct regressions, allowing for a temperature inversion

(ground-based or not) in the vertical between elevationh0 andh1 (as described in

Frei (2014), with the inclusion ofx andy dependency):

[

yb2
d

]

j
=































T0+αa
(

x j −x
)

+βa
(

y j −y
)

+ γzj ,zj ≥ h1

T0+ γzj −
a
2

[

1+cos
(

π zj−h0
h1−h0

)]

+ . . .
[

αa
(

x j −x
)

+βa
(

y j −y
)] zj−h0

h1−h0
+
[

αb
(

x j −x
)

+βb
(

y j −y
)] h1−zj

h1−h0
,h0 < zj < h1

T0+αb
(

x j −x
)

+βb
(

y j −y
)

+ γzj −a ,zj ≤ h0

Where the parameters:T0 (temperature atz= 0), h0, h1, αa, βa, αb, βb, γ anda (the

two sections, aboveh1 and belowh0, are shifted against each other by a temperature

contrasta), are computed by using a least-square based minimization procedure;

x andy are the arithmetic means ofx andy spatial coordinates considering only

stations inYd.

Constraints:

– quantile0.20

{

zj
}

j∈Yd
≤ h0 ≤ quantile0.80

{

zj
}

j∈Yd

– |αa| ≤ 0.00008◦C/m (8◦C/100km) and|αb| ≤ 0.00008◦C/m (8◦C/100km)

– −0.012◦C/m≤ γ ≤−0.0001◦C/m

– 50m≤ (h1−h0)≤ 300m

– −10◦C≤ a≤ 10◦C

In addition to the previous conditions,yb1
d andyb2

d are considered only if:

• the number of observations in thed-th sub-domain is not less than 20.

• quantile0.90

{

zj
}

j∈Yd
−quantile0.10

{

zj
}

j∈Yd
≥ 50m

These two further constraints are imposed so to achieve a robust (i.e. stable with respect to

outliers) procedure in the calculation of complex verticalprofile of temperature. If these

two conditions are not simultaneously valid thenyb0
d is the only admissible solution.
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3.3 Diagnostic of the Statistical Interpolation

3.3.1 Leave-one-out Cross-Validation (CV)

Given the j-th station, the corresponding leave-one-out Cross-Validated (CV) analysis

[y̌a] j is defined as the analysis estimate obtained for thej-th observation by using all the

other observations, but without using thej-th observation itself. The CV analysis can be

written as (Uboldi et al.(2008)):

[y̌a] j = [yo] j +
1

1− [W] j j

(

[ya] j − [yo] j

)

(17)

The CV analysis vectořya is thepi-vector having the CV analysis as components.

Fixed a time-stamp, The CV-score is defined as the root mean squared difference:

CVscore=

√

√

√

√

1
pi

pi

∑
j=1

(

[y̌a] j − [yo] j

)2
(18)

The CV score represents an estimate of the analysis error based on the idea that each

observation is used as an independent verification of the analysis field. The error estimate

is conservative because in its calculation we’re not considering all the available informa-

tion, thus performing an implicit degradation of the local resolution of the observational

network. The CV analysis is also useful for data quality control purposes (see Section

3.4).

3.3.2 Integral Data Influence (IDI)

The Integral Data Influence (IDI) of the subset of station pointsY = {(xk,yk,zk)}k=1,...,K

on the j-th station location is
[

yY,IDI
]

j and it is written as:

[

yY,IDI]

j =
K

∑
k=1

∂ [ya] j

∂ [yo]k
=

K

∑
k=1

[W] jk (19)

The IDI indicates the sensitivity of the analysis in a point to variations in the observed

values measured at the stations belonging toY. The IDI value depends both on the station

distribution and on the error covariance models assumed within the OI but it is indepen-

dent of the actual observed values.

The IDI vectoryY,IDI is thepi-vector having components
[

yY,IDI
]

j with j = 1, . . . , pi.

Similarly,
[

xY,IDI
]

i is the IDI of the subset of station pointsY = {(xk,yk,zk)}k=1,...,K

on thei-th grid point and it is written as:
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[

xY,IDI]

i =
K

∑
k=1

∂ [xa]i
∂ [yo]k

=
K

∑
k=1

[K ]ik (20)

The IDI vectorxY,IDI is then-vector having
[

xY,IDI
]

i as components, withi = 1, . . . ,n.

Note that the IDI field corresponds to the analysis field obtained when all observed values

are set to 1 and all background values are set to 0 (see Eqs. (5)and (9)). If thei-th grid

point is in a dense station area (given the set of stationsY) we would have
[

xY,IDI
]

i close to

1. On the other hand, grid points located in sparse station areas would result in having an

IDI value close to 0. In region of sharp transition between very different station densities

it may be possible to have IDI values greater than 1. Note thatfor a completely isolated

observation the IDI value is
[

yY,IDI
]

j = 1/
(

1+ ε2
)

(seeLussana et al.(2010), Eq. (23))

and not 0 as for a completely isolated grid point.

The combination of leave-one-out cross-validation and IDIconcepts lead to
[

y̌Y,IDI
]

j

which is the Cross-Validated IDI (CV-IDI) of the subset of station pointsY= {(xk,yk,zk)}k=1,...,K

on the j-th station location and it is written as:

[

y̌Y,IDI]

j =
K

∑
k=1

∂ [y̌a] j

∂ [yo]k
= 1+

1
1− [W] j j

(

[

yY,IDI]

j −1
)

(21)

The CV-IDI vectory̌Y,IDI is thepi-vector having
[

y̌Y,IDI
]

j as components. The CV-IDI

interpretation is similar to the IDI one, except that in the case of an isolated station point

the corresponding component of they̌Y,IDI would be close to 0 instead of a variable critical

threshold, depending on the scalarε2 ≡ σ2
o/σ2

b , as in the case of IDI.

Fixed a time-stamp, in the following we will use as a measure of the overall data

influence for the entire domain the average of they̌Y,IDI vector components, whereY

coincides with all the stations providing valid observations for that time-stamp:

CVIDI =
1
pi

pi

∑
j=1

[

y̌Y,IDI]

j (22)

The closer the value ofCVIDI to 1 the larger the average area in the analysis field sensitive

to differences between observations and background. The closer the value ofCVIDI to 0

the larger the spatial portion of the analysis field that would be equal to the background

(i.e. the larger the number of stations that may be considered as isolated stations). Note

that CVIDI is not a direct measure of the analysis quality, rather it might be used to

interpret analysis characteristics.
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3.3.3 Maximum-likelihood estimation of the observation-e rror variance σ2
o

Given a sequence of time steps{ti}i=1,...,N, the maximum-likelihood estimate ofσ2
o con-

strained by the assumptions made in the OI scheme on the error-covariance matrices can

be written as (Lussana et al.(2010)):

σ2
o =

∑N
i=1

[

(yo−ya)T
ti

(

yo−yb
)

ti

]

∑N
i=1 pi

(23)

It is possible to rewrite this expression asσ2
o = ∑ j

(

σ2
o

)

j , where
(

σ2
o

)

j can be inter-

preted as theσ2
o estimate for thej-th station location and can be written as:

(

σ2
o

)

j =

∑
Nj
i=1

{

[

(yo−ya)ti
]

j ′

[

(

yo−yb
)

ti

]

j ′

}

Nj
(24)

WhereNj ≤ N denotes the number of available values for thej-th observation.

3.4 Spatial Consistency Test

A spatial consistency test (SCT) is applied to the temperature observations as described

in Lussana et al.(2010). The SCT’s purpose is twofold: preventing gross errors (GEs)

from entering automatic numerical elaboration and returning a quality flag to an external

quality control system. The algorithm is based on Bayesian concepts and exploits the ex-

isting objective analysis scheme by comparing each observed value with the correspond-

ing leave-one-out cross-validated analysis value (see Paragraph 3.3). Local data density

is automatically taken into account to allow a less restrictive test for isolated stations

that provide precious information on poorly observed areas. In this first implementation,

thresholds and parameters are estimated through a subjective ad hoc tuning.

Consider thepi observations available at timeti, the SCT implementation for thej-th

observed value can be written as:

(

[yo] j − [y̌a] j

)2
≥ T2

(

σ2
o,j + σ̌2

a,j

)

(25)

Or given our assumptions on OI (see Sec. 3.1):

(

[yo] j − [y̌a] j

)(

[yo] j − [ya] j

)

≥ T2σ2
o (26)

Where the observation error variance is set toσ2
o = 3◦C2 andT2 = 20. Each observa-

tion affects the CV analysis at nearby stations (see Eq. (17)). As a consequence, if more
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than one observation simultaneously fails the SCT then only the one having the largest

square residual (left-hand side of Eq. (26)) is flagged. All the CV analysis are then recom-

puted without using the flagged observation and the SCT is repeated until no observation

fails the test.

Note that our OI scheme assumes implicit knowledge of the observation-error vari-

ance,σ2
o , as only the ratio between observation- and background-error variances actually

enters the interpolation scheme. For the SCT, as stated in Eq.(26), the value ofσ2
o must

instead be explicitly estimated and it can be done as described in Sec. (3.3.3).

In Figs. (9) and (10) the distributions of observed minus CV analysis values[yo] j −

[y̌a] j are shown forTEMP1handTEMP1d, respectively. We point out thatTAMRRob-

servations undergo a manual data quality control procedurebefore entering the spatial

interpolation procedure and for this reason the SCT flags veryfew observations as being

affected by GEs. In the case ofTA, due to the high frequency of GEs occurrence, shown

in Fig. (9), the presence of a SCT is of fundamental importanceboth to deliver real time

products and to facilitate the historical data quality control. Note that the bell-shaped tail

of SCT-rejected observations shown in Fig. (9) is due to observations collected by a few

stations belonging to the same sub-network, which is the onemanaged by The Norwegian

Public Roads Administration-Statens Vegvesen.
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Figure 9:TA. Spatial Consistency Test results. Distribution of[yo] j − [y̌a] j values. Gray:

all observations. Red: observations flagged as affected by gross measurement errors

(GEs). Statistics based on 1 year of data, from 2013.09.01 to2014.08.31, for the Nor-

wegian mainland. Number of observations used: 4.219.230; number of observations

rejected as probably affected by GEs: 26.182(6.2h).
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Figure 10: Spatial Consistency Test results forTAMRR. Distribution of [yo] j − [y̌a] j val-

ues. Gray: all observations. Red: observations flagged as affected by gross measurement

errors (GEs). Statistics based on 11 years of data, from 2003.09.01 to 2014.08.31, for the

Norwegian mainland. Number of observations used: 932.239; number of observations

rejected as probably affected by GEs: 413(0.044h).

4 Test Case: 2015, January 1

A challenging situation has been chosen as a test case for thespatial interpolation scheme:

the first of January 2015, characterized by a significant temperature inversion (i.e. an in-

crease in temperature with height) in Southern Norway. In the daily mean temperature,

the temperature inversion is evident both forTEMP1din Fig. (11) and forTEMP1d24hin

Fig. (12). Note thatTEMP1d24hbenefits from the inclusion of observations outside Nor-

way, which are not included inTEMP1d, as it is shown in the corresponding IDI Fig. (13)

(100∗ IDI is actually shown). In the case of hourly temperatureTEMP1h, the analyses

are shown in Figs. (14)-(16) at a 3-hourly step. The local temperature inversions in the

valleys of Eastern Norway last for the whole 24h period. The corresponding IDI fields

are shown in Figs. (17)-(19). The Figs. (20)-(70) refer to the construction of the blended

pseudo-background field forTEMP1d. In particular, Figs. (20)-(22) show all the regions

(42 in this case) where regional pseudo-background fields are computed independently,
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together with the weight each regional pseudo-background field has in the total blended

pseudo-background field. The Figs. (23)-(25) show the vertical profile of temperature for

a selection of regional domains. Each of the three Figures shows an example of the three

different formulations for the regional pseudo-background field (see Sec. 3.2.2). By com-

paring the central panel of each Figure with the corresponding right panel, it is possible

to have an idea of the effect the blending has on the computation of the final pseudo-

background field (see Sec. 3.2). In Fig. (23) an example of a regional pseudo-background

field computed as a linear parametric function of the spatialcoordinates (i.e.yb0
d ) is

shown. Note that this formulation has been often applied in Northern Norway, where the

station network is sparser. In Fig. (24) an example of a regional pseudo-background field

obtained as the composition of two distinct linear regressions as inUboldi et al.(2008) is

shown (i.e.yb1
d ). In Fig. (25) an example of a regional pseudo-background field obtained

as the composition of two distinct linear regressions as inFrei (2014) is shown (i.e.yb2
d ).

In the case of these two last formulations, the spatial trendin the horizontal allows the

vertical temperature profile to be adapt locally within different areas of the sub-domain

under consideration. Further examples of the vertical profile of temperature for a selection

of regional domains are reported in Appendix A.
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Figure 11:TEMP1dAnalysis field for the day 2015/01/01.
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Figure 12:TEMP1d24hAnalysis field for the day 2015/01/01.
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Figure 13:TEMP1dIDI field for the day 2015/01/01.
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Figure 14:TEMP1hAnalysis field for the day 2014/12/31. Left panel: 09 UTC. Central panel: 12 UTC. Right panel: 15 UTC.
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Figure 15:TEMP1hAnalysis field. Left panel: 2014/12/31 18 UTC. Central panel: 2014/12/31 21 UTC. Right panel: 2015/01/01 00

UTC.
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Figure 16:TEMP1hAnalysis field for the day 2015/01/01. Left panel: 03 UTC. Rightpanel: 06 UTC.
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Figure 17:TEMP1hIDI field for the day 2014/12/31. Left panel: 09 UTC. Central panel: 12 UTC. Right panel: 15 UTC.
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Figure 18:TEMP1hIDI field. Left panel: 2014/12/31 18 UTC. Central panel: 2014/12/31 21 UTC. Right panel: 2015/01/01 00 UTC.
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Figure 19:TEMP1hIDI field for the day 2015/01/01. Left panel: 03 UTC. Right panel: 06 UTC.
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Figure 20: Test case 2015/01/01.TEMP1d ensemble of regional pseudo-background

domains. station distribution (circles);Yd set of stations included in thed-th sub-

domain (black dots); IDI-based weights used for blendingxYd,IDI/∑D
d=1xYd,IDI (shaded,

see Fig. (51) for the legend).
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Figure 21: Test case 2015/01/01.TEMP1d ensemble of regional pseudo-background

domains. Continue from Fig. (20).
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Figure 22: Test case 2015/01/01.TEMP1d ensemble of regional pseudo-background

domains. Continue from Fig. (20).
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Figure 23: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 24: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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5 Evaluation

The performances of the spatial interpolation procedure are evaluated both at station lo-

cations and at grid points.

Consider the following variables, which are commonly used indata assimilation for

the evaluation of an analysis procedure:

• CV-residuals O-CVAyo− y̌a: observation minus CV-analysis (see Sec. 3.3.1).

• analysis residual O-Ayo−ya: observation minus analysis (see Sec. 3.1).

• innovation O-Byo−yb: observation minus pseudo-background (see Sec. 3.2).

By means of the CV-analysis the quality assessment done for station locations with

the analysis is extended to the grid points, where the observed values are not available.

Given the j-th station, the assessment of a specific variable, for instanceyo− yb, is

based on the set ofNj values

{

(

[yo] j −
[

yb
]

j

)

ti

}

i=1,...,Nj

, whereti is the time index.

Note that the number of available observationsNj is station dependent. In the following

we would often refer to accuracy and precision, which are related to the statistical bias

and the root mean square error:

biasj =
1
Nj

∑
i

(

[yo] j −
[

yb
]

j

)

ti

(27)

rmsej =

√

1
Nj

∑
i

(

[yo] j − [yb] j

)2

ti
(28)

In particular: the accuracy is related to the presence of systematic errors and it is

quantified by means of the bias value; the precision is a description of random errors, a

measure of statistical variability, and it is quantified through the root mean square error.

For all the quantities, the bias should be close to zero because both the observations

and the pseudo-background are assumed to be unbiased estimates of the true atmospheric

state and no bias is introduced by the OI. However, it is worthremarking that the pres-

ence of systematic errors in either the observations or the pseudo-background field can

influence the parameter estimation, typically leading to anoverestimation of the error

variances.
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Figure 25: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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5.1 Density plots

The density plots in Figs. (26)-(28) show the distribution of values of: CV-analysis, anal-

ysis and background at station locations as a function of theobserved value. The range

of values of both the observation and the dependent variablehas been divided in bins of

1◦C width and the number of pairs falling in each 1◦C by 1◦C cell (i.e. the collocations)

is shown in the figures.

About the density plots in Figs. (26)-(28), it is worth mentioning that the numbers

defining the intervals reported in the legends are the samplepercentiles of the set of col-

location values, such that: the first interval span the rangeof collocation values up to the

first quartile; the upper limit for the second interval is themedian of the distribution; the

upper limit for the third interval is the third quartile; theupper limit for the fourth inter-

val is the ninth decile; the last interval includes the higher collocation values up to the

maximum value, which is reported as the largest value in the legend.

Consider the analysis. If we define the eventO as having observed a value of temper-

ature betweeno ando+do and the eventA as our spatial interpolation procedure having

estimated an analysis value betweena anda+ da, then the density plots are related to

P(O∩A), which is the probability of the joint eventO andA.

In addition, because the conditional probability ofAgivenOcan be written asP(A|O)=

P(O∩A)/P(O) then it is possible to extract the conditional probability densities from the

density plots by normalizing the collocations in the plot corresponding toP(O∩A) for

the total number of collocations involving the occurrence of eventO.

Similarly, we proceed for the background and the CV-analysisby defining the events

B andCVA, respectively.

The empirical conditional probability density functions (PDFs) forCVAandA given

O are shown in Figs. (29) and (30) for several observed values.

To quantify the uncertainty and the systematic error of the empirical conditional PDFs

show in the Figures, the Normal PDF which better approximateeach conditional PDF has

been computed and its parameters are reported in Tables 1 and2.

As expected, Figs. (26)-(28) systematically show thatP(O∩B) is characterized by

the higher dispersion around the 1:1 line, that is the background is a less precise estimate

of the observations because we wanted it to be representative of an area rather than of a

point observation.

The analysis results in a far more precise estimate of the observed value compared
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to the background. In this case, the spread around the 1:1 line is indicative of the obser-

vation representativity error, which is the component of anobserved value due to small

scales that the spatial interpolation scheme, with the prescribed error covariance models,

is unable to resolve.

By means of the CV-analysis it is shown that also for grid pointsthe spatial interpola-

tion do provide a significant improvement over the background.

Perhaps, the improvement is less evident in the case ofTEMP1d24h: in Fig. (27) the

density plots forCVA andB are more similar than for the other products. This fact is

pointed out by several evaluation scores and we’ll discuss it in the following.

A second relevant common feature of both hourly and daily aggregated temperature,

as shown in Figs. (26)-(28), is that CV-analysis, analysis and background provide a more

accurate and precise representation of the truth for positive temperature values than for

negative values.

The accuracy of the results is rather stable across the rangeof climatological values,

except for the most extreme negative values (values below−30◦C) where the Figures

suggest the presence of a systematic warm bias in all the variables. We think that ex-

treme negative values of temperature result from atmospheric phenomena characterized

by length scales lower or comparable to the local station density, which makes these situ-

ation particularly challenging to represent.

For the CV-analysis and the analysis these effects are quantified in Tables 1 and 2,

respectively.

In the case ofTEMP1h, from Tables 1 and 2 it is possible to recognize a warm bias in

P(A|O) below−20◦C while forP(CVA|O) the value is−15◦C. The uncertainty, as quan-

tified in the tables by the standard deviationσ , both forP(A|O) andP(CVA|O) follows

the shape of an "hourglass" across the possible range of observed values: higher uncer-

tainties for the most extreme negative temperature values (e.g.σ = 2.4◦C for P(CVA|O)

whenO = −30◦); then, it decreases gradually and the narrow part of the "hourglass" is

located for temperatures between 0◦C and 15◦C; finally, it rises again for the higher ob-

served temperatures, yet reaching only half of the uncertainty associated with the negative

temperatures. It is worth remarking that the interval wherethe estimates are more precise

is probably the most relevant for hydrological applications.

In the cases ofTEMP1dandTEMP1d24h, the analysis has almost no bias except for

the most negative temperatures. The uncertainty follows the shape of a "funnel", with

the higher uncertainties for negative temperatures (e.g.σ = 2.3◦C for P(CVA|O) when
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O= −20◦C, in the case ofTEMP1d), then the analysis gradually becomes more precise

as the temperature increases.
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P(CVA|O)∼ N
(

µ,σ2
)

TEMP1d TEMP1d24h TEMP1h

O[◦C] µ [◦C] σ [◦C] µ [◦C] σ [◦C] µ [◦C] σ [◦C]

−30 − − − − −27 2.4

−25 − − − − −23 2.4

−20 −19 2.3 −19 2.6 −19 2.3

−15 −14 1.7 −15 1.7 −14 2.0

−10 −10 1.4 −10 1.2 −10 1.5

−5 −5 1.0 −5 0.9 −5 1.1

0 0 0.8 0 0.7 0 0.9

5 5 0.7 5 0.6 5 0.9

10 10 0.7 10 0.6 10 0.9

15 15 0.7 15 0.6 15 0.9

20 20 0.8 20 0.7 20 1.1

25 − − − − 24 1.2

30 − − − − 29 1.3

Table 1: Normal probability density function (µ is the expected value andσ2 is the vari-

ance) obtained by fitting to the empirical conditional probability density function for the

CV-analysis given the observed valueO, for years 2010-2015 (see also Fig. 29).
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P(A|O)∼ N
(

µ,σ2
)

TEMP1d TEMP1d24h TEMP1h

O[◦C] µ [◦C] σ [◦C] µ [◦C] σ [◦C] µ [◦C] σ [◦C]

−30 − − − − −29 1.3

−25 − − − − −24 1.5

−20 −19 1.5 −19 1.6 −19 1.5

−15 −15 1.1 −15 1.1 −15 1.3

−10 −10 0.9 −10 0.8 −10 1.1

−5 −5 0.7 −5 0.7 −5 0.8

0 0 0.6 0 0.6 0 0.7

5 5 0.5 5 0.5 5 0.7

10 10 0.6 10 0.5 10 0.7

15 15 0.5 15 0.5 15 0.7

20 20 0.6 20 0.6 20 0.9

25 − − − − 24 0.9

30 − − − − 29 1.1

Table 2: Normal probability density function (µ is the expected value andσ2 is the vari-

ance) obtained by fitting to the empirical conditional probability density function for the

analysis given the observed valueO, for years 2010-2015 (see also Fig. 30).
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Figure 26: TEMP1d. Density plots of: (left) CV-analysisvs observations; (central) analysisvs observations; (right) backgroundvs

observations, for years 1957-2015. The shading indicates the number of pairs (or collocations) within each 1◦C by 1◦C cell and the total

number of collocations is reported in the legend.
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Figure 27:TEMP1d(top row) andTEMP1d24h(bottom row). Density plots of: (left) CV-analysisvs observations; (central) analysis

vsobservations; (right) backgroundvsobservations, for years 2010-2015. The shading indicates the number of pairs (or collocations)

within each 1◦C by 1◦C cell and the total number of collocations is reported in thelegend.
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Figure 28: TEMP1h. Density plots of: (left) CV-analysisvs observations; (central) analysisvs observations; (right) backgroundvs

observations, for years 2010-2015. The shading indicates the number of pairs (or collocations) within each 1◦C by 1◦C cell and the total

number of collocations is reported in the legend.
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Figure 29:TEMP1d(left), TEMP1d24h(central) andTEMP1h(right). Empirical conditional probability density function for the CV-

analysis given the observed valueO, for years 2010-2015.

56



5.2 Variations of accuracy and precision of the analysis in t ime

The evolution in time of the accuracy and precision of the different productsTEMP1d,

TEMP1d24handTEMP1his illustrated in Figs. (31)-(36).

The accuracy of CV-analysis, analysis and background as estimates of the true tem-

perature state is shown by the time series of the bias of the diagnostic variables: O-CVA,

O-A and O-B. The corresponding precision of the estimates is given by the root mean

square deviations of the diagnostic variables (see the introduction of Sec. 5).

The results are consistent with the outcomes of the evaluation based on the density

plots. ForTEMP1dandTEMP1h, the spatial interpolation provide up to ten times more

accurate estimates of the true atmospheric state compared to the background, as can be

seen from Figs. (31) and (33) by comparing the O-CVA bias with the O-B bias.

Basically, both the CV-analysis and the analysis can be assumed as unbiased estimates

of the true temperature.

The CV-analysis and analysis precisions are shown in Figs. (34)- (36): for theTEMP1h

analysis (CV-analysis) it is around 1◦C (1.5◦C); for theTEMP1danalysis (CV-analysis)

it is around 0.8◦C (1.1◦C). The analysis precision depends on the season: in winter, when

local weather phenomena play a more important role than in other seasons, the analysis

is on average a less precise estimate than in summer.

Our choice of keeping constant values for the OI parameters of all the products and

for the entire period under examination yields a rather stable precision for analysis, CV-

analysis and background estimates throughout the whole period.

In the case ofTEMP1d, the time series for the bias shown in Fig. (31) is remarkably

stable for all the diagnostic variables from year 1957 to years 2005-2006, then there is a

general reduction in the bias values. Because of this reduction is present in the background

too, the increase in the accuracy of the estimates is most likely the effect of a variation in

the MET Norway network management or in the quality control system. The precision of

theTEMP1destimates as shown in Fig. (34) is stable for the whole periodand it seems

to be more influenced by climatic conditions than other factors. In fact, the higher values

of the root mean square deviations, which are reported for years around 1980, are in

correspondence with the occurrence of rather cold winter seasons.

In the case ofTEMP1h, the gradual increase in the number of stations reporting hourly

measurements results in: a more accurate analysis and CV-analysis estimates, as can be

seen in Fig. (33); a slightly more precise analysis and CV-analysis estimates, as can be
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Figure 30:TEMP1d(left), TEMP1d24h(central) andTEMP1h(right). Empirical conditional probability density function for the analysis

given the observed valueO, for years 2010-2015.
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seen in Fig. (36) from the reduction in the amplitude for the seasonal cycle of the root

mean square deviations.

The case ofTEMP1d24hdeserves a separate discussion. The O-CVA bias appears to

be higher than the innovation bias, which in turn is rather small compared to the case of

TEMP1d, as can be seen in Fig. (31) whereTEMP1dand theTEMP1d24hare compared.

To sum up, forTEMP1d24hthe spatial interpolation rely on a more accurate background

compared to the one available forTEMP1d, however we’re not able to take advantage of

it as demonstrated by our evaluation showing a comparable precision betweenTEMP1d

andTEMP1d24hanalysis. The OI configuration forTEMP1d24hmust be modified. In

fact, the background available forTEMP1d24hrefers to the same fine scale of the anal-

ysis, as opposed to the background ofTEMP1dwhich refers to a coarse scale than the

analysis, as a consequence the OI decorrelation length scales used in the specification of

the background error covariance matrices should be set to smaller values compared to

the ones used forTEMP1d. Otherwise, the filter properties of the spatial interpolation

scheme would regionalize the local signal present in the background resulting in an anal-

ysis very similar to the average of theTEMP1hfields (i.e. the background, for which the

decorrelation length scales are actually optimized).
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Figure 31:TEMP1d. time series of the daily bias of: (top) CV residual; (middle)analysis

residual; (bottom) innovation, for years 1957-2015. Thicklines show the annual centered

moving average.
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Figure 32: TEMP1d(top row) andTEMP1d24h(bottom row). time series of the daily bias of: (left) CV residual; (central) analysis

residual; (left) innovation, for years 2010-2015. Thick lines show the annual centered moving average.
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Figure 33:TEMP1h. time series of the hourly bias of: (top) CV residual; (middle) anal-

ysis residual; (bottom) innovation, for years 2010-2015. Thick lines show the annual

centered moving average.
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5.3 Typical year and seasonal variability

As reported in the previous Section, the analysis is an accurate estimate of the true tem-

perature state. In this Section, we focus on the study of the seasonal variability for the

precision of the analysis and background estimates by computing the typical year for

O-CVA, O-A and O-B. The daily time series for bias and RMSE are shown in Figs. (31)-

(36). The typical year for a diagnostic variable is obtainedby averaging the corresponding

daily values and it is shown in Figs. (37) and (38).

As stated previously in our evaluation: the analysis precision is higher in the summer

and up to two-three times smaller in winter both for grid points and station locations.

Once again, it is quite evident that we have some problem inTEMP1d24h, because the

background at grid points is a more precise estimate of the true temperature than the

CV-analysis (i.e. the root mean square deviation for O-CVA is greater than for O-B).

The average difference between daily and hourly precision in the analysis estimates

is illustrated in Fig. (37). In particular, it appears that the precision for hourly analysis

shows a reduced annual variability compared to the daily analysis: during the summer it is

possible to recognize a drop in the root mean square deviation values in the daily analysis,

which is less evident in the hourly analysis; during the winter, on average the hourly and

daily analysis precisions are rather similar, except for extremely cold temperatures when

the hourly analysis precision can reach 2.4◦C while for the daily values the upper limit in

the worst cases is about 2.◦C.

Given the availability of the sub-daily temperature analysis TEMP1h, it is possible to

compute the daily cycle for the accuracy and the precision ofthe analysis and background

estimates as shown in Figs. (39)-(40). The winter season andthe summer seasons are

considered separately. The average bias is shown in Fig. (39) and it is very close to

0.◦C, nonetheless it is interesting to register the different behaviour in the background

bias between winter and summer.

The average root mean square deviation for each hour of a typical day in shown in

Fig. (40). First, we found a further confirmation that the analysis scheme yields more

precise estimates for the summer than for the winter. Second, for the winter the analysis

precision is higher during daytime and smaller during nighttime, most likely because of

the occurrence of ground-based temperature inversions in the vertical profile of tempera-

ture, which are more frequent during the night and in generalmore difficult to represent

in the analysis. In the summer season, it is quite interesting to note that the analysis is
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Figure 34:TEMP1d. time series of the daily root mean square deviations of: (top) CV

residual; (middle) analysis residual; (bottom) innovation, for years 1957-2015. Thick

lines show the annual centered moving average.
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Figure 35:TEMP1d(top row) andTEMP1d24h(bottom row). time series of the daily root mean square deviations of: (left) CV residual;

(central) analysis residual; (left) innovation, for years2010-2015. Thick lines show the annual centered moving average.
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Figure 36:TEMP1h. time series of the hourly root mean square deviations of: (top) CV

residual; (middle) analysis residual; (bottom) innovation, for years 2010-2015. Thick

lines show the annual centered moving average.
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more precise during sunset and sunrise hours when on averagethe atmosphere is more

stable (i.e. energy exchanges due the turbulent motions areless intense).
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Figure 37:TEMP1d(left), TEMP1d24(central),TEMP1h(right). average root mean square for each day (hour forTEMP1h) of the year

of: CV residual (black); analysis residual (blue); innovation (red), for years 2010-2015.
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Figure 38:TEMP1d. average root mean square for each day of the year of: CV residual (black); analysis residual (blue); innovation

(red), for years 1957-2015. In the right panel, Northern andSouthern Norway have been considered separately.
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5.4 The effects of station density variations in time and spa ce

In this Section we focus on the impact that the variations in time and in space of the station

network collecting the observations have on the analysis quality.

In Figs. (1), (3) and (5), the variation in time of the number of observations used

for each analysis step is illustrated. The Integral Data Influence (IDI) has been used to

investigate the impact of the variation in the station network, prescribed our fixed OI con-

figuration, on the analysis quality both at grid points and atstation locations. Remember

that a point having an IDI value close to 1 would be influenced in the OI by the neigh-

bouring innovation values. On the other hand, a point havingan IDI value significantly

less than 1, or in other words a CVIDI close to 0, would result inan analysis value equal

to the background value (see Sec. 3.3.2).

The IDI and CVIDI are shown in Figs. (41)-(43) and (45) for the different prod-

ucts. TheCVIDI time series is shown in Fig. (41) forTEMP1d, which is valid also

for TEMP1d24hbecause both products are based on the same set of daily observations,

and forTEMP1h. The variations in theCVIDI follow the station network evolution in

time and its average value over the whole domain are at acceptable values. ForTEMP1d,

on average theCVIDI value is between 0.85 and 0.90, with a sharp increase for recent

years. ForTEMP1h, theCVIDI is gradually increasing from 0.8 to a value between 0.90

and 0.95 in 2015.

The IDI spatial distribution is illustrated forTEMP1hin Fig. (43), as an average over

one year together with the corresponding standard deviation, and forTEMP1din Fig. (45)

only as an average over one year because the standard deviation was not significant.

In general, the Norwegian areas where the analysis values would remain closer to the

background values without any particular benefit from the spatial interpolation procedure

are: the mountain areas, and the highest peaks specifically;the areas along the borders

especially for years where the station density results to belower than its average value

(i.e., forTEMP1daround 2005; forTEMP1hin 2010-2011).

Consider the availability of data from stations located outside Norway. In the case

of TEMP1d, the data has not been used for the years previous to 2015 for it becomes

available in KDVH after our evaluation. In the case ofTEMP1h, the data is included

from year 2010 onwards but its availability in KDVH is less stable in time than for the

Norwegian data, as it can be seen from the higher standard deviations in Fig. (43).

The impact of station density on the analysis quality is reported in Fig. (42) by means
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Figure 39:TEMP1h. average bias for each hour of the day of: CV residual (black);analysis residual (blue); innovation (red), for years

2010-2015: Winter (December-January-February, left); Summer (June-July-August, right).

71



Figure 40:TEMP1h. average root mean square for each hour of the day of: CV residual (black); analysis residual (blue); innovation

(red), for years 2010-2015: Winter (December-January-February, left); Summer (June-July-August, right).
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of boxplots of the absolute value of the CV-residualsvs CVIDI for the winter and the

summer seasons, which are considered separately, for years2014-2015. Given that we’re

considering CVIDI and CV-residuals, our evaluation is valid for grid points even thought

it has been conducted at station locations. The local station density in the surroundings

of a grid point is represented by the CVIDI, which has been divided in three classes:

CVIDI < 0.45 indicates isolated grid points,CVIDI > 0.85 includes the vast majority of

the grid points which are strongly influenced by spatial interpolation, then an intermediate

transition class in present between those two classes. In the case ofTEMP1d, in general

the precision of the analysis at grid points increases with the increase in station density

and for grid points havingIDI < 0.45 we should expect the median of the distribution for

the absolute value of the CV-residuals to be around 0.5◦C both in winter and in summer,

when in addition the distribution is less disperse. In the case ofTEMP1h, the situation

is similar to TEMP1d with the difference thatTEMP1h is characterized by a smaller

precision, especially for isolated grid points. Once again, TEMP1d24hstands out for

its peculiar performances: the two classes representing the denser station density areas

behave like the equivalent classes forTEMP1d, instead for isolated grid points the best

precision is achieved. That is, the background is indeed a good approximation of the true

temperature state even for isolated areas whereas the spatial interpolation scheme would

be revised for this product.
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Figure 41:TEMP1d(left), TEMP1h(right). CVIDI time series.
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5.5 Analysis increments

Our study of the analysis increments (i.e. analysis minus background) aims at investi-

gating the effects on the analysis of using our global pseudo-background field. In fact,

the analysis increment averaged over a long time period should be everywhere close to

zero. However, any violation of our assumption on the background being an unbiased

estimate of the true temperature state would result either in the presence in the analysis

increment averaged field of areas showing positive/negative values (i.e. corresponding

to positive/negative systematic corrections of the analysis field) or in areas exhibiting an

unusually high/low variability in the sequence of the analysis increment fields.

In Figs. (44),(46)-(49) and (50), the analysis increment field is shown for the different

products as an average either over a single year or over the winter months within a single

year. The winter season is considered independently because of the presence of inver-

sions in the vertical profile of temperature, which introduce important local features thus

making the blending of regional pseudo-background fields more problematic.

The years 2011 and 2015 have been chosen to perform an inter-comparison between

TEMP1h, TEMP1dandTEMP1d24h. In the case ofTEMP1d, in addition to years 2011

and 2015 we considered also: 1957 as the beginning of the timeperiod; 1979 as one of

the coldest year, especially in winter; 1990 is representative of a typical year; 2003 as a

year characterized by a decrease in the observation availability.

The fields of the analysis increment averaged over one year are in general rather uni-

form and they don’t show the presence of significant systematic corrections.

In winter, when the atmospheric situation is much more challenging for the pseudo-

background blending procedure, the analysis increment averaged field become "patchy"

showing an alternation of areas characterized by positive and negative systematic correc-

tions; the size of each area being compatible with the size ofa single regional pseudo-

background field.

However, the overall effect on the analysis is in general limited between−1.5◦C and

1.5◦C, especially forTEMP1handTEMP1d24h. For TEMP1d, during the cold winters

-such as the in 1979- we have areas where the systematic corrections reach the absolute

value of 2.5◦C.
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Figure 42:TEMP1d(left), TEMP1d24h(central) andTEMP1h(right). Box-plot of absolute values of CV residuals versus CV-IDI, for

2014-2015: Winter (top), Summer(bottom).
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Figure 43:TEMP1hIDI. (top-left) annual mean field and (top-right) annual standard deviation field for year 2011. (bottom-left) annual

mean field and (bottom-right) annual standard deviation field for year 2015.
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Figure 44: TEMP1hanalysis increment. (top-left) annual mean field for year 2011; (top-central) mean field for January-February-

December 2011; (top-right) standard deviation field for January-February-December 2011. (bottom-left) annual mean field for year

2015; (bottom-central) mean field for January-February-December 2015; (bottom-right) standard deviation field for January-February-

December 2015.
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Figure 45:TEMP1dIDI. Annual mean field for years: 1957-1979-1990 (top row, left to right); 2003-2011-2015 (bottom row, left to

right).
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Figure 46:TEMP1danalysis increment. Annual mean field for years: 1957-1979-1990 (top row, left to right); 2003-2011-2015 (bottom

row, left to right).
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Figure 47:TEMP1danalysis increment. Annual standar deviation field for years: 1957-1979-1990 (top row, left to right); 2003-2011-

2015 (bottom row, left to right).
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Figure 48:TEMP1danalysis increment. Mean field for January-February-December: 1957-1979-1990 (top row, left to right); 2003-

2011-2015 (bottom row, left to right).
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Figure 49:TEMP1danalysis increment. Standar deviation field for January-February-December: 1957-1979-1990 (top row, left to right);

2003-2011-2015 (bottom row, left to right).
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6 Conclusions

TheseNorge2observational gridded dataset for hourly and daily temperature includes the

two main products:TEMP1h, TEMP1dand the experimental productTEMP1d24h.

The observations used forseNorge2are stored in the MET Norway’s Climate Databases

(KDVH) and both the station network density and the quality control system implemented

at MET Norway are sufficient to provide the final user with spatial interpolation products

of reasonable quality all over the Norwegian mainland for the time range: from 2010 on-

wards forTEMP1h; from 1957 onwards forTEMP1d. The products are regularly updated.

A spatial interpolation procedure for hourly and daily temperature values based on

Bayesian concepts and relying on observations only has been implemented at MET Nor-

way. The spatial interpolation method is based on statistical interpolation: the classi-

cal Optimal Interpolation (OI) scheme has been modified taking into account a scale-

separation approach. In particular, a global pseudo-background field is introduced in the

OI. The global pseudo-background field is obtained by blending several regional pseudo-

background fields, each of them derived by observation de-trending. The presence of

(small) discontinuities in the global pseudo-background field introduced by the blending

procedure field has a limited impact on the analysis quality.By construction, the OI con-

figuration is fixed in time and we used the same parameter values for TEMP1h, TEMP1d

andTEMP1d24hbecause the analysis statistics is required to be as much stable as possible

over time and to facilitate the intercomparison between different products.

Several diagnostics variables have been computed to monitor the statistical interpola-

tion performances and to assess the quality of the final analysis fields. In particular, the

concepts of: leave-one-out cross-validation and IntegralData Influence have been intro-

duced.

The analysis can be regarded as an unbiased estimate of the true temperature both at

grid points and at station locations. Only for the most extreme negative values (values

below−30◦C) the evaluation suggests the presence of a systematic warm bias in all the

products. The analysis is a more precise representation of the truth for positive tempera-

ture values than for negative values. The analysis statistics are reported in Tables 1 and 2,

for grid points and station locations respectively.

A Spatial Consistency Test (SCT) has been included in the OI scheme to prevent ob-

servations affected by gross-measurements errors from entering the spatial interpolation

procedure. The SCT is a key component of the spatial interpolation procedure, because it
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Figure 50:TEMP1d24hanalysis increment. (top-left) annual mean field for year 2011; (top-central) mean field for January-February-

December 2011; (top-right) standard deviation field for January-February-December 2011. (bottom-left) annual mean field for year

2015; (bottom-central) mean field for January-February-December 2015; (bottom-right) standard deviation field for January-February-

December 2015.
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guarantees the quality of analysis products in real-time applications especially.

In the future, the uncertainties in the analysis should be reduced through an objective

estimation of the OI parameters, which at the moment are estimated with an heuristic

procedure. Analogously, the spatial consistency test thresholds should be estimated in

an objective way instead of the current trial-and-fail procedure. Furthermore, possible

substantial improvements are the inclusion of non-euclidean distances in the computations

of OI error covariance matrices and the use of numerical atmospheric model fields as

background.
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A

Appendix: Examples of regional pseudo-background
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Figure 51: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 52: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 53: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 54: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 55: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 56: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 57: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 58: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 59: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)

96



Figure 60: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 61: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 62: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)

99



Figure 63: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)

100



Figure 64: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 65: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 66: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 67: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 68: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 69: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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Figure 70: Test case 2015/01/01.TEMP1dconstruction of the pseudo-background. Left panel: station distribution (circles);Yd stations

included in the sub-domain (black dots);xYd,IDI/∑D
d=1xYd,IDI (shaded). Central panel: regional pseudo-background temperature vs

Elevation a.m.s.l.: observed values (black dots);yb
d (red dots);xb

d (pink dots, only the 1% grid points more influenced by theYd stations

are shown). Right panel: blended pseudo-background temperature vs Elevation a.m.s.l.: observed values (black dots);yb (blue dots);xb

(cyan dots, only the 1% grid points more influenced by theYd stations are shown)
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