
MET report
no. 26/2013

Oceanography

Assimilation of HF radar total
current vectors in a realistic ROMS

4DVAR application

Ann Kristin Sperrevik, Kai H. Christensen & Johannes Röhrs







Contents

1 Introduction 1

2 Model configuration 1

2.1 Model grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Forcing and initialization of the model . . . . . . . . . . . . . . . . 3

3 Configuration of the data assimilation system 3

3.1 Background standard deviations . . . . . . . . . . . . . . . . . . . 4

3.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Tuning of ROMS-4DVAR . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Results 6

4.1 Impact of different observation data sets . . . . . . . . . . . . . . . 6

4.1.1 Drifter velocities . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.2 Drifter trajectories . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.3 Sea Surface Temperature . . . . . . . . . . . . . . . . . . . 9

4.1.4 ADCP measurements . . . . . . . . . . . . . . . . . . . . . 10

4.2 Impact of assimilation over a longer time period . . . . . . . . . . . 16

4.2.1 Sea Surface Temperature . . . . . . . . . . . . . . . . . . . 16

4.2.2 ADCP measurements . . . . . . . . . . . . . . . . . . . . . 19

5 Concluding remarks 23

A Evaluation of drifter trajectories 24

Bibliography 25





1 Introduction

As part of a project on the use of HF radars for monitoring and data assimila-

tion, an intensive field campaign was launched in the spring of 2013 in the Lo-

foten/Vesterålen area. Three mobile HF radar stations were deployed in Vesterålen,

ovelooking the continental shelf. At the same time, the R/V Johan Hjort passed

through the area on the annual cod stock assessment cruise, and hydrographic

data were collected. The main aim of the work presented here has been to evalu-

ate the impact of assimilating HF radar data in the operational ocean model used

at the Norwegian Meteorological Institute, and to compare the results with the

impact of assimilating more traditional hydrographic data from CTD. Data from

an ADCP rig deployed before the cod stock assessment cruise, as well as from

surface drifters deployed from R/V Johan Hjort, have been used as independent

sources of velocity and trajectory information.

Section 2 of this report describes the general model setup, while Section 3 de-

scribes the initial experiments that were made for tuning the ocean model’s data

assimilation system. Section 4 contains a comparison of the impact of HF radar

data versus CTD data, and also results from experiments where short versus long

timeseries of data have been used. Finally, Section 5 contains a discussion and

concluding remarks.

2 Model configuration

The basis for the realistic model simulations is the NorKyst800 (Albretsen et al.

[2011]) version of the Regional Ocean Modeling System (ROMS, �����������

���), which is run operationally by the Norwegian Meteorological Institute (MET

Norway). NorKyst800 covers the coast of mainland Norway and has a horizon-

tal resolution of 800 meters. Ocean data assimilation at such high resolution is

associated with extensive challenges, as outlined in Christensen [2013], hence

we have therefore chosen to use a coarser horizontal resolution with 100x170

horizontal grid cells that are 2.4× 2.4 km2.

ROMS is a free-surface, hydrostatic, primitive equation model, and consists of a

nonlinear (NL-ROMS), tangent linear (TLM) and an adjoint (ADM) model. There

are seven dependent variables in ROMS: (u, v, T, S, ζ, ū, v̄), representing horizon-

tal velocity in easterly direction, horizontal velocity in northerly direction, potential

temperature, salinity, sea surface height, vertically averaged velocity in easterly
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Figure 1: The model domain. The full NorKyst800 domain is shown with black border, while our
subdomain Vesterålen-2.4 is shown with red border.

direction, vertically averaged velocity in northerly direction, respectively. In the

ROMS code and ROMS output these variables are referred to as (u,v, temp, salt,

zeta, ubar, vbar).

The simulations described in this study uses Chapman [1985] and Flather [1976]

open boundary conditions for sea level elevation and barotropic currents. For

tracers and baroclinc velocities, boundary conditions as described in Marchesiello

et al. [2001] are used. During the assimilation clamped boundary conditions with

a sponge layer is applied.

2.1 Model grid

The model domain is a subset of NorKyst800 centered around the Lofoten and

Vesterålen archipelago. The bathymetry of the domain was taken from NorKyst800.

Not all features present in the original bathymetry can be represented in a coarser

resolution, hence a smoothing algorithm was applied to convert the data from

0.8 to 2.4 km resolution. The model has 35 terrain-following vertical layers. The

model domain used in this study will hereafter be referred to as “Vester”å“len-2.4”.
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2.2 Forcing and initialization of the model

The lateral boundary conditions in the Vesterålen-2.4 experiments are retrived

from the operational runs of the NorKyst800 at MET Norway. Fields of sea surface

elevation, temperature, salinity and currents have been collected at three hour

intervals for the area of interest. Before the boundary condition fields are applied,

they are subject to a smoothing algorithm, which averages the values within a box

consiting of 3 × 3 grid points. This is done to remove fine scale features present

in the NorKyst800 fields, which will be unresolved in the coarser Vesterålen-2.4.

After the smoothing algorithm the fields are interpolated to the coarser grid.

River discharge data are taken from the NorKyst-800 system. The river runoff

in this system is based on modelled estimates of discharge from NVE (Norges

vassdrags- og energidirektorat). As there are no near real-time data available,

the discharge data used in this experiment are daily climatological values based

on data from the period 1962-2009.

The Vesterålen-2.4 applies the same atmospheric forcing as the operational runs

of NorKyst800 at MET Norway. The forcing consists of air temperature and hu-

midity 2 m above ground, 10 m winds as well as mean sea level air pressure,

cloud cover and precipitation. The source of the data is MET Norway’s opera-

tional weather forecast from UM4km.

Atmospheric forcing and boundary conditions were collected from the operational

suites starting from February 15th and ending April 15th, 2013. A model simula-

tion was initialized from the smoothed NorKyst800 fields and run throughout this

period. All initial conditions for the different assimilation experiments stem from

this spin-up run.

3 Configuration of the data assimilation system

ROMS contains a four dimensional variational data assimilation system that ac-

cepts observations in any of the dependent variables (ROMS-4DVAR). The 4DVAR

system does not yet allow assimilation of radial currents from HF radars. In our

experiments, data assimilation is only considered for interior model points and no

adjustment of the surface/bottom fluxes or boundary conditions are made. We

use incremental, strong-constraint 4DVAR. The data assimilation system and the

associated parameters are described more in detail in Christensen [2013].
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3.1 Background standard deviations

Circulation statistics (mean and standard deviations) are used to estimate model

errors, and these should ideally be calculated from a free simulation of the appli-

cation in question. Since we did not have any such simulations with Vesterålen-

2.4, we have used data obtained in the BIOWAVE project as a substitute. In the

BIOWAVE project a model application covering the same geographical domain,

but with the original 0.8 km resolution, was run for a period starting in October

2010 and throughout March 2011. Daily fields from this run have been used to

estimate the circulation statistics of Vesterålen-2.4. The same smoothing algo-

rithm as described in Section 2.2 was used to remove fine scale features that

cannot be resolved by the coarser grid. In addition, statistics from the free sim-

ulation initialized from NorKyst800 was calculated and used as a supplement to

the BIOWAVE statistics.

3.2 Observations

The observations used for data assimilation in this project consists of CTD profiles

of temperature and salinity, taken during the cruise with R/V Johan Hjort during

March 2013 and total current vectors from three SeaSonde HF radars from CO-

DAR stationed in Vesterålen [Christensen et al., 2013]. Before the observations

were assimilated, the data were screened using tools from the ROMS developers

to ensure optimal use in our ROMS-4DVAR application. Due to discontinuities in

the time record of HF current data, no filtering of the tidal signal has been carried

out. The ideal method for assimilating such observations would be to first remove

the tidal signal of the observations, and then add the tidal signal of the model

application in question (See Zhang et al. [2010] for a more in-depth description).

3.3 Tuning of ROMS-4DVAR

The findings in Christensen [2013] were used as a starting point for tuning the

4DVAR parameters. As in Christensen [2013] we examine the assimilation win-

dow length, number of inner/outer loops and the horizontal background error cor-

relation scales.

The procedure is as follows: Each experiment results in an analysis, that is, a so-

lution of ROMS-4DVAR. This analysis is used to initalize a 5-day simulation with
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Exp.no Corr. scale Inner/outer Assim window

1 10 km 8/2 72 h

2 10 km 8/2 48 h

3 10 km 8/2 24 h

4 10 km 5/4 24 h

5 10 km 6/3 24 h

6 10 km 20/1 24 h

7 10 km 12/2 24 h

8 10 km 10/2 24 h

9 5 km 10/2 24 h

10 15 km 10/2 24 h

Table 1: The numerical experiments used for tuning of the data assimilation system in the

realistic model. From left to right the columns denote horizontal error correlation scale, number

of inner and outer loops, and the length of data assimilation window. Bold face indicate the

experiment with best skill.

NL-ROMS. During this last simulation, numerical floats are released in the posi-

tions occupied by the surface drifters deployed during the field campaign [Chris-

tensen et al., 2013]. Numerical floats are released every three hours, at the

position held by the real drifters at that time. The depth of the floats is fixed, and

is set to 65 cm below the sea surface for the iSLDMB drifters, and 10 cm for the

iSphere drifters.

To investigate the horizontal dispersion in the model, we have also considered an

ensemble of numerical floats. Each time a float is released, we release additional

ten floats. The initial positions of these floats are perturbed in a random way by

up to 1.5 grid points (i.e., about 3.5 km). The ensemble of modelled trajectories

provides an idea of the variability in the current fields.

The numerical trajectories are compared with the observed trajectories following

the methods described in Appendix A. The overall agreement is used to evaluate

the performance of the ROMS-4DVAR configuration. We focus on the iSLDMB

drifters in this evaluation, as the iSphere drifters are affected by the wave field,

which is not accounted for in ROMS [Röhrs et al., 2012]. The results are shown

in Table 1. Based on this outcome, the rest of the experiments use a horizontal

error correlation scale of 10 km, 10 inner and 2 outer loops, and an assimilation

window length of 24 hours.
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4 Results

The experiments discussed in this section follow the same procedure as de-

scribed in Section 3.3.

4.1 Impact of different observation data sets

The first series of experiments are focused on assessing what impact different ob-

servation sets have on the analysis and subsequent forecast. The ROMS-4DVAR

system is run for one cycle with three different sets of observations. The first ex-

periment assimilates only HF radar currents, the second only CTD hydrography,

while the third assimilates all data (denoted HF, CTD and ALL in the following).

The results from these three experiments are compared with results from a free

model simulation in which no assimilation is done (denoted CTRL). As the sim-

ulations are started from the beginning of the assimilation window, the first 24

hours of these runs should be considered as analyses. The results from the anal-

ysis period are representative for the performance of the system when used in

“reanalysis mode”, i.e. when statistical measures are sought based on historical

data.

We validate the results from the analysis part and the forecast part of the simu-

lations separately. When considering the results, we must keep in mind that we

have only assimilated data from a time period of 24 hours and that CTD obser-

vations are sparse compared with the number of HF radar current observations.

Also, as these experiments are carried out for a specific time period, the results

are influenced by the weather conditions and does not necessarily represent the

variations in predictability of different flow regimes.

4.1.1 Drifter velocities

Using the methods of validation described in Appendix A, we evaluate the pre-

dicted velocities of the numerical floats. The results are given as a value between

1 and -1, where a value of 1 means perfect correlation in both speed and direc-

tion, a value of 0 means no correlation, while a value of -1 means that the data are

anti-correlated, i.e. having opposite direction but the same speeds. The results of

the vector correlation comparison are shown in Figure 2 and summarised in Ta-

ble 2. Only the iSLDMB surface drifter data and equivalent numerical trajectories

have been included.
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Figure 2: Vector correlation as a function of time. The vertical line indicates the shift from

analysis to forecast. A value of 1 means perfect correlation in both speed and direction, a value

of 0 means no correlation, while a value of -1 means that the velocities are anticorrelated.

The vector correlation of the CTRL decreases rapidly, and as the simulation en-

ters into the forecast, modelled and observed drifter velocities are uncorrelated.

The CTD experiment follows the control run closely. In fact, the correlation coef-

ficient has a lower value than the CTRL throughout almost the entire simulation.

This indicates that the number of CTD observations in the experiments are too

sparse to constrain the circulation, and therefore have only minor impact on the

subsequent model predictions. Assimilation of HF radar currents on the other

hand significantly improves the drifter velocities during both the analysis and fore-

cast part of the model predictions. The velocities remain correlated for two days

into the forecast. An interesting fact is that the addition of CTD hydrography to

the assimilated data set further improves the model predictions during the first

part of the forecast, which is in contrast to the deterimental effect of only using

CTD data. A likely explanation is that the addition of CTD observations acts as an

complementary constraint of the circulation that is set by the HF radar observa-

tions. This shows how important it can be to constrain all state variables in order

to achieve the best possible model predictions.

The significance of the improvement has been tested comparing ALL and CTRL

Observation set
Analysis Forecast

Average Median Average Median

HF 0.70 0.73 0.31 0.29

CTD 0.40 0.42 -0.12 -0.12

ALL 0.72 0.72 0.37 0.32

CTRL 0.45 0.46 -0.05 -0.06

Table 2: Average and median vector correlation between observed and predicted iSLDMB sur-
face drifter trajectories during analysis window and first 48 h of forecast.
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(a) Drifter No. 4 (b) Drifter No. 5

Figure 3: The panels show the trajectories of two different drifters as observed (green), predicted
by CTRL (red) and predicted by ALL (black). In addition, the grey tracks show the pathways of

the floats with perturbed initial positions. The numerical floats were released at the start of the

analysis.

using a Wilcoxon rank-sum test. The improvement in current direction is statisti-

cally significant, while not so for the speeds. Our interpretation is that the major

benefit of assimilating HF radar currents in these experiments is the correction of

the current direction, e.g. adjustments in the positions of eddies and the coastal

current. It should be pointed out that this test does not imply that no improvement

in speed is obtained (Figure 2 indicates that the results are better), but that the

impact cannot be statistically verified with the limited observational data available.

As discussed more in detail in Sec. 4.2.2, we also know that the model is not as

energetic as the observations, which means that we should also seek to reduce

biases and errors by improving the physics in the model and the boundary and

surface forcing.

4.1.2 Drifter trajectories

The impact of data assimilation is also evaluated by comparing observed and

predicted trajectories. For this comparison we use the normalised cumulative

Lagrangian separation (see Appendix A). Basically we compare not only the end

points of the observed and modelled trajectories, but also the entire history of the

drifter trajectories.

8



Observation set
Analysis Forecast

ISLDMB ISPHERE ISLDMB ISPHERE

HF 0.44 0.21 0.30 0.26

CTD 0.40 0.15 0.16 0.19

ALL 0.43 0.21 0.33 0.22

CTRL 0.42 0.16 0.18 0.21

Table 3: Skill score during analysis and forecast when comparing with the two different surface
drifter types.

The results shown here are obtained by calculating the skill score for predicted

trajectories of floats released at the start of the assimilation window for a period

extending throughout the length of the window, which is 24 hours. The skill for

the forecast part is found by evaluating the floats released at the very start of the

forecast and their trajectories during the next 48 hours. Here, values close to one

indicate good skill, while values close to zero indicate no skill. Results are shown

in Table 3 for both types of surface drifters.

Assimilation does improve predictions of drifter trajectories, although the impact

is more limited compared to the drifter velocities. The results show that the skill

improves when we consider periods longer than a day. In these cases, data as-

similation seems to constrain the ocean circuation in such a way that the predicted

trajectories does not stray as far away from the observed paths as they do in a

free simulation. This is likely a consequence of the CTRL not being energetic

enough, as further discussed in Sec. 4.2.2. Two examples of modelled versus

observed trajectories are shown in Figure 3.

4.1.3 Sea Surface Temperature

The sea surface temperature (SST) is well observed by satellite, which gives us

an independent variable to validate against. Here, we have use an OSI-SAF SST

product with 1.5 km resolution1. In addition, the iSphere buoys released during

the field campaign were equipped with thermometers measuring the sea surface

temperature along the drifter paths. As the model results in this section are based

on the assimilation of observations within a 24 hour period, we do not excpect

model improvements in regions far away from the observations. We therefore

compare satellite SST with model results only in a subarea of the model domain,

centered around the HF radar coverage area, as comparing with the entire model

domain would possibly obscure the impact of the assimilation (the subdomain is

1��������������������
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Observation set Analysis Forecast

ISPHERE OSI-SAF ISPHERE OSI-SAF

RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS

HF 1.10 -0.93 1.72 1.57 1.73 -1.62 1.30 0.70

CTD 1.05 -0.90 1.81 1.66 1.51 -1.43 1.35 0.74

ALL 1.10 -0.93 1.76 1.60 1.69 -1.58 1.35 0.74

CTRL 1.21 -1.12 1.77 1.54 1.56 -1.46 1.38 0.57

Table 4: SST error statistics. Root mean square error (RMSE) and bias when comparing model
results with ISPHERE buoy SST and OSI-SAF SST.

outlined in Fig. 8). The iSphere buoys on the other hand, were released in the

area covered by the HF radars. Therefore we do not need to limit the area from

which to pick data for comparison.

The error statistics are summarised in Table 4. We find that assimilation in all

cases seem to reduce the root mean square error (RMSE). When comparing

iSphere buoy SST with the model results, we also find bias reduction, whereas

the bias seems to increase when comparing with satellite SST. An interesting fact

is that the bias is negative when comparing with iSphere, while it is positive when

comparing with satellite data. The most likely reason for this discrepancy is the

distribution of observations: the model has a warm bias in open waters, while it

is too cold close to shore. It should also be noted that due to cloudy conditions

during the validiation period, satellite observations are sparse within the HF radar

coverage area.

4.1.4 ADCP measurements

During the field campaign there was also installed an ADCP rig within the HF

radar coverage area, for a detailed description see Christensen et al. [2013]. Two

separate instruments measured the upper ocean currents: one with high vertical

resolution (0.5 m) in the upper 8 meters, and another with coarser resolution (1

m) in the upper 41 meters. These two instruments will be referred to as the “upper

ADCP” and “lower ADCP”, respectively. Only data in the range 8-41 meters depth

will be used from the lower ADCP.

We compare the results from the different model simulations with the speed and

direction measured by the ADCPs. We average the ADCP currents over the depth

column in their specific range (i.e., 0-8 m and 8-41 m depth), and convert to speed

and direction. Modelled speed and direction are calculated in the same manner.

Figure 4 shows that the ADCPs generally measure a current with a NNE heading.
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(a) Speed

(b) Direction

Figure 4: The figure shows time series of vertical averaged current over the upper 8 meters of

the water column (4(a)) speed and (4(b)) direction during the analysis and forecast periods.

The CTRL run on the other hand predicts a current towards NNW during the

period in question. In addition to the discrepancy in direction, the current speed

predicted by the control run is too weak during the entire simulation. Assimilation

of CTD hydrography does not help the predictions, it seems to even worsen the

predictions of current direction. Assimilation of HF radar current on the other

hand, has a remarkable effect on both speed and direction. The effect of the

assimilation is maintained for several days into the forecast. The combination of

HF radar currents and CTD further improves the model during the analysis period,

but the effect wears off earlier in the forecast compared to the case when only HF

was assimilated.

To further investigate the effect of assimilation on the simulated currents, we also

look at the distribution of current strength with regard to the current direction. Fig-

ure 5 shows current roses for the vertically averaged current in the upper 8 meters

of the water column for the upper ADCP, CTRL, and ALL. During both analysis

and forecast, the CTRL run has the main current direction basically correct, but
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(a) ADCP during analysis (b) ADCP during forecast

(c) CTRL during analysis (d) CTRL during forecast

(e) ALL during analysis (f) ALL during forecast

Figure 5: The left column shows speed and direction distributions during the analysis from

ADCP 5(a), CTRL 5(c) and ALL 5(e). The right column shows the corresponding distributions

during the forecast period. Blue colors indicate current speed in the range 0− 0.3 m/s, yellow and

orange colors 0.3− 0.5 m/s and red colors current speeds stronger than 0.5 m/s.

there is a too strong northward signal. We again see that the predicted current

speed is too weak, and there is little correlation in the distribution of speed with
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regard to direction. After assimilation, the model performs better, both in terms of

direction of the current as well as the distribution of current speeds. Error statis-

tics for speed and direction are summarised in Table 5 and 6. With the exception

of the CTD run there RMSE and bias are reduced in both in speed and direction

throughout upper 8 meters. ROMS-4DVAR thus appear to efficiently spread the

information from the surface observations downwards in the water column.

Observation set Analysis Forecast

Upper Lower Upper Lower

RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS

HF 0.08 0.01 0.10 0.02 0.15 -0.06 0.15 -0.08

CTD 0.14 -0.13 0.10 -0.10 0.19 -0.15 0.19 -0.16

ALL 0.08 -0.06 0.07 -0.05 0.12 -0.04 0.14 -0.08

CTRL 0.14 -0.13 0.10 -0.09 0.18 -0.14 0.18 -0.15

Table 5: ADCP current speed error statistics. Root mean square error (RMSE) and bias when
comparing model results with ADCP current speed. All numbers are given in m/s.

Observation set Analysis Forecast

Upper Lower Upper Lower

RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS

HF 17.2 7.9 10.9 -3.0 44.4 13.1 22.2 5.8

CTD 17.2 -12.6 21.4 -19.6 57.7 -32.7 48.0 -38.3

ALL 12.8 3.9 9.0 -4.1 45.3 -16.2 32.5 -19.1

CTRL 16.5 -12.7 21.2 -19.8 48.3 -26.3 40.1 -29.8

Table 6: ADCP current direction error statistics. Root mean square error (RMSE) and bias when
comparing model results with ADCP current direction. All numbers are in degrees.
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(a) Speed

(b) Direction

Figure 6: The panels shows time series of vertically averaged current in the water column

between 8 and 41 meters depth. The upper panel shows the speed and the lower panel shows

the direction during the analysis and forecast periods.
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(a) ADCP during analysis (b) ADCP during forecast

(c) CTRL during analysis (d) CTRL during forecast

(e) ALL during analysis (f) ALL during forecast

Figure 7: The left column shows speed and direction distributions during the analysis from the

lower ADCP 7(a), CTRL 7(c) and ALL 7(e). The right column shows the corresponding distribu-

tions during the forecast period. Blue colors indicate current speed in the range 0−0.2m/s, yellow

and orange colors 0.2− 0.4 m/s and red colors current speeds stronger than 0.4 m/s.
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4.2 Impact of assimilation over a longer time period

After the initial experiments, the next step is to investigate what the impact is

when we do not only run our 4DVAR system once, but a multiple of days in a row.

The procedure is as follows: As before we run ROMS-4DVAR, and integrate NL-

ROMS to the end of the assimilation window. This gives us a best estimate of the

state at the end of the window. This estimate is then used as the initial condition

for the next assimilation run. This procedure is then repeated a given number of

times. Lastly, we run NL-ROMS for 5 days to obtain a forecast.

As we want to compare the different experiments, all NL-ROMS simulations must

cover the same time period. We therefore initiate ROMS-4DVAR at four different

dates. The first experiment is initiated 20 days ahead of the NL-ROMS simulation,

the second 15 days, the third 10 days and the fourth 5 days before. These exper-

iments will in the following be referred to as 20D, 15D, 10D and 5D, respectively.

Additionally, NL-ROMS is run without any assimilation, and this simulation is our

control run (CTRL). Both CTD hydrography and HF radar total vectors have been

assimilated in all these experiments.

As the three HF radar antennaes started to submit data on March 9, our longest

4DVAR experiment is initiated this day. Twenty days later, when our experiments

end, there are no longer any surface drifters left in the model domain. This leaves

us with ADCP measurements and satellite SST to validate the results against.

4.2.1 Sea Surface Temperature

As in Section 4.1.3, we compare our results with the high resolution OSI-SAF

SST product. Figure 8(a) shows that we have a warm bias in our model. Around

the Lofoten/Vesterålen archipelago the model performs better, but close to the

shore the model is too cold, especially around AndÃ¸ya. Figure 8(b) shows the

temperature differences during the same period of time, but the model results

are now taken from the 20D experiment. The warm bias is still clearly visible,

but in the northwestern part of the domain, i.e. downstream from the HF radars,

there is a noticeable improvement. Also in the southern part of the domain we

see improvements. The cold bias near AndÃ¸ya has almost disappeared in this

simulation.

The differences are quantified in Table 7. Both RMSE and bias are significantly

reduced. An interesting fact is that the bias seems to be most reduced in the 5D

and 10D experiments. However, examining the results more in detail reveals that
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(a) CTRL (b) 20D

Figure 8: The panels show SST difference between model and satellite observations for 8(a)

the control run and 8(b) the 20 days long simulation. Red color indicates warm bias in the model,

and blue color indicates cold bias. Areas with green colors match the observations well. The

subdomain used in the analysis is the area north of the black line. The color scale is ± 3 degrees.

the area of cold bias still persists in these runs, and thus influences the mean

bias. Examining the mean warm bias and the mean cold bias separately for all

runs, shows that both cold and warm biases are most reduced in the longest data

assimilation run (20D), and gradually decreases with the number of days of data

assimilation.

The probabilty density functions (PDFs) of the model temperature errors are

shown in Figure 9 for both the full domain and the subdomain centered around

Vesterålen. The warm bias is evident from the right skewed curves. However, we

see that the PDFs based on the assimilation runs are slightly less skewed, and

also narrower than the PDF of the control run. As temperature observations used

for assimilation are limited in number, model improvement is likely to be due to

improved circulation. Adding satellite SST to the assimilated observations might

thus have great potential to further improve the model predictions.
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Observation set Full domain Subdomain

RMSE BIAS RMSE BIAS

CTRL 3.09 2.29 1.51 0.54

5D 2.69 1.91 1.32 0.24

10D 2.68 1.94 1.38 0.36

15D 2.69 2.03 1.32 0.59

20D 2.67 2.01 1.31 0.58

Table 7: SST error statistics. Root mean square error (RMSE) and bias when comparing model
results with OSI-SAF SST. Statistics for the full model domain are shown in column 2 and 3, while

statistics for the subdomain are shown in column 4 and 5.

(a) Full domain

(b) Subdomain

Figure 9: Probability density functions (PDFs) of the model temperature errors for the entire
model domain (top panel) and the subdomain centered on Vesterålen (bottom panel). In both

figures the normal distribution PDF is indicated with a dashed line.
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4.2.2 ADCP measurements

The model current directions in the upper 8 meters does not correspond well

with the directions measured by the upper ADCP, in general it has an eastward

offset, and has greater spread than the observations. However, we must stress

that the ADCP measures the current at a specific location, while the model can

only represent the average current over a region the size of a grid box with an

area of 2.4 × 2.4 km2. The HF radar surface currents also represent a spatial

and temporal average, and hence do not measure the same as the ADCP. To

illustrate this, we include current roses from the near-surface ADCP and the HF

radar total vectors (Figure 10) at the location of the ADCP. Only simultaneous

observation have been included in this analysis. As in the model simulations,

the main direction measured by the HF radars is more to the northeast than the

ADCP measurements. It is likely that the local bathymetry has some influence

on the currents in the location of the ADCP, which is not captured by neither the

model nor the ADCP.

The model simulations show better agreement with the measurements from the

lower ADCP. For these measurements both speed and direction improve with data

assimilation. As for the upper ADCP, speed predictions seems to benefit from

data assimilation over a longer time period. However, there is not much difference

when assimilating data for 10 or 20 days. In general the model simulations are

not energetic enough when compared with the currents measured by the ADCP.

Direction of the predicted currents nevertheless benefit from data assimilation

over a longer period of time, both in the near-surface and the deeper waters. The

current roses in Figures 11 and 12 emphasize these results. It is clear that the

data assimilation system intensifies the current speeds, and in the period investi-

gated here, the directions of the lower ADCP correspond better with observations.

The error statistics are summarised in Tables 8 and 9.

Observation set upper lower

RMSE BIAS RMSE BIAS

CTRL 0.21 -0.17 0.16 -0.14

5 days 0.19 -0.14 0.16 -0.12

10 days 0.14 -0.06 0.12 -0.03

15 days 0.14 -0.07 0.13 -0.06

20 days 0.16 -0.10 0.13 -0.07

Table 8: ADCP current speed error statistics. Root mean square error and bias when comparing
model results with ADCP current speed. All numbers are given in m/s.
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Observation set Upper Lower

RMSE BIAS RMSE BIAS

CTRL 26.6 -6.5 28.4 -19.9

5 days 39.7 8.2 31.1 -5.3

10 days 34.2 10.6 28.6 -0.5

15 days 35.1 18.5 29.5 2.6

20 days 31.3 9.4 22.4 -5.3

Table 9: ADCP current direction error statistics. Root mean square error and bias when com-
paring model results with ADCP current direction. All numbers are in degrees.

(a) ADCP (b) HF

Figure 10: Upper ADCP (left panel) and HF radar (right panel) during the observation campaign.
Only simultaneous observations have been used.
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(a) Upper ADCP (b) CTRL

(c) 5D (d) 10D

(e) 15D (f) 20D

Figure 11: The left column shows speed and direction distributions during the analysis from 7(a)

upper ADCP, 7(c) CTRL and 7(e) ALL. The right column shows the corresponding distributions

during the forecast period. Blue colors indicate current speed in the range 0− 0.2 m/s, yellow and

orange colors 0.2− 0.4 m/s and red colors current speeds stronger than 0.4 m/s.
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(a) Lower ADCP (b) CTRL

(c) 5D (d) 10D

(e) 15D (f) 20D

Figure 12: The left column shows speed and direction distributions during the analysis from 7(a)

Lower ADCP, 7(c) CTRL and 7(e) ALL. The right column shows the corresponding distributions

during the forecast period. Blue colors indicate current speed in the range 0− 0.2 m/s, yellow and

orange colors 0.2− 0.4 m/s and red colors current speeds stronger than 0.4 m/s.
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5 Concluding remarks

HF radar total vectors and CTD hydrographic profiles have successfully been

assimilated into a high resolution version of the operational ocean model ROMS

used at MET Norway. The data assimilation is based on strong constraint 4DVAR.

Comparing with independent data obtained from surface drifters, upward looking

ADCPs, and satellite SST, we find that the bias and root mean square errors in

modeled velocities and temperatures are reduced.

A set of tuning experiments were made, and it was found that the best results

were obtained using 10 km horizontal correlation scale, 24 hour assimilation win-

dow, and 10 inner and 2 outer loops. The ideal error correlation scale is twice as

large as in the idealised experiments, which likely reflects that the realistic exper-

iments contain wind and tidally driven dynamics on a larger scale than the case

considered in the idealised case.

The impact of assimilating HF radar currents is larger than the impact of assim-

ilating CTD hydrography. Excluding HF data and only assimilating CTD data is

detrimental for the forecast, which means that the CTD observations collected

during the 24 hour assimilation window are too few to constrain the solution. An

interesting finding is that the impact of CTD data is positive when combined with

HF radar data. Experiments using longer timeseries of observations shows that

the results generally improve with the length of the time series, typically up to ten

days.
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A Evaluation of drifter trajectories

Following Röhrs et al. [2012] we apply two different metrics to evaluate drifter ve-

locities and trajectories. The first metric follow an analysis similar to that of Davis

[1985], where drifter trajectories are split in pieces of 3 hours. Drifter velocities

can then be calculated for each 3 hour trajectory. Correlation coefficients of si-

multaneous pairs of drifter velocities may then be calculated. We use the same

definition for the vector correlation as in RÃ¶hrs et al.:

r = 1−
�(vi − vj)

2�

�v2

i �+ �v2

j�
. (1)

The correlation coefficient takes the value 1 for equal velocities, e.g. the start

and ending point are the same for both the real and modelled drifters, and −1 for

opposite velocities.

The second metric used in this report to evaluate drifter trajectories is the nor-

malised cumulative Lagrangian seperation presented in Liu and Weisberg [2011],

defined as

s =
N
�

i=1

di/
N
�

i=1

lo,i, (2)

where di is the separation distance between observed and modeled trajectory

endpoints at time i after initialization, lo,i is the length of the observed trajectory

and N is the total number of time steps evaluated. A skill score S is then defined

as

S =

�

1− s if s ≤ 1 ,

0 if s > 1 .
(3)

High skill score means that observed and modelled trajectory have good agree-

ment throughout the period under evaluation.
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