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Abstract

The work described in this report has been conducted within the Energi Norge (EBL) project �Utnyttelse av
værradardata i værvarslings- og tilsigsmodeller�, lead by SINTEF Energy with funding from Energi Norge
members, The Research Council of Norway (NFR ES439901/193048) and own funding from met.no. This
report covers the achievements in subproject 2, mainly subproject 2.2 �Assimilasjon av radarre�ektivitet i full
ikke-hydrostatisk atmosfæremodell� (�Assimilation of radar re�ectivity in a fully non-hydrostatic atmospheric
weather model�).

Introductory tests of the weather model and assimilation system are presented, using the HARMONIE
model and the AROME physics package. The treatment of the converted Norwegian radar observations in
the system is reported. This is followed by a case study of the impact of radar re�ectivity data. The method
used for radar data assimilation was adopted from Météo-France.

The report demonstrates that a technically working pre-operational system for assimilating radar data has
been set up. Although preliminary, veri�cation scores of a two weeks impact study show positive impact
when including radar re�ectivity in the analysis system. And, yet unresolved issues are discussed.
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Chapter 1

Introduction

Thanks to the fast development in computing technology, the implementation of a very high resolution
numerical weather prediction (NWP) model becomes a�ordable. At met.no the HARMONIE limited area
model (LAM) in its AROME version, with horizontal grid mesh of 2.5 km, is being implemented. The
accuracy of the NWP forecast depends in part on the quality of the initial conditions. The initial conditions
for a LAM can be constructed (downscaled) from a global or an other LAM analysis or forecast. The
potentially best way for creating the initial conditions for NWP models is, however, reached by involving
observations through data assimilation. It is expected that mesoscale (high resolution) models require high
resolution observations. Depending on the applied assimilation technique the temporal resolution of the
observations can also be crucial. Since ground based weather radars provide frequent updates (every ∼15
minutes) of three-dimensional observations at very high resolution (∼1 km), these observations are of great
interest for improving the initial conditions for a mesoscale model.

Observations from ground based weather radars are currently used for providing realtime weather conditions
to the public and to assist meteorologists and scientists. These observations are presented at e.g. http:

//yr.no/radar/. There are currently eight operational weather radars in Norway. The radar observations
are, however, not yet used in the Norwegian NWP system.

Radar observations can be categorized in two main types; re�ectivity and wind. This work aims at pro-
viding radar re�ectivity data to the next generation NWP system, HARMONIE, using the 3DVAR (three-
dimensional variational) assimilation technique. The use of the radial wind data from the radars is considered
in another sub-project.

There are several ways to assimilate radar re�ectivity observations in NWP models. The main approaches
in use are nudging, variational analysis and ensemble Kalman �ltering. Re�ectivity observations requires a
complicated observation operator including moist physics. A nice overview of the di�erent approaches on
the use of radar observations can be found in [1].

Chapter 2 describes the methods used: Model setup, radar data handling, and some limitations in the
setup. Chapter 3 shows the result of several test experiments: Single observation experiments, single pro�le
experiments, evaluation of the radar simulator, a case and impact studies. Concluding remarks are presented
in Chapter 4.

1

http://yr.no/radar/
http://yr.no/radar/




Chapter 2

Method and data

Weather radars belong to active remote sensing devices, which means that they scan the atmosphere by
sending out and detecting parts of the back-scattered electromagnetic pulses. The electromagnetic frequency
is tuned so that the pulses are re�ected by precipitating particles, such as rain, snow, graupel, cloud ice,
etc. Since the radar scans its surroundings at di�erent elevations, it collects information from the detectable
re�ectivity at di�erent distances from the radar site. By scanning all azimuth angles, and several elevations,
we get a dataset of the re�ectivity of the volume around the radar. Typically, the radial range is around
240 km for re�ectivity. The altitude can reach 10�15 km, and the resolution is typically given by bin sizes
equal or less than 1 km. Re�ectivity is measured in units of dBZ; decibel Z. Details on how weather radars
function can be found in e.g. [2].

The relationship between the re�ectivity measurements and the model control variables is very complex.
Therefore, the existing data assimilation techniques cannot be used directly to assimilate the radar re�ectivity
data. So, alternative approaches are needed. We follow a method developed by Météo-France [3, 4, 5],
which consists of combining 1D Bayesian and 3D-variational assimilation schemes, where re�ectivity data
is assimilated as unidimensional (1D) humidity retrievals into the three-dimensional (3DVAR) assimilation
system.

2.1 HARMONIE/AROME

The operational NWP system at met.no is currently HIRLAM1, which is a hydrostatic model that treats
convection implicitly. Non-hydrostatic quasi-convection resolving models can potentially give a better
description of the dynamical processes on the �ne scale. This is often of great interest for the users.
HARMONIE/AROME is developed with this goal, and will be the successor of HIRLAM. However, adapta-
tion to the Norwegian climate and topography is needed, both for radar observations [6, 7] and for the
model itself, in addition to technical adjustments for running the model on local HPC facilities. The
HARMONIE assimilation and forecast system currently runs in experimental mode at met.no. Its non-
hydrostatic version is based on the AROME meso-scale model [8]. The assimilation system includes a surface
Optimal Interpolation scheme to update soil moisture content and skin temperature �elds, and an upper-air
spectral three-dimensional variational (3DVAR) data assimilation system to analyze wind, temperature,
speci�c humidity and surface pressure �elds. It supports conventional observations from ground- and
sea-based stations (SYNOP and SHIP), wind pro�lers (PILOT), radiosondes (TEMP), aircraft reports
(AIREP), oceanographic buoys (DRIBU), atmospheric motion vectors (AMV). It also supports assimilation
of microwave radiances from AMSU-A, AMSU-B (Advanced Microwave Sounding Unit) and MHS (Microwave
Humidity Sounder) from the NOAA (National Oceanic and Atmospheric Administration) series and the
MetOp polar-orbiting satellites, as well as the Infrared Atmospheric Sounding Interferometer (IASI). The
background-error covariances are calculated from ensemble global perturbed analyses [9] downscaled to the
regional domain and projected to a 6-hour forecast [10]. The balances are purely statistical, and estimated
through multi-variate linear regression [11].

1The community developing and using the HIRLAM and HARMONIE NWP systems, also goes by the name HIRLAM. The
HIRLAM consortium consists of the meteorological institutes DMI, EMHI, FMI, VI, Met Eireann, KNMI, AEMET, SMHI,
LHMS and met.no, and is also collaborating with members of the ALADIN consortium, which includes Météo-France.
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2.2 Radar data assimilation

It is essential that the NWP model starts out from an initial state that is as close as possible to the
corresponding true atmospheric state in order to get a good quality of forecasts. The process of objectively
adapting the model state to observations in a statistically optimal way, is called assimilation. It takes into
account both the model and the observation errors.

The information contained in the re�ectivity images retrieved from the radars, is of very high spatial
resolution compared to conventional observations. But the NWP model cannot use the volume data directly,
since re�ectivity is not a model parameter. Instead, the re�ectivity needs to be converted to a quantity
that can be assimilated into the system, and in turn re-initialize the model control variables. In AROME,
the physics package used by HARMONIE in this work, the model variables are temperature, pressure,
wind (three components), speci�c humidity (i.e. water vapor), turbulent kinetic energy, cloud fraction, and
�ve condensed water species; three of them are precipitating (rain, snow, graupel (i.e. ice water mixed
particles)), and two are virtually non-precipitating (cloud liquid water, cloud ice) [12]. In addition, several
two-dimensional variables are computed in the surface layer and the soil. Re�ectivity is assimilated as
humidity pro�les.

2.3 Assimilation of radar data through pseudo-observations

It is di�cult to assimilate re�ectivity directly into the model variables. Therefore, we have made the choice,
although re�ectivity directly depends on the hydrometeor content of the air, to not include those hydrometeor
contents in the 3DVAR control variables. Moreover, initialization of those species is expected to have less
signi�cant impact on forecasts [3].

Variables such as humidity and temperature are expected to have great impact. Therefore, a 1D retrieval of
humidity columns from re�ectivity columns is performed. The retrieved humidity columns are then provided
as pseudo-observations to the 3DVAR assimilation system.

A 1D Bayesian approach is used in the retrieval, as opposed to a full 1DVAR, which would require the tangent-
linear and adjoint of the physical parameterizations. Because of the very non-linearity of the re�ectivity
forward operator, the latter could lead to convergence problems.

In the 1D Bayesian scheme, the observed re�ectivity is compared with the model's �rst guess. This
comparison requires the model parameters to be translated into simulated re�ectivity. This is done by
the forward operator, H(x), which in the case of re�ectivity is highly non-linear.

More on the 1D Bayesian method can be found in [5, 3] and on the radar simulator in [13]. One of the bene�ts
of the method is that it is computationally feasible, while the main drawbacks are that if e.g. convective cells
are observed at locations where the model background have no such cells in near vicinity, the method will
not be able to create representative pseudo-observations of humidity. This is compensated by a �humidity
adjustment�, raising the value of relative humidity to 100%, for more details see [5].

2.3.1 Pre-processing and quality �ags

In addition to the quality control done by the radar hardware/software on site, a lot of e�ort is put into
re�ning the radar products further. This is done by e.g. adding quality �ags for each pixel of data, based
on various techniques. At met.no, the versatile and modular PRORAD framework at the Remote Sensing
division, takes care of this [7]. Quality control algorithms implemented in the PRORAD framework within
this project are described in [6, 14].

Currently, PRORAD support quality �ags for sea-clutter, ground-clutter and other-clutter (i.e. boats etc.),
classi�cation �ags, and indicators to whether a pixel contains an observation or not. The full list of quality
�ags is shown in Table 2.1.

PRORAD stores re�ectivity data and quality �ags in an XML format called PRORAD XML. These �les
constitute the best achievable re�ned product from the Norwegian radar network. But before it can be
used in the HARMONIE system, it must be converted to a format recognized by the observation processing
module (BATOR). The development of such a conversion program was initiated in sub-project 2.1, and is
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Table 2.1: Quality �ags in PRORAD

Flag Meaning
is_nodata Pixel contains no data (e.g. out of range)
is_lowele Used for PCAPPI product
is_highele Used for PCAPPI product
is_blocked Pixel is blocked (by e.g. mountain)
block_percent Percentage of blockade
is_seaclutter Pixel is polluted by sea-clutter
is_groundclutter Pixel is polluted by ground-clutter
is_otherclutter Pixel is polluted by other clutter
clutter_probability Probability of given clutter type

called CONRAD [15, 16, 17]. It has been further developed and improved within sub-project 2.2 in order to
comply with changes in both ends of the data chain.

The data �ow is illustrated in Figure 2.1. When the observations are in the ODB (Observational DataBase),
they are ready for use by the assimilation system.

File conversion

HARMONIE

PRORAD
C library

PRORAD
XML

F
o
rt
ra
n

w
ra
p
p
er CONRAD

Fortran 95

Météo-France
BUFR

BATOR

ODB

Figure 2.1: A schematic overview of the data �ow of the Norwegian radar data into the NWP system.

Chapter 3 describes how the accuracy of the preprocessing and the analysis systems was progressively checked
and tested.

2.3.2 Assumptions and approximations

There are several assumptions and approximations in the treatment of the radar data. Already at the radar
site, the radar software makes a number of assumptions about the earth curvature, the weather dependent
refraction of the radar beam (ducting), and the actual strength of the echo, to mention a few.

The shape of the earth is assumed to be spherical, although this is not the case. Also, since the electromag-
netic pulse is propagating through air layers of di�erent density, the beam will be subject to refraction. To
compensate for this, an e�ective radius of 4/3 of the equatorial radius of the earth is used.

Furthermore, data interpolation is needed in the process of converting the data between the di�erent �le
formats. The native PRORAD XML format is polar volumetric data, while the BUFR �le reader in
HARMONIE, named �BATOR�, demands2 cartesian PPIs with pixel dimension 512×512.

2This is subject to change in the future. Support for polar data in BATOR is in the making.
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On the NWP side, certain approximations are taken when the volume of re�ectivities is converted into
columns of humidity pseudo-observations: Although the volume is represented as consecutive slices of PPIs,
they do not map pixel-by-pixel vertically, due to geometrical reasons. This e�ect is strengthen by the earth
curvature. In BATOR it is, however, taken as an approximation that the latitude/longitude position of
pixels in the �rst elevation is valid also for pixels in higher elevations with the same row/column position in
the dataset. In principle, this means that the far out columns of humidity will tilt towards the radar site,
while they are used as true vertical pro�les in the assimilation. The mismatch will be biggest farthest away
from the radar, for the highest elevations.

Another limitation of the current setup, is that the forward operator, HZ(x), calculating simulated re�ec-
tivity, does not take into account the blockage map for the Norwegian radars. It is therefore assuming clear
sight for all radars, which is not the case. This can lead to problems with simulated observations in partially
blocked spots.

6



Chapter 3

Results

Radar re�ectivity data is assimilated as vertical pro�les of humidity, and it is therefore of great importance
to know how the system reacts on injections of such (pseudo-)observations. How does the background
error covariance in�uence the various other control variables, are the increments realistic, etc. This is
covered in Section 3.2. In Section 3.3 and 3.4 re�ectivity observations are considered. The radar re�ectivity
operator (radar simulator) is investigated in Section 3.5 using full volumetric input data. A case study (with
veri�cation data) is given in Section 3.6, and concluding remarks can be found in Chapter 4.

3.1 Image orientation

A small test image was prepared in order to verify that the orientation of the radar picture is not altered in the
conversion chain. Correspondence is shown in Figure 3.1. The raw data image was arti�cially created, saved
as a PRORAD XML, converted by CONRAD to the Météo-France BUFR format, sent through BATOR
and ended in the ODB ready for assimilation by HARMONIE. The data was thinned in the process, so only
every �fth re�ectivity value is available in the ODB. Also, there is a cut-o� in BATOR, accepting only data
up to a radial distance of 160 km. In Figure 3.1b and 3.1c, data as retrieved from ODB is presented, showing
that the structure and orientation of the raw data (Figure 3.1a) is kept in the process.

(a) Pixel values in raw data (radial
range ∼240 km)

(b) dBZ values retrieved from ODB, seen
from above (radial range ∼160 km)

(c) dBZ values retrieved from ODB, 3D
view (radial range ∼160 km)

Figure 3.1: Veri�cation of picture orientation, comparing PPIs (Plan Position Indicator) of (a) raw input data
and (b,c) as obtained from the ODB (Observational database). Note that the color maps do not
correspond, and that the radial range is di�erent in (a) and (b,c).
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3.2 Single humidity pro�le observation experiment

In this section, the results of a single humidity pro�le experiments is reported.

A single humidity pro�le located at lat 58.87000N, lon 5.67000E (encoded as radiosonde data from WMO ID
01415, valid at 2010-09-09 hour 12) has been assimilated to investigate the model response. The experiment
was run with HARMONIE 36h1.1, using AROME with 2.5 km resolution over an area covering a large part
of south of Norway (NORWAY_SOUTH_BIG). The location is shown in Figure 3.2.

Figure 3.2: Location of the single pro�le of humidity observation.

Being the only observation assimilated, it is possible to compare the analysis to the models ��rst guess� in
order to see how the assimilation process and the background error covariances performs.

3.2.1 Wind component in upper air

By extracting vertical cross-sections of �analysis minus �rst guess�, it was discovered a problem in the
increments of the V component of the wind. In Figure 3.3, this problem is shown. The vertical cross-
sections correspond to the lines indicated in Figure 3.2.

There were no indication of errors on e.g. the wind U component. It turned out that there was a problem
in the AROME code, and a �x was provided, yielding satisfactory increments when the experiment was
rerun. Plots for comparison of the V component increments of the wind with and without the bug is given
in Figure 3.4. This bug would probably have caused the model to drift o� severely, and destroyed the entire
forecast. The bug�x is implemented in all following radar data experiments.

3.2.2 Background error correlations

The background error covariance matrix B [18] plays an important role in projecting and spreading the
departure (observation minus �rst-guess) information from the observation space to the model grids. To
evaluate the accuracy of the estimated background error covariance matrix, a single observation experiment
was performed.1 Comparison of the �rst-guess to the analysis, in this way, shows how the single observation
was taken into account � the spread was performed � during the objective analysis (3DVAR), as well as
to what extend the balance between the control variables exists. This means when a humidity observation
pro�le is assimilated, it will alter not only the humidity variables in the model, but also e.g. the temperature
T , the wind components U , V , etc. In our example a single pro�le was assimilated. It turned out, that the
background error statistics �rst used, gave far too narrow humidity increments. A new background error

1The experiments were run using HARMONIE 36h1.1 with the wind �x patch from Météo-France.
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(a) East-west (b) North-south

(c) NorthWest-SouthEast (d) SouthWest-NorthEast

Figure 3.3: Cross-sections the wind V component increments, for single pro�le observation of humidity. The
vertical cross-sections correspond to the lines indicated in Figure 3.2. Equidistance is 1 · 10−1. One
can clearly see strange behavior in the stratosphere, next to the model top, 30-10 hPa.

statistics dataset was calculated, yielding better results. Figure 3.5 shows the di�erences. In Figure 3.5a
and 3.5c, the increments are weak compared to Figure 3.5b and 3.5d (notice the di�erent equidistance).

The narrow increments of humidity is clearly seen in BEC1 Figure 3.5a as compared to BEC2 in Figure 3.5b.

The di�erence between BEC1 and BEC2 is that BEC1 was estimated with lateral boundary conditions
(LBCs) from a limited-area model (at 5.5 km horizontal resolution), and with lower frequency than in the
BEC2. The BEC2 was computed as described in Section 2.1. So, while in BEC2 the in�uence of LBCs is
well taken into account, in BEC1 it was almost constant along the model integration. In the case of BEC1
the in�uence is mostly in the analysis of small-scales (see [10] for more details). We found the BEC2 to be
the most reasonable, and decided to use it in all subsequent radar assimilation experiments.

9



(a) With bug (NorthWest-SouthEast) (b) With �x (NorthWest-SouthEast)

Figure 3.4: Cross-sections of the wind V component increments, from the single humidity pro�le experiment; (a)
with bug, (b) bug �xed. Equidistance shown is 5 · 10−2.
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(a) BEC1: Narrow increments of humidity, Q,
equidistance 1 · 10−5.

(b) BEC2: Broader and stronger increments of humid-
ity, Q, equidistance 1 · 10−4.

(c) BEC1: Increments in temperature, T , equidistance 1 ·10−2. (d) BEC2: Increments in temperature, T , equidistance 1·10−1.

Figure 3.5: Performance of the two background error covariances BEC1 and BEC2 when assimilating one single
humidity pro�le. The vertical pro�les shows the di�erences between the analysis and the model's �rst
guess is plotted for (a) BEC1 showing narrow increments, (b) BEC2 showing broader and stronger
increments (which is the one preferred). Corresponding plots for temperature T in (c) and (d).
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3.3 Single re�ectivity observation experiment

(a) Speci�c humidity, Q.
Equidistance: 1 · 10−5.

(b) Temperature, T . Level 43.
Equidistance: 1 · 10−2.

(c) Wind U component. Level
54. Equidist.: 2.5 · 10−3.

(d) Wind V component. Level
54. Equidist.: 2.5 · 10−3.

Figure 3.6: Plots of model levels of the analysis increments for the single re�ectivity observation.

In light of the satisfactory results on the single humidity pro�le and the background error statistics in
Section 3.2, a new experiment was conducted with one single re�ectivity observation, utilizing BEC2. Since
re�ectivity is converted to relative humidity before the 3DVAR assimilation step, this experiment is meant
to test the performance of such a process, in conjunction with the background error statistics itself.

The results are shown in Figure 3.6 (speci�c humidity Q, temperature T , wind U and V component).
Cross sections are shown in Figure 3.7 (speci�c humidity2), Figure 3.8 (wind U component), and Figure 3.9
(temperature T ).

Both the increments and the balances with respect to wind and temperature seems acceptable.

2The observant reader will notice that Rudolph the red-nosed reindeer can be seen in that image.
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(a) East-west (b) North-south

(c) NorthWest-SouthEast (d) SouthWest-NorthEast

Figure 3.7: Cross-sections of analysis increments on speci�c humidity Q for the single re�ectivity observation. The
vertical cross-sections correspond to the lines indicated in Figure 3.6a. Equidistance is 1 · 10−5.
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(a) East-west (b) North-south

(c) NorthWest-SouthEast (d) SouthWest-NorthEast

Figure 3.8: Cross-sections of analysis increments on wind U component for the single re�ectivity observation. The
vertical cross-sections correspond to the lines indicated in Figure 3.6a. Equidistance is 1 · 10−3.
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(a) East-west (b) North-south

(c) NorthWest-SouthEast (d) SouthWest-NorthEast

Figure 3.9: Cross-sections of analysis increments on temperature T for the single re�ectivity observation. The
vertical cross-sections correspond to the lines indicated in Figure 3.6a. Equidistance is 1 · 10−2.
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3.4 Single re�ectivity pro�le experiment

A similar experiment as that in Section 3.3 was performed, assimilating a single vertical pro�le of re�ectivity
rather than a single pixel value.

The results are shown in Figures 3.10, 3.11 and 3.12. From the plots, it can be seen that only one strong
increment was achieved, as it is hard to �nd a pro�le where all data points are taken into account at the same
time. So, although it looks as if a single data point was ingested, the system was given a full observation
pro�le. The results were found to be satisfactory.

(a) Speci�c humidity, Q. Level 53.
Equidistance: 1 · 5−5.

(b) Temperature, T . Level 55. Equidis-
tance: 1 · 10−2.

(c) Wind U component. Level 46.
Equidistance: 5 · 10−3.

Figure 3.10: Plots of model levels of analysis increments for the single re�ectivity pro�le experiment.
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(a) East-west (b) North-south

(c) NorthWest-SouthEast (d) SouthWest-NorthEast

Figure 3.11: Cross-sections of analysis increments on speci�c humidity Q for the single re�ectivity pro�le obser-
vation. The vertical cross-sections correspond to the lines indicated in Figure 3.10c. Equidistance is
5 · 10−5.
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(a) East-west (b) North-south

(c) NorthWest-SouthEast (d) SouthWest-NorthEast

Figure 3.12: Cross-sections of analysis increments on the wind U component for the single re�ectivity pro�le ob-
servation. The vertical cross-sections correspond to the lines indicated in Figure 3.10c. Equidistance
is 5 · 10−3.
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3.5 Evaluation of the radar re�ectivity operator with 3D volume
radar data

In this section, the radar simulator and inversion process is evaluated. Harmonie 36h1.4 has been used, and
the experiments have been run at the ECMWF HPC facility.

3.5.1 Raw evaluation of the radar re�ectivity simulator

The radar simulator, which computes simulated re�ectivities based on hydrometeor contents in the model
background, has been evaluated by running several tests with re�ectivity assimilation. This has been done
in Harmonie version 36h1.4. Figure 3.13 shows a scatter plot of observed vs. simulated re�ectivity based
on three cycles in a weather situation containing both dry and wet conditions. Note that this output is
taken before weighting each re�ectivity pro�le against neighboring pro�les, and as such, it does not directly
re�ect the output of the 1D Bayesian method. Rather, this plot is meant to give a raw measure of the radar
simulator. One should also note certain special values in the plot, indicated by colors:

• Blue triangles indicates values where the simulator has not found enough hydrometeors in the model
background, and set the dBZ value to noise level (arbitrarily chosen to -120 dBZ).

• Orange crosses indicates values where the observed re�ectivity itself has been reset to 0 dBZ. This is
done to indicate lack of precipitation in both model background and observation.

• Purple plus signs indicates values where the observed and simulated re�ectivities are identical. This
is arti�cial, and as one can see, it only happens for values < 0 dBZ, which in any case indicates clear
sky, i.e. no precipitation.

The identity line is given in gray, and so are also two vertical lines located at -10.5 dBZ (lowest possible
observed value that can be represented in BATOR) and 0 dBZ (used internally to represent clear sky).

The black points show a certain increased density around the identity, but it is clear that the spread is rather
large. Such plots are naturally very sensitive to the weather situation, and three cycles as shown here is not
enough to draw conclusions. A more robust investigation is given in the next section.

3.5.2 Evaluation of the retrieved relative humidity

Test experiments with assimilation of radar re�ectivity from �ve radars in the south of Norway were
conducted with Harmonie 36h1.4, cycling of data at 6 h intervals, and monitoring of observation usage.
Daily precipitation maps for selected days are shown in Figure 3.14.

Scatter plots of observed vs. simulated re�ectivity, and pseudo-observation vs. model background of relative
humidity using data from four cycles each are shown for a period with heavy rain in Figure 3.15a and 3.15b
(2011-09-06, hour 00, 06, 12, 18), and less rainy in Figure 3.15c and 3.15d (2011-09-07, hour 00, 06, 12, 18).
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Figure 3.13: Scatter plot of observed re�ectivity (dBZ) vs. simulated re�ectivity (dBZ). Raw values taken before
the 1D Bayesian inversion. Data from three cycles, thinned to 2000 points. See text for explanation.

(a) Precipitation
2011-09-06 06:00 UTC � 2011-09-07 06:00 UTC

(b) Precipitation
2011-09-07 06:00 UTC � 2011-09-08 06:00 UTC

Figure 3.14: Precipitation previous day (24 hour accumulated, as of 06:00 UTC given date).
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(a) 2011-09-06: Observed re�ectivity (dBZ) vs. simulated
re�ectivity (dBZ), thinned to 8000 points.
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(b) 2011-09-06: Relative humidity (RH) pseudo-observations
(retrieved RH) (%) vs. model background (�rst guess) RH
(%). Thinned to 8000 points.
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(c) 2011-09-07: Observed re�ectivity (dBZ) vs. simulated
re�ectivity (dBZ), thinned to 8000 points.
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(d) 2011-09-07: Relative humidity (RH) pseudo-observations
(retrieved RH) (%) vs. model background (�rst guess) RH
(%). Thinned to 8000 points.

Figure 3.15: Scatter plot of (pseudo-)observation vs. (simulated) model background. Active values, i.e. after the
1D Bayesian inversion, are circled in red. Data from four cycles at 2011-09-06 (upper, heavy rain),
and 2011-09-07 (lower, less rainy). See text for explanation.
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3.6 Case study

This section presents a case study with assimilation of radar re�ectivity data for the �ve southernmost radars
(WMOID in parentheses): Radar Rissa (01247), Stad (01206), Bømlo (01405), Hægebostad (01438), and
Hurum (01498).

All radars were quality controlled and �agged for sea-clutter, and �other-clutter�. None of the radars
contained �ags for beam blockage.

The period considered is 2011-09-01�2011-09-09-12. Two experiments have been run in parallel, HAR25EXP_CTRL
and HAR25EXP_RADAR, both cycling data at 6 h intervals with Harmonie 36h1.4, with identical con�guration
(boundaries from ECMWF, 3DVAR, observations; SYNOP, aircraft, buoy, TEMP(SHIP), PILOT), except
for inclusion of radar re�ectivity observation in one of them. See Figure 3.16b for the domain. Figure 3.17
shows the number of active humidity observations derived from radar re�ectivity in the period. The weather
conditions were rather dry in the domain the �rst day, with a precipitating system entering late September
2.

In Figure 3.16, an example of how the radar experiment is able to both dry and moist the model is shown.

(a) Observed re�ectivity at analysis time (Pseudo-
CAPPI, i.e. re�ectivity at about 500-700m)

(b) Analysis minus �rst guess (model background) in
relative humidity (RH) at model level 31

Figure 3.16: Analysis increments for HAR25EXP_RADAR. We can see that assimilation of radar re�ectivity is
increasing/decreasing relative humidity at appropriate places. Note that the pseudo-CAPPI plot
does not re�ect the full volume of observed re�ectivity (which is used in the assimilation).

3.6.1 Veri�cation scores

Figure 3.18 shows the weekly precipitation in southern Norway, last week from 2011-09-09. The veri�cation
scores compare the two models against all automatic ground stations in the domain that record hourly
precipitation, pressure, temperature and wind, in total maximum 68 stations. Veri�cation scores for hourly
precipitation are given in Figure 3.19. Although only about 10 days (four assimilation times each day) are
included in the statistics, we can see that assimilation of radar re�ectivity observations consistently gives
slightly better results. Figure 3.20 shows veri�cation measures as a function of lead time up to six hours for
pressure, temperature, wind and hourly precipitation.

A signi�cance analysis (90% signi�cance level) has also been carried out, and results for surface pressure,
12 h accumulated precipitation, relative humidity and temperature are given in Figure 3.21. These are in
accordance with previous plots, showing a signi�cant (i.e. not at random) improvement the �rst hours for
surface pressure, precipitation and temperature. Note that the results here go up to +48 h, whereas the pre-
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(a) Hour 00 (b) Hour 06

(c) Hour 12 (d) Hour 18

Figure 3.17: Active humidity observations derived from radar re�ectivity data. The domain is given in
Figure 3.16b.

vious �gures in the section only go to +6h. The values are given as HAR25EXP_CTRL minus HAR25EXP_RADAR,
so positive values are in favor of the experiment with radar data assimilation. For e.g. precipitation, we can
see a positive impact until +36 hours. This is near the predictability limit, and one should also take into
account that the model domain is rather small (see Figure 3.16b). A larger domain, and a longer time series,
could potentially improve these scores.
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Figure 3.18: Weekly precipitation in southern Norway, previous week from 2011-09-09.
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Figure 3.19: Scores for 1 h accumulated precipitation for di�erent lead times. In the lower panels scores which
summarize the upper panels are shown. Higher score is better, which shows consistently better results
for the radar experiment (line in red) than the control experiment (thin dash-dotted line in blue).
(Continued)
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Figure 3.19: (Continued:) Scores for 1 h accumulated precipitation.
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Figure 3.20: Mean Error (ME), Standard Deviation Error (SDE), Root Mean Square Error (RMSE), and Mean
Absolute Error (MAE) for the given parameters. The radar experiment is given in red, and the control
experiment in thin dash-dotted blue line. The results are better when the values are approaching
zero. (Continued.)
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Figure 3.20: (Continued:) Mean Error (ME), Standard Deviation Error (SDE), Root Mean Square Error (RMSE),
and Mean Absolute Error (MAE) for the given parameters. The radar experiment is given in red,
and the control experiment in thin dash-dotted blue line. The results are better when the values are
approaching zero.
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(a) Surface pressure (PS) (b) Precipitation (12 h accumulated)

(c) Relative humidity (RH) (d) Temperature

Figure 3.21: Normalized di�erence in RMSE in given parameters. Note that this is CTRL minus RADAR, so
positive numbers are in favor of radar assimilation. Period 2011-09-01�2011-09-12, forecast length
+48 h. Signi�cance level 90%.

29





Chapter 4

Concluding remarks

We have demonstrated a fully functional conversion tool, CONRAD, that successfully transfers Norwegian
radar observations all the way from the local format, via Météo-France BUFR, BATOR, ODB and to the
assimilation system in HARMONIE.

The model response to such observations has been carefully investigated in terms of single (pro�le) obser-
vation experiments. A problem in the AROME code was discovered and patched, and it was settled for a
satisfactory background error statistics dataset.

Verifying the model performance with radar re�ectivity against the surface observations lead to the following
statements i) from the assimilation point of view, radar re�ectivity improves signi�cantly the forecast up
to six hours, i.e. produces better �rst guess for the assimilation system, ii) in overall, radar re�ectivity
improves the forecast up to 12-36 hours depending on the veri�ed parameter. For example 2m temperature
is improved until +30 h, precipitation improves the forecast until +36 h and surface pressure until +18 hours.

It should be noted that the experiments were run for a relatively short period and in a relatively small
domain, which a�ects the impact on longer lead times, as shown in the results.

Although in the speci�c cases presented, which demonstrated that the system is able to moisten and dry
the analysis consistently, it would be of interest to extend the test period and investigate a heterogeneous
background error statistics [19], where dry and moist air are considered separately.
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Glossary

1DVAR One dimensional variational (data assimilation). 4

3DVAR Three dimensional variational (data assimilation). 1, 3, 4, 8, 22

AEMET Spanish State Meteorological Agency. 3

ALADIN The community using and developing the ALADIN NWP framework. i, 3

ALADIN �Aire Limitée, Adaptation dynamique, Développement INternational� (Limited Area, Dynamic
Adaptation, International Development) � A limited area-version of ARPEGE/IFS. 35

AROME �Application of Research to Operations at MesoscalE�. A non-hydrostatic meso-scale NWP model
with a sophisticated physical parameterization package. Started in 2000 at Météo-France. 1, 3, 4, 8,
a, 31

BATOR A tool for feeding the ODB with observations read from (BUFR) �les. Part of HARMONIE. 4�7,
19, 31

BUFR �Binary Universal Form for Representation of meteorological data�. A binary data format main-
tained by WMO. i, 5, 7, 31, 35

CAPPI Constant Altitude Plan Position Indicator (Constant Altitude PPI). A radar display which gives
a horizontal cross-section of data at constant altitude. 36

CONRAD CONversion of RAdar Data. A tool for converting e.g. PRORAD XML to BUFR. 5, 7, 31

dBZ Decibels of Z; a meteorological measure of equivalent re�ectivity (Z) of a radar signal re�ected o� a
remote object. 3

DMI Danish Meteorological Institute. 3

ECMWF The European Centre for Medium-Range Weather Forecasts (ECMWF). An intergovernmental
organization supported by 34 states, based in Reading, UK. i, 19, 22

EMHI Estonian Meteorological Institute. 3

FMI Finnish Meteorological Institute. 3

HARMONIE �HIRLAM ALADIN Regional Meso-scale Operational NWP In Europe�. The next genera-
tion NWP system developed by the HIRLAM consortium. i, 1, 3�5, 7, 8, a, 31, 35, 36

HIRLAM The community using and developing the NWP framework HIRLAM and HARMONIE. i, 3, 35

HIRLAM �HIgh Resolution Limited Area Model�, a NWP system used by the HIRLAM community. 3, 35

HPC High-performance computing: Supercomputers or computer clusters. 3, 19

KNMI Royal Netherlands Meteorological Institute. 3
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LAM Local Area Model. 1

LBC Lateral Boundary Condition. 9

LHMS Lithuanian Hydrometeorological Service. 3

Météo-France French national meteorological service. 3

Met Eireann Irish Meteorological Service. 3

met.no The Norwegian Meteorological Institute. 3, 4

NWP Numerical Weather Prediction. 1, 3, 4, 6, 35

ODB Observational DataBase: Database holding all observations in the HARMONIE system. Can mimic
relational database queries through its ODB/SQL-compiler. 5, 7, 31

OMSZ The Hungarian Meteorological Service. i

PCAPPI Pseudo Constant Altitude Plan Position Indicator (Pseudo-CAPPI). An extended CAPPI, where
the lowest elevation is used to �ll in data at long distances, and highest elevation is used to �ll in data
close to the radar site. 5

PPI Plan Position Indicator. A 2D display of the airspace around a radar site for a given elevation. 5, 6,
35

PRORAD PROduction system for RADar data. 4

PRORAD XML File format used by PRORAD. Supports cartesian and polar PPI, and polar volume
data.. 4, 5, 7, 35

SMHI Swedish meteorological and Hydrological Institute. 3

SYNOP Surface synoptic observations. 3

VI Icelandic Meteorological O�ce. 3

WMO World Meteorological Organization. 35

XML EXtensible Markup Language. 4
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