
Report no. 3/2012
Oceanography

ISSN: 1503-8025
Oslo, February 9, 2012

Documentation of simple ocean models
for use in ensemble predictions

Part I: Theory

Lars Petter Røed

x

y

z

ρ0
H(x,y)

h(x,y, t)
u(x,y, t)

η(x,y, t)

∂tη +∇H ·U = 0,

∂tU+∇H · ( UU
H +η

)+ f k ×U+P =
∆τττ
ρ0

+A∇2
HU,





report
Number Subject Date Classification ISSN

3/2012 Oceanography February 9, 2012 ⊠ Open
� Restricted
� Confidential

1503-8025

Title

Documentation of simple ocean models for use in ensemble predictions

Part I: Theory

Authors

Lars Petter Røed

Client(s) Client reference

Statoil (Kenneth Eik Johannessen) Contract No. 4502367955

Abstract

We envisage the use of the Graphical Processor Units rather than conventional Central Processing
Units as future tools for numerical ocean weather prediction. As a pilot we first consider implemen-
tation of simple ocean models. The models we consider belongs to a class of models referred to
as shallow water equations. Here we consider in particular linear and non-linear versions of three
models, namely, a one-layer model, a 11

2-layer model and a two-layer model. Even today these
models are in use, e.g., to predict storm surges. In Part I we present the governing equation of the
three models, and develop a set of conditionally stable, finite difference equations based on finite
difference approximations of the various terms entering the governing equations of the one-layer
model. The finite difference equations for both the linear and the non-linear versions are presented.
In Part II we present the numerical solution to several benchmark cases, together with the associated
source code written in the FORTRAN language.

Keywords

Physical Oceanography, Numerical Modeling, Shallow waterequations, Benchmark solu-
tions

Disiplinary signature Responsible signature

Lars Anders Breivik, Head Ocean and Ice Øystein Hov, Head R&DDepartment

Postal address
PO Box 43 Blindern
N-0313 Oslo
Norway

Office
Niels Henrik Abels vei 40

Telephone
+47 2296 3000

Telefax
+47 2296 3050

e-mail: met.inst@met.no
Web: met.no

Bank account
7695 05 00601

Swift code
DNBANOKK





Contents Contents

Contents

1 Introduction 1

2 Mathematical formulation 2
2.1 The RANS equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . .. . . . . 4
2.3 The hydrostatic and Boussinesq approximations . . . . . . .. . . . . . . . . 4

2.3.1 The hydrostatic approximation . . . . . . . . . . . . . . . . . . .. . 4
2.3.2 The Boussinesq approximation . . . . . . . . . . . . . . . . . . . .. 5

2.4 The Boussinesq ocean model . . . . . . . . . . . . . . . . . . . . . . . . .. 6
2.5 The one-layer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 The two-layer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 The 112-layer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Finite difference formulation 13
3.1 Linear version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Non-linear version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

4 Summary of the FDEs 19
4.1 Linear version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Non-linear version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.3 Numerical stability condition . . . . . . . . . . . . . . . . . . . . .. . . . . 21
4.4 Implementation of boundary conditions . . . . . . . . . . . . . .. . . . . . 22

4.4.1 Closed boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Open boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Summary and final remarks 24

References 25

i



List of Figures List of Figures

List of Figures

1 The equation of state for the ocean. Dotted curves show isolines of density
as a function of salinity (horizontal axis) and potential temperature (vertical
axis) for a fixed reference pressure (here = 0 dbars). Numberson curves in-
dicate density inσt units whereσt = ρ −1000 kg/m3. Dashed line denotes
the freezing point of sea water. Note that for low temperatures (temperatures
close to the freezing point of sea water) the density is closeto being a function
of salinity alone, while the importance of temperature increases with increas-
ing temperature. Due to the non-linear nature of the equation of state for sea
water two parcels of water having different temperatures and salinities may
still have the same density as for instance the two square points markedA and
B alongσt = 20.6 kg/m3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Sketch of a one layer, barotropic model conveniently showing some of the
notation. Note thath= h(x,y, t) = η(x,y, t)+H(x,y). . . . . . . . . . . . . . 7

3 Sketch of a two-layer ocean model of thicknessesh = h(x,y, t) and h2 =
h2(x,y, t) and densitiesρ −∆ρ andρ0, respectively. We note thath= H +η
while h2 = H2+ζ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 As Figure 3. The figure illustrates the difference between apurely barotropic
response (upper panel) and a purely baroclinic response (lower panel) for a
two-layer model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Displayed is the spatial grid and grid cells we use to solve (64) - (66) by
numerical means. The grid increments are∆x,∆y, respectively in thex,y di-
rections. There is a total ofJ+1×K +1 grid cells along thex- andy-axes,
counted by using the dummy indicesj,k. Circles, (O), correspond toh-, H-
andη-points, horizontal dashes, (−), toU -points, and vertical lines, (|), toV-
points. The point marked with a+ is the position of the pointx j ,yk in grid cell
j,k. The coordinates of theh-, H- andη-points in the grid are thusx j − 1

2∆x
andyk− 1

2∆y as defined in (72). The coordinates of theU -points andV-points
are as specified in (73)-(74), resepctively. . . . . . . . . . . . . .. . . . . . 15

6 Displayed are the cells necessary to account for the no-slip boundary condi-
tions at closed walls. In the sample shown we consider a case with solid walls
in the upper right-hand corner of the grid. The walls are drawn as heavy solid
blue lines. The notation is as in Figure 5, and the nine cells are thus num-
bered accordingly. Note that the cells (JJ,KK − 2), (JJ,KK − 1), (JJ,KK),
(JJ− 1,KK) and (JJ− 2,KK) are outside of the land-sea boundary. As ex-
plained in the text their presence is, however, necessary toaccount for the
no-slip boundary condition of no velocity at the walls. . . . .. . . . . . . . . 16

ii



1 INTRODUCTION

1 Introduction

We describe three simple ocean models for use in ensemble prediction systems. The first of
the three ocean models is a one-layer model featuring a single layer of uniform density as
visualized on the front page. The second is a two-layer oceanmodel featuring two layers of
different, but uniform densities. Finally, we consider theso called 112-layer ocean model. All
three models belong to the class of models commonly referredto as shallow water models.
The models we consider neglect the effect of changes in the the Earth’s rotation with latitude.
The Coriolis parameter is thus considered a constant (so called f -plane models).

The one-layer models were commonly used in the 1970s to predict storm surges, that is,
the sea surface elevation due to atmospheric forcing (Martinsen et al., 1979, and references
therein). The 112-layer and the two-layer models became quite popular early on to study the
upwelling and El Niño phenomena in the ocean (e.g.,Hurlburt et al., 1976;Hurlburt and
J. Dana Thompson, 1976;Busallacchi and O’Brien, 1980;Hurlburt and J. Dana Thomp-
son, 1980;Busallacchi and O’Brien, 1981, and references therein), and later in the 1980s
and 1990s to study instabilities, eddies and jet currents inthe ocean (e.g.,Luther and O’Brien,
1985;Preller, 1986;Heburn, 1988;McCreary and Kundu, 1988;Kindle and Thompson, 1989;
Heburn and LaViolette, 1990;Potemra et al., 1991;Røed, 1995, 1996, 1997;Hackett and
Røed, 1998;Røed, 1999;Røed and Shi, 1999;Shi and Røed, 1999, and references therein).
The two-layer models were also favored by meteorologists inthe 1950s and 1960s to investi-
gate various instability mechanism responsible for the generation of low pressure systems in
the atmosphere (Phillips, 1957;Charney and Stern, 1962).

We note that the 112-layer model is a variant of the two-layer model in which the thickness of
the lower layer is considered to be much larger than the upperlayer thickness. This effectively
filters out the barotropic mode and leaves a purely baroclinic ocean model.

Why do we consider these simple models? Although they are mostly replaced by much
more complex and sophisticated models today that give quiterealistic flow patterns, it turns out
that their forecast skill is still rather poor. As in meteorology, one way to remedy this situation
is to employ data-assimilation. However, in contrast to meteorology, the availability of near
real time observations, except for satellite information,is almost nil. Thus we have to look
elsewhere. One approach that we consider viable is to make usof ensemble predictions. In an
ensemble prediction system (EPS) each member in the ensemble is an equally valid realization
of the forecast. Since there are uncertainties in the initial conditions, model parameters, and
the forcing, we cannot determine which member that gives themost accurate forecast, but at
least we get some information on the uncertainty in the forecast which may be later used to
our advantage.

Running todays complex, three-dimensional ocean models inan EPS is a burdensome task
even for todays supercomputers. Running more than, say 100 members, is almost unthinkable.
Here is where the simpler models comes in. Although the modelerror increases (simpler
models inherently incorporate larger model errors), they run fast and efficient on the computer.
Thus we may increase the number of members in our ensemble dramatically. To this end we
may in addition investigate the use of Graphical ProcessingUnits (GPUs) rather than the
conventional CPUs. GPUs are much faster and require less energy to run. If we are able to
produce the ensemble members utilizing the much faster GPUswe may run literally thousands,
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2 MATHEMATICAL FORMULATION

and even ten thousands of ensemble members. We may also then explore whether producing a
forecast based on thousands of ensemble members using a simple model, that is, introducing
a large model error, gives us better forecasts than running one or a few ensembles with a more
complex model (smaller model errors).

To obtain some overview of the uncertainty inherent in the simple models, we start the
presentation by including how we derive the simple models from the full three-dimensional,
Reynolds Averaged Navier Stokes (RANS) equations (Section2). We also include their asso-
ciated boundary and initial condition necessary to determine the integration constants. Tradi-
tionally we solve the resulting mathematical, continuous differential equations by first replac-
ing them by a set of finite difference equations (FDEs) using finite difference approximations.
This is presented in Section 3, and followed by the formulation of the finite difference equa-
tions (FDEs) themselves (Section 4). Finally, we end with a summary and some final remarks
(Section 5).

We have also implemented the one-layer model on the computerusing the FDEs developed
here, and run several benchmark cases. In this we make use of the programming language
FORTRAN and the computers CPUs. The benchmarks cases, theirsolutions, and the FOR-
TRAN program are presented in Part II (Røed, 2012).

2 Mathematical formulation

2.1 The RANS equations

In the ocean the most prominent dependent variables are the three componentsu,v, andw of
the three-dimensional velocityv, pressurep, densityρ , salinitys, and (potential) temperature
θ1. To determine these unknowns we need an equal number of equations. These equations
are normally referred to as the governing equations since they govern the motion of the two
spheres atmosphere and ocean. In a geophysical fluid dynamic(GFD) contest they are also
often referred to as the Reynolds Average Navier Stokes (RANS) equation in that they average
over the turbulence scale (Griffies, 2004).

Of the variables above only the velocity is a vector. The remaining variables, commonly
referred to as state variables, are all scalars. Note that salinity and temperature influence
the motion via the pressure forcing through the equation of state. The RANS equations are
developed based on conservation principles, in our case theconservation of mass, momentum,
internal energy and salt content. The RANS equations in their non-Boussinesq form governing
oceanic motion are (Gill , 1982;Griffies, 2004)

∂tρ +∇ · (ρv) = 0, (1)

∂t(ρv)+∇ · (ρvv) = −2ρΩ×v−∇p+ρg−∇ · (ρFM), (2)

∂t(ρθ)+∇ · (ρθv) = −∇ · (ρFθ )+ρSθ , (3)

∂t(ρs)+∇ · (ρsv) = −∇ · (ρFs)+ρSs, (4)

ρ = ρ(p,s,θ). (5)

1In the following bold upright fonts, e.g.,u,v, are used to denote a vector, while bold special italic fonts, e.g.,
U ,V , are used to denote tensors
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2 MATHEMATICAL FORMULATION 2.1 The RANS equations
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Figure 1: The equation of state for the ocean. Dotted curves show isolines of density as a
function of salinity (horizontal axis) and potential temperature (vertical axis) for
a fixed reference pressure (here = 0 dbars). Numbers on curvesindicate density
in σt units whereσt = ρ − 1000 kg/m3. Dashed line denotes the freezing point
of sea water. Note that for low temperatures (temperatures close to the freezing
point of sea water) the density is close to being a function ofsalinity alone, while
the importance of temperature increases with increasing temperature. Due to the
non-linear nature of the equation of state for sea water two parcels of water having
different temperatures and salinities may still have the same density as for instance
the two square points markedA andB alongσt = 20.6 kg/m3.

Here we use∂t , ∂x, ∂y, and∂z to denote partial differential with respect to the respective
subscript. Thus∂tρ is the time derivative (or time rate of change) of the density. The tensor
F M and vectorsFs andFθ represent fluxes due to turbulent mixing of momentum, salinity
and temperature, respectively.Ω is the Earth’s rotation rate,g is the gravitational acceleration
andSs andSθ are sources of salinity and heat, if any. Finally, we use∇ to denote the three-
dimensional del-operator defined by

∇ = i∂x+ j∂y+k∂z. (6)

We note that (1) and (2) constitute mass and momentum conservation, respectively, while
conservation of internal energy and salt content gives riseto (3) and (4). Equation (5) is the
equation of state which relates density to pressure, salinity and potential temperature.

It should be noted that the equation of state in the ocean is highly non-linear and hence
cannot be expressed in a formal, closed mathematical form. We may visualize the equation of
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2.2 Boundary and initial conditions 2 MATHEMATICAL FORMULATION

state for the ocean in a so calledθ − s (temperature-salinity) diagram where the salinitys is
drawn along the horizontal axis and the (potential) temperatureθ is drawn along the vertical
axis. Since also pressure enter the equation of state, aθ −s diagram can only be constructed
using a reference pressure. A typical example using the surface pressure as the reference
pressure (p= 0) is displayed in Figure 1.

2.2 Boundary and initial conditions

To solve (1) - (5) we need to specify conditions at the spatialboundaries of the domain, or
theboundary conditions, and we need to know the state of the ocean at a particular time, also
known asinitial conditions.

As an example letη = η(x,y, t) denote the deviation of the sea surface away from its equi-
librium level atz= 0, and letH = H(x,y) be the equilibrium depth of the ocean2. Then the
kinematicboundary condition at the surface is

w= ∂tη +u ·∇Hη at z= η (7)

whereu,w are, respectively, the horizontal and vertical component of the three-dimensional
velocity v, and where∇H = i∂x+ j∂y is the horizontal component of the three-dimensional
del-operator (6). Thedynamicboundary condition at the surface is

pA = pO, at z= η (8)

where pA denotes the atmospheric pressure, andpO the oceanic pressure. The kinematic
boundary condition at the bottom of the ocean is similar to (7), that is,

w=−u ·∇HH at z=−H. (9)

Note that (7) and (9) assumes that the surface and bottom are are impermeable surfaces, that
is, there is no trough-flow across the surface or bottom. We also note that the surface is a
Lagrangian surface, that is, it is allowed to change its position as time progresses.

2.3 The hydrostatic and Boussinesq approximations

2.3.1 The hydrostatic approximation

In the ocean the horizontal scales of the dominant motions are mostly large compared to the
vertical scale. As a consequence the vertical acceleration, Dw/dt3, is small in comparison to
for instance the gravitational accelerationρg. Thus in the vertical component of the momen-
tum equation (2), which reads

∂t(ρw)+∇ · (ρvw) =−∂zp−ρg−∇ · (ρFV
M), (10)

2We assume that the bottom is stationary, that is, does not change in time.
3The operatorDdt is the material derivative, or individual derivative, defined by D

dt = ∂t + v ·∇.
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2 MATHEMATICAL FORMULATION2.3 The hydrostatic and Boussinesq approximations

whereFV
M is the vertical vector component of the mixing tensorF M

4, we may safely neglect
all terms except the gravitational acceleration and the pressure forcing. Thus (10) reduces to a
balance between the latter two, that is,

∂zp=−ρg, (11)

which is thehydrostatic equation.

When we make use of the hydrostatic equation as our vertical component of the momentum
equation, the model is said to behydrostaticand the motion said to satisfy thehydrostatic
approximation. As alluded to the latter approximation relies on the fact that in most cases
the dominant part of the motion, that is, the energetic part is dominated by long waves in
shallow water. Hence the horizontal scales of the motion is significantly longer than the ver-
tical scale. Consequently, both the vertical velocity and its acceleration is small compared to
the gravitational acceleration. The exceptions are cases that include steep topography and/or
strong convection, in which cases one has to revert to non-hydrostatic equations. Assuming
that the vertical motion is small compared to the horizontalmotion also implies that friction
term becomes small as well.

2.3.2 The Boussinesq approximation

Another common approximation employed, and needed to develop the one-layer barotropic
model is theBoussinesq approximation. The fundamental basis for this approximation is the
fact the ocean water is incompressible. This implies that any parcel of fluid conserves its
volume, and that this is true even if the parcel is heated. Thus the Boussinesq approximation
is only true as long as the change in density for any parcel of fluid is small with respect to the
density itself, that is,

1
ρ

Dρ
dt

=
D lnρ

dt
≈ 0, (12)

Under the Boussinesq approximation the approximation (12)is taken as an equality. The mass
conservation (1) then reduces to

∇ ·v = 0. (13)

In practice it turns out that the Boussinesq approximation implies that the density may be
treated as a constant except when it appears together with the gravitational acceleration. Thus
in the two horizontal components of the momentum equation, and in the conservation equation
for internal energy and salt content, the density may be replaced by a reference density, say
ρ0, while in the vertical momentum equation it must be treated as a dependent variable.

4We note that in a Cartesian coordinate system fixed to the Earth’s surface the vertical component of the Coriolis
force is small compared to the gravitational pull. The former is therefore dropped in (10).
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2.4 The Boussinesq ocean model 2 MATHEMATICAL FORMULATION

2.4 The Boussinesq ocean model

It is quite common to combine the Boussinesq and the hydrostatic equations. Under these
circumstances the governing equations reduce to

∇H ·u+∂zw = 0, (14)

∂tu+∇H · (uu)+∂z(wu)+ f k×u = −ρ−1
0 ∇H p+ρ−1

0 ∂zτττ −∇H · (FH
M), (15)

∂zp = −ρg, (16)

∂tθ +∇H · (θu)+∂z(θw) = −∂zF
V
θ −∇H ·FH

θ +Sθ , (17)

∂ts+∇H · (su)+∂z(sw) = −∂zF
V
s −∇H ·FH

s +Ss, (18)

ρ = ρ(p,θ ,s). (19)

Equations (14) - (19) then constitute a set of seven equations to solve for the seven unknownsu,
v, w, p, ρ , θ , ands. We note that when applying the hydrostatic and Boussinesq approximation
the vertical velocity component and the density are reducedto diagnostic variablesjust as
pressure. This is in contrast to the horizontal velocity componentsu, potential temperature
θ , ands, which areprognostic variablesin the sense that they are governed byprognostic
equations, that is, equations containing a time rate of change term of the variable in question.

We note that the surface value of the shear stress, sayτττs, represents the traction of the wind
on the ocean surface. Hence it is the energy input via the workus ·τττs done at the surface,us

being the surface current. In the benchmark cases presentedin Part IIRøed(2012) we specify
τττs. It should be emphasized though that the wind stress represents the momentum flux from
the atmosphere to the ocean, and hence it is more often than not computed as a function of
the wind. In its simplest form the wind stress may be parameterized as (e.g.,Martinsen et al.,
1979)

τττs = ρaCDWg|Wg|, (20)

whereρa is the air density commonly set toρa = 1.3 kg/m3 , CD is a drag coefficient com-
monly given the valueCD = 3.0·10−3, andWg is the geostrophic wind. A more sophisticated
parameterization, and commonly used in more complex models, is that given inEngedahl
(1995b),

τττs= ρaCD|W|W, (21)

whereW is the wind velocity at 10 m height, and where the drag coefficient depends on the
wind speed, that is,

CD =

{

0.0012 if |W|< 11m/s,
(0.49+0.065)|W| if |W| ≥ 11m/s.

(22)

Similarly we note that the stress on the bottom, sayτττb, represents the loss of energy through
the work done by friction at the solid bottom. It therefore gives an energy loss on all wave
lengths. In its simplest form this term is parameterized as Rayleigh friction, that is,

τττb = γub, (23)

whereub is either the velocity at or near the bottom, or simply the mean depth current.
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2 MATHEMATICAL FORMULATION 2.5 The one-layer model
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Figure 2: Sketch of a one layer, barotropic model conveniently showing some of the notation.
Note thath= h(x,y, t) = η(x,y, t)+H(x,y).

Finally we note that (14) - (19) are the common basis for most of the complex, three dimen-
sional, barotropic-baroclinic ocean models used today, e.g., ROMS (http://www.myroms.org/),
NEMO (http://www.nemo-ocean.eu/), HYCOM (http://hycom.org/) and POM (http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/).

2.5 The one-layer model

If we in addition to the above Boussinesq and hydrostatic approximation also assume that
the density is uniform in time and space, i.e.,ρ = ρ0 whereρ0 is a constant, the governing
equations reduces to

∇H ·u+∂zw = 0 (24)

∂tu+∇H · (uu)+∂z(wu) = − f k×u−ρ−1
0 ∇H p+ρ−1

0 ∂zτττ −∇H ·FH
M, (25)

∂zp = −ρ0g. (26)

Note that when the density is constant the conservation equations for internal energy (17), the
salinity equation (18) and the equation of state (19) are allobsolete. Figure 2 provides a sketch
of such a model and conveniently shows some of the notation used in below.

We note the assumption of a uniform density allow us to integrate (26) from any arbitrary
depthz to the surfacez= η(x,y, t), that is,

p= ps+gρ0(η −z) (27)

whereps is the pressure at the sea surface andη is the deviation of the sea surface from its
equilibrium levelz= 0 as sketched in Figure 2. Thus the pressure forcing in (28) becomes

∇H p= ∇H ps+ρ0g∇Hη. (28)

Substituting (28) into (25) and integrating (24) and (25) from the bottomz= −H(x,y) to
the topz= η(x,y, t) we get,

∂tη +∇H ·U = 0, (29)

∂tU+∇H · ( UU
H +η

)+ f k×U+P =
∆τττ
ρ0

+A∇2
HU, (30)

7



2.6 The two-layer model 2 MATHEMATICAL FORMULATION

where

P= gH∇Hη +
1
2

g∇Hη2+
H +η

ρ0
∇H ps. (31)

To derive (29) and (30) we have used the kinematic boundary conditions (7) and (9) and the
dynamic boundary conditionp= ps atz= η. HereU =

∫ η
−H udz is the volume flux or volume

transport of fluid through a fluid column of depthh=H+η, ∆τττ = τττs−τττb whereτττs andτττb are,
respectively, the turbulent vertical momentum fluxes at thetop and bottom of the fluid column,
commonly called the wind stress and bottom stress, respectively. The last term in (30) is an
explicit parameterization of the last term on the right-hand side of (25) as a diffusive process,
that is,F H

M = −A∇HU whereA is a constant referred to as the eddy viscosity coefficient.
We observe that this term is necessary to avoid non-linear, numerical instabilities to appear
(Haltiner and Williams, 1980). Finally we note that we have absorbed the term arising from
the approximation

∫ η

−H
∇H · (uu)dz≈ ∇H · (UU

h
) (32)

into the last term on the right-hand side of (30). We commonlyrefer to (30) and (29) as the
barotropic non-linear, shallow water equations. Written in this form they are said to be written
in flux form.

These equation may be linearized assuming that the deviations away from a mean is small,
in which case (29) and (30) reduce to

∂tη +∇H ·U = 0, (33)

∂tU+ f k×U+gH∇Hη +
H
ρ0

∇H ps =
τττs−τττb

ρ0
, (34)

which are the barotropic, linear, shallow water equations.Note that we have dropped the ex-
plicit eddy viscosity term since there is no energy cascade towards higher wave numbers in this
case, and hence no non-linear numerical instabilities to avoid. Furthermore, we are now using
the volume transports as our dependent variables, and thus the bottom stress parameterization
(23) is replaced by

τττb = ρ0
R
H

U, (35)

whereR is a friction coefficient commonly set toR= 2.4 ·10−3 m/s (Martinsen et al., 1979).

2.6 The two-layer model

Commonly the ocean is stratified in the vertical. Stratification has the effect that surfaces of
constant pressure and surfaces of constant densities do notnecessarily coincide. If this is the
case, which is more often the case than not, the model is called baroclinic. The assumption
of a constant density is therefore in general not a very realistic assumption. However, when
dealing with, e.g., storm surge problems5 and tidal elevations it turns out that the stratification

5Storm surges are water level changes due to atmospheric forcing, mainly mean sea level pressure and wind
traction

8
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x

y

z

ρ0−∆ρ , u

ρ0, u2

h2

hH +H2

H2

H ζ (x,y, t)

η(x,y, t)

Figure 3: Sketch of a two-layer ocean model of thicknessesh = h(x,y, t) andh2 = h2(x,y, t)
and densitiesρ−∆ρ andρ0, respectively. We note thath=H+η whileh2=H2+ζ .

has a minor effect, and thus may safely be neglected (Røed, 1979). For most other oceanic
problems the baroclinicity is, however, of zero order importance.

The simplest baroclinic ocean model is the two-layer model as sketched in Figure 3. The
model consists of two layers of different yet constant densities. To be statically stable the
lower layer is heavier than the upper layer, here by an amount∆ρ . The density in the upper
layer is henceρ = ρ0−∆ρ and its thickness ish= h(x,y, t), while the lower layer has density
ρ0 and thicknessh2 = h2(x,y, t). In equilibrium their thickness are respectivelyH andH2 =
H2(x,y). We note that all the layer thicknesses varies in time and space, except the upper layer
equilibrium thickness that is constant.

We also note that the motion is governed by the governing equations of the Boussinesq
ocean model. Moreover since the density is constant within each layer, the motion within
each layer is in fact governed by (24) - (26). As for the one-layer barotropic model we may
hence integrate (26) vertically within each layer to derivethe pressure at an arbitrary depthz
within the layer. Thus integrating the hydrostatic equation (11) from an arbitrary depth in the
upper layer to the top, and letting the surface (or atmospheric pressure)ps = 0, we get

p= (ρ0−∆ρ)g(η −z)∀ η < z<−H +ζ , (36)

wherep is the pressure in the upper layer. Likewise, integrating (26) from an arbitrary depth
in the lower layer to the interface, we get

p2 = (ρ0−∆ρ)gh+ρ2g(−H +ζ −z)∀ −H +ζ < z<−H −H2, (37)

wherep2 is the pressure in the lower layer. To arrive at (36) and (37) we have used (8) and
p = ps = 0 at z= η. In addition we have used the dynamic boundary conditionp = p2 at
z= −H + ζ whereζ is the deviation of the interface away from its equilibrium position at
z= −H (Figure 3), which is the dynamic boundary condition. For later convenience we note

9



2.6 The two-layer model 2 MATHEMATICAL FORMULATION

that the deviationsη andζ may also be written as functions of the layer thicknesses, that is,

η = (h−H)+(h2−H2) = h+h2−H −H2 (38)

ζ = h2−H2, (39)

whereh is the thickness of the upper layer andh2 is the thickness of the lower layer.
Integrating the continuity equation (24) first from the interfacez= −H + ζ to the surface

z=η, and then from the bottomz=−H−H2 to the interface, and making use of the kinematic
boundary conditions at the top, at the interface and the bottom, we get

∂th+∇H ·U = 0, (40)

∂th2+∇H ·U2 = 0, (41)

whereU andU2 are the volume transports in the upper and lower layer, respectively. Thus the
continuity equation simply says that the local time rate of change of the respective thicknesses
are proportional to the divergence of the transport in each layer. We note that the thickness is
the volume per areal unit. Thus this results is expected since under the Boussinesq approx-
imation the continuity equation implies conservation of volume. Adding (40) and (41) we
get

∂t(H +H2+η)+∇H · (U+U2) = 0. (42)

We note from (42) that if the transports in the upper and lowerlayer compensate each other
exactly, that is, ifU = −U2, then the time rate of change of the total thickness of a fluid
column is zero. Thus if the thickness of the lower layer increases then this increase may
be compensated either by 1) a similar increase in the total water depthH +H2+η (the sea
surface experiences a similar increase), or 2) by a similar decrease in the upper layer thickness
without any change in the sea surface elevation (Figure 4). The first one is called abarotropic
response, and corresponds to the response as if the model was a one-layer model of constant
density throughout the water column. The second one is called a baroclinic responsesince
it takes into account that the two-layer model is baroclinic. In most cases the response is a
combination of the two, and that such a model therefore is referred to as a barotropic-baroclinic
ocean model. We note that the pure baroclinic response requires thatU =−U2 is satisfied for
all times. This is the same as requiring

hu =−h2u2. (43)

We now integrate the momentum equation vertically over eachlayer separately. We also
assume that the currents are almost uniform with depth within each layer, and what is left may
be accounted for in the eddy viscosity term. We then get

∂tU+∇H ·
(

UU
h

)

+ f k×U+J = ρ−1
0 ∆τττ +A∇2

HU, (44)

∂tU2+∇H ·
(

U2U2

h2

)

+ f k×U2+J2 = ρ−1
0 ∆τττ2+A∇2

HU2. (45)

10
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x

z

barotropic responsh2

h

x

z

baroclinic responsh2

h

Figure 4: As Figure 3. The figure illustrates the difference between a purely barotropic re-
sponse (upper panel) and a purely baroclinic response (lower panel) for a two-layer
model.

Here

J = gh∇H [(1− ε)(h+h2−H −H2)] = gh(1− ε)∇Hη, (46)

and

J2 = gh2∇H [(1− ε)h+h2−H −H2] = gh2(1− ε)∇Hη +gh2∇Hζ , (47)

are the pressure forces in the upper and lower layer respectively. The variableε = ∆ρ/ρ0 is
referred to as the reduced density. Furthermore,

∆τττ = τττs−τττ I , ∆τττ2 = τττ I −τττb, (48)

whereτττ I is the turbulent shear stress at the interface.∆τττ is therefore the difference between
the shear stress at the surface and the interface, while∆τττ2 is the difference between the shear
stresses at the interface and the bottom. To arrive at (46) wehave also made use of (36) and
(37) and the dynamic condition that the shear stresses must be continuous at the interface.

11



2.7 The 112-layer model 2 MATHEMATICAL FORMULATION

Thus for each layer the governing equations are,

∂th+∇H ·U = 0, (49)

∂tU+∇H ·
(

UU
h

)

+ f k×U+J = ρ−1
0 ∆τττ +A∇2

HU, (50)

and

∂th2+∇H ·U2 = 0, (51)

∂tU2+∇H ·
(

U2U2

h2

)

+ f k×U2+J2 = ρ−1
0 ∆τττ2+A∇2

HU2, (52)

respectively, that is, six equations for the six unknownsU , U2, V, V2, h andh2.
We note the two sets (49) and (50) and (51) and (52) are formally similar to the one-layer

set (30) and (29). Thus both belong to the class of equations called shallow water equations.
The two-layer model is hence made up of a stack of two one-layer, shallow water models that
exchange momentum through the pressure term and the interface stress term.

We note that ifε = 0, that is, ifρ = ρ0 then the densities are equal in the two layers, and the
two-layer model reduces to a one-layer model. Moreover, sinceε in the ocean is a very small
number, terms of orderO(ε2), may safely be neglected compared to terms of orderO(ε).
Note that we have retained terms of orderO(ε) although they are small compared to terms of
O(1). The rationale is that ifh≪ h2 then terms of orderO(1) in the pressure forcing cancel
each other.

As for the one-layer model these equations may be linearized. Thus their linear versions
read

∂th = −∇H ·U, (53)

∂tU = − f k×U−g′H∇Hη +ρ−1
0 ∆τττ (54)

∂th2 = −∇H ·U2, (55)

∂tU2 = − f k×U2−g′H2∇H (η +ζ )+ρ−1
0 ∆τττ2, (56)

respectively, whereg′ = εg is the reduced gravity.

2.7 The 1 1
2-layer model

We now assume that the lower layer depth is large compared to the upper layer equilibrium
thickness everywhere and for all times. Mathematically this implies thath≪ h2 for all times
everywhere. Under these circumstances it impossible to maintain a barotropic response. Thus
the response turns into a pure baroclinic one. According to (43) the layer transports must then
be equal of sign and of opposite direction. Thus|hu|= |h2u2|. Sinceh≪ h2 this implies that
|u2| ≪ |u|. In turn follows that|u2| → 0 when(h2/h) → ∞. From (44) we observe that we
achieve the latter by letting the pressure force in the lowerlayer be zero. From (47) we then
get

J2 ≈ 0 ⇒ ∇H(h2−H −H2)≈−(1− ε)∇Hh1. (57)

12



3 FINITE DIFFERENCE FORMULATION

By substituting this into (46) we get

J ≈ εgh∇Hh=
1
2

g′∇Hh2, (58)

when neglecting terms of orderO(ε2). We notice that it in this case it is paramount to keep
terms of orderO(ε) in (46) and (47) since now we assumeh≪ h2. In summary we may thus
neglect the motion in the lower layer, and hence (52) and (51)becomes obsolete. For the upper
layer governing equations we get

∂th = −∇H ·U, (59)

∂tU = −∇H ·
(

UU
h

)

− f k×U− 1
2

g′∇Hh2+ρ−1
0 ∆τττ +A∇2

HU. (60)

We observe that (60) and (59) are quite similar to (30) and (29), and obviously belong to the
shallow water equation class. There are differences though. Most prominent, is the difference
in the pressure term. Variations in the bottom topography (spatial variations inH2) is now
neglected, and the ordinary gravitational acceleration isreplaced by the reduced gravity. As
shown byCushman-Roisin and O’Brien(1983) it is possible though to retain the first order
effect of a spatially varying bottom topography. To first order in the parameterHH2

they found
that the reduced gravityg′ is replaced by

g∗ = g′
(

1+
H
H2

)−1

. (61)

Thus whenH/H2 → 0 we observe thatg∗ → g′. Hence (60) and (59) are recovered. Another
and less prominent difference is that the bottom stress is replaced by the interface stress.

Similar to (30) and (29) also (60) and (59) may be linearized in which case we get

∂th+∇H ·U = 0, (62)

∂tU+ f k×U = −g′H∇Hh+ρ−1
0 ∆τττ. (63)

Again we have dropped the eddy viscosity term since it is no longer needed.

3 Finite difference formulation of the one-layer model

We start by rewriting the governing equations (30) and (29) of the one-layer model in scalar
form. Hence we get

∂tU − fV = −∂x

(

U2

H +η

)

−∂y

(

UV
H +η

)

−gH∂xη − 1
2

g∂xη2+X+A∇2
HU, (64)

∂tV + fU = −∂x

(

UV
H +η

)

−∂y

(

V2

H +η

)

−gH∂yη − 1
2

g∂yη2+Y+A∇HV, (65)

∂tη = −∂xU −∂yV, (66)

13



3 FINITE DIFFERENCE FORMULATION

where we have setps= 0. We also note thatH =H(x,y) is the equilibrium depth. Furthermore
we have replaced the stress terms byX andY, respectively. Thus

X =
τx

s

ρ0
− R

H
U, (67)

and

Y =
τy

s

ρ0
− R

H
V. (68)

In linear form these equations reduces to

∂tU − fV = −gH∂xη +X, (69)

∂tV − fU = −gH∂yη −Y, (70)

∂tη = −∂xU −∂yV. (71)

Note that in both the non-linear and linear cases the effect of a spatially varying bottom to-
pography is retained sinceH = H(x,y). Thus it works through the pressure term and in the
non-linear advection terms. Furthermore note that in the linear version we replaceh with η as
variable.

To obtain consistent, centered in time and centered in space, second order accurate finite
difference (FD) formulations for each term in (64) - (66), and in (69) - (71), we make use of
Taylor series expansions. Thus at each point in our numerical grid we replace the continuous
derivatives with a finite difference approximation by truncating Taylor series. The grid we
employ is displayed in Figure 5, and corresponds to lattice Cof Mesinger and Arakawa(1976).
The rationale is that the inherent staggering avoids specifying more boundary conditions than
necessary to determine the integration constants. The gridis oriented so that thex-axis in a
Cartesian coordinate system points in the east-west direction (positive eastward) and they-axis
in the north-south direction (positive northward).

We note that theU -, V-, andh-grids are staggered, so that compared to theh-grid theU -
grid is staggered one half grid length along thex-axis, while theV-grid is staggered one half
grid length along they-axis. As indicated in Figure 5 we count cells rather than points. This
avoids the use of the cumbersome half indexes. There is a total of J+1 timesK + 1 cells
counted using the dummy indexesj,k along thex- andy-axes, respectively. To keep track of
the geographic location of the various grid points we let origo be located half a grid length
away from theh-point in grid cell number (1,1) in both horizontal directions. Thus, as is
common when employing the staggered C-grid, thex-axis goes throughV-points, while the
y-axis goes throughU -points. We may then let any north-south closed boundaries go through
U -points, and east-west closed boundaries go throughV-points as sketched in Figure 6. We
return to this point when discussing the boundary conditionin Section 4.4.

Accordingly we use the notation

hn
jk = h(x j −

1
2

∆y,yk−
1
2

∆y, tn), (72)

Un
jk = U(x j ,yk−

1
2

∆y, tn), (73)

Vn
jk = V(x j −

1
2

∆x,yk, t
n). (74)
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jj −1 j +1

k

k−1

k+1

∆y

∆x

+

Figure 5: Displayed is the spatial grid and grid cells we use to solve (64) - (66) by numerical
means. The grid increments are∆x,∆y, respectively in thex,y directions. There is a
total ofJ+1×K+1 grid cells along thex- andy-axes, counted by using the dummy
indices j,k. Circles, (O), correspond toh-, H- andη-points, horizontal dashes, (−),
to U -points, and vertical lines, (|), to V-points. The point marked with a+ is the
position of the pointx j ,yk in grid cell j,k. The coordinates of theh-, H- andη-
points in the grid are thusx j − 1

2∆x andyk− 1
2∆y as defined in (72). The coordinates

of theU -points andV-points are as specified in (73)-(74), resepctively.

We also note that all terms appearing in (64) are evaluated atU -points, while all the terms
appearing in (65) are evaluated atV-points. Likewise are all terms appearing in (66) evaluated
at h-points.

3.1 Linear version

For the linear version we use a so called backward-forward scheme in time and a centered,
second order scheme in space. This scheme was first suggestedby Sielecki(1968) for rotating,
linear shallow water equation. It corresponds to the schemeemployed byMartinsen et al.
(1979) in the first ever attempt to simulate storm surges in Norwegian waters numerically.
Thus we get

ηn+1
jk = ηn

jk −
∆t
∆x

Du
jk −

∆t
∆y

Dv
jk, (75)

Un+1
jk = Un

jk + f ∆tV
n
jk +

∆t
∆x

Pu
jk +

∆t
ρ0

[

Xn+1
jk

]u
, (76)

Vn+1
jk = Vn

jk − f ∆tU
n+1
jk +

∆t
∆y

Pv
jk +

∆t
ρ0

[

Yn+1
jk

]v
, (77)
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JJJJ−1JJ−2

KK −2

KK −1

KK

Figure 6: Displayed are the cells necessary to account for the no-slip boundary conditions at
closed walls. In the sample shown we consider a case with solid walls in the upper
right-hand corner of the grid. The walls are drawn as heavy solid blue lines. The
notation is as in Figure 5, and the nine cells are thus numbered accordingly. Note
that the cells (JJ,KK −2), (JJ,KK −1), (JJ,KK), (JJ−1,KK) and (JJ−2,KK) are
outside of the land-sea boundary. As explained in the text their presence is, however,
necessary to account for the no-slip boundary condition of no velocity at the walls.

where

Du
jk =

(

Un
jk −Un

j−1k

)

, (78)

Dv
jk =

(

Vn
jk −Vn

jk−1

)

, (79)

are the divergence terms,

Pu
jk = −gHu

jk

(

ηn+1
j+1k−ηn+1

jk

)

−
Hu

jk

ρ0

(

ps
n+1
j+1k− ps

n+1
jk

)

, (80)

Pv
jk = −gHv

jk

(

ηn+1
jk+1−ηn+1

jk

)

−
Hu

jk

ρ0

(

ps
n+1
jk+1− ps

n+1
jk

)

, (81)

are the pressure terms,

U
n
jk =

1
4

(

Un
jk +Un

j−1k+Un
j−1k+1+Un

jk+1

)

(82)

V
n
jk =

1
4

(

Vn
jk +Vn

j+1k+Vn
j+1k−1+Vn

jk−1

)

. (83)

16



3 FINITE DIFFERENCE FORMULATION 3.1 Linear version

represent the effect of the Earth’s rotation (the Coriolis terms), and

[

Xn+1
jk

]u
=

[

X̂n+1
jk

]u
− Rρ0

Hu
jk

Un+1
jk , (84)

[

Yn+1
jk

]v
=

[

Ŷn+1
jk

]v
− Rρ0

Hv
jk

Vn+1
jk . (85)

are the combined wind and bottom stresses, where the notation X̂,Ŷ is used to denote the wind
stress components. Note that we make us of the superscriptsu,v to remind ourselves that the
respective terms are to be evaluated at aU -point, respectivelyV-point. We emphasize that
because of the staggering the evaluation of the Coriolis terms are somewhat cumbersome in
theC-grid, necessitating the use of the averaging of the nearestfour grid points. We further
emphasize that at the points next to solid boundaries the Coriolis terms must be changed to
satisfy the boundary condition of no throughflow through solid boundaries. Essentially this
involves changing the factor from one quarter to one half. Moreover, we observe that the
pressure terms in (76) and (77) are evaluated at the new time stepn+1, and so is the Coriolis
term in (77). Thus as soon as a variable is updated we use the updated value in the next
equation. This accounts for the reference to the scheme as a forward-backward scheme.

Regarding the stress terms (84) and (85) we recall that they are composed of two com-
ponents, namely the wind stress whose common parameterization is given in (21) and the
bottom friction whose parameterization is given in (23). Werecall that theX component must
be evaluated atU -points, while theY component must be evaluated atV-points. This is al-
ready accounted for in the bottom stress terms, while for thewind stress we recall that they are
specified as functions of (x,y, t) and thus are specified at the (x j ,yk)-points (Figure 5). Thus
we get

ρ0

[

X̂n+1
jk

]u
= τx

s(x j ,yk−
1
2

∆y, tn+1) =
1
2

(

[τx
s ]

n
jk +[τx

s]
n
jk−1

)

, (86)

ρ0

[

Ŷn+1
jk

]v
= τy

s(x j −
1
2

∆x,yk, t
n+1) =

1
2

(

[τy
s]

n
jk +[τy

s]
n
j−1k

)

. (87)

Similarly we note that the equilibrium depth is specified at at the same points ash andη.
Thus

Hu
jk = Hx(x j ,yk−

1
2

∆y, tn+1) =
1
2

(

H j+1k+H jk
)

(88)

while

Hv
jk = Hy(x j −

1
2

∆x,yk, t
n+1) =

1
2

(

H jk+1+H jk
)

. (89)
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3.2 Non-linear version

Since the forward-backward scheme does not work for the non-linear version we replace it by
the leapfrog or centered in time and centered in space (CTCS)scheme. Thus we get

hn+1
jk = hn−1

jk − 2∆t
∆x

Du
jk −

2∆t
∆y

Dv
jk, (90)

Un+1
jk = Un−1

jk +2 f ∆tV
n
jk +

2∆t
∆x

Nu
jk +

2∆t
∆x

Pu
jk +

2∆t
ρ0

[

Xn+1
jk

]u
+2A∆tEu

jk, (91)

Vn+1
jk = Vn−1

jk −2 f ∆tU
n
jk +

2∆t
∆y

Nv
jk +

2∆t
∆y

Pv
jk +

2∆t
ρ0

[

Yn+1
jk

]v
+2A∆tEv

jk. (92)

Here Du,v
jk represent the divergence terms,U

n
jk,V

n

jk
the Coriolis terms,Nu,v

jk the non-linear

terms,Pu,v
jk the pressure terms, andEu,v

jk the eddy viscosity terms.
We first observe that the divergence terms, the Coriolis terms and the stress terms are un-

changed and thus given by (78), (79), (82), (83), (84) and (85), respectively. Regarding the
pressure terms we now get,

Pu
jk = −g

2
(hn

j+1k+hn
jk)

[

(hn
j+1k−hn

jk)+(H j+1k−H jk)−
1

gρ0
(ps

n+1
j+1k− ps

n+1
jk )

]

, (93)

Pv
jk = −g

2
(hn

jk+1+hn
jk)

[

(hn
jk+1−hn

jk)+(H jk+1−H jk)−
1

gρ0
(ps

n+1
jk+1− ps

n+1
jk )

]

. (94)

For the eddy viscosity terms we use the Dufort-Frankel scheme. Thus we get

Eu
jk = Êu

jk −
∆x2+∆y2

∆x2∆y2 Un+1
jk , (95)

Ev
jk = Êv

jk −
∆x2+∆y2

∆x2∆y2 Vn+1
jk . (96)

where

Êu
jk =

1
∆x2

(

Un
j+1k−Un−1

jk +Un
j−1k

)

+
1

∆y2

(

Un
jk+1−Un−1

jk +Un
jk−1

)

, (97)

Êv
jk =

1
∆x2

(

Vn
j+1k−Vn−1

jk +Vn
j−1k

)

+
1

∆y2

(

Vn
jk+1−Vn−1

jk +Vn
jk−1

)

. (98)

Note that the Dufort-Frankel scheme requires us to replace the terms 2Un
jk and 2Vn

jk that would
normally appear in a CTCS approximation to the eddy viscosity terms by the sum of its neigh-
bors in time, that is, 2Un

jk →Un+1
jk +Un−1

jk and 2Vn
jk →Vn+1

jk +Vn−1
jk . The result is that the last

terms on the right-hand side of (95) and (96) have to be moved to the left hand side of (91) and
(92), respectively. This avoids using an elliptic solver, that is, (90) - (92) can still be solved
explicitly as outlined in Section 4.

Finally we turn our attention to the non-linear terms included in (91) and (92). It turns out
to be convenient to first define an average expressions forh similar to what we did for the
volume transports in regarding the Coriolis terms, that is,(82) and (83). Thus we define

h
n
jk =

1
4

(

hn
jk +hn

jk+1+hn
j+1k+1+hn

j+1k

)

. (99)
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By use of (99) we then get

Nu
jk =

1
4











(

Un
j+1k+Un

jk

)2

hn
j+1k

−

(

Un
jk +Un

j−1k

)2

hn
jk

,

+
∆x
∆y

[

(Un
jk+1+Un

jk)(V
n
j+1k+Vn

jk)

h
n
jk

−
(Un

jk +Un
jk−1)(V

n
j+1k−1+Vn

jk−1)

h
n
jk−1

]}

, (100)

and

Nv
jk =

1
4











(

Vn
jk+1+Vn

jk

)2

hn
jk+1

−

(

Vn
jk +Vn

jk−1

)2

hn
jk

+
∆y
∆x

[

(Un
jk+1+Un

jk)(V
n
j+1k+Vn

jk)

h
n
jk

−
(Un

j−1k+1+Un
j−1k)(V

n
jk +Vn

j−1k)

h
n
jk−1

]}

. (101)

The application of Dufort-Frankel scheme regarding the eddy viscosity terms implies that
the scheme is inconsistent. However, the eddy viscosity terms are added chiefly to keep the
scheme from blowing up due to non-linear numerical instability. Thus the eddy viscosity does
not represent any specific physics, but are added to prevent energy to accumulate at the shorter
wavelengths. The eddy viscosity coefficientA therefore depends on the grid size and must be
tuned so as to extract exactly the right amount of energy needed to mimic the energy loss to
the sub-grid scale (SGS) motion.

4 Summary of the finite difference equations

We are now in a position to summarize and write down the finite difference equations (FDEs)
that replace the linear and non-linear version of the continuous equations, that is, (69) - (71)
for the linear version and (64) - (66) for the non-linear version. To make the presentation self
sufficient we have reiterated all the terms present in the FDEs instead of referring back to their
earlier definitions.

4.1 Linear version

For the linear version the FDE is just slightly different from those appearing in (75) - (77),
that is,

ηn+1
jk = ηn

jk −
∆t
∆x

(

Un
jk −Un

j−1k

)

− ∆t
∆y

(

Vn
jk −Vn

jk−1

)

, (102)

Un+1
jk = Bu

jk

{

Un
jk + f ∆tV

n
jk +

∆t
∆x

Pu
jk +

∆t
ρ0

[

X̂n+1
jk

]u
}

, (103)

Vn+1
jk = Bv

jk

{

Vn
jk − f ∆tU

n+1
jk +

∆t
∆y

Pv
jk +

∆t
ρ0

[

Ŷn+1
jk

]v
}

, (104)
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where

Du
jk =

(

Un
jk −Un

j−1k

)

, Dv
jk =

(

Vn
jk −Vn

jk−1

)

, (105)

Bu
jk =

(

1+
R∆t
Hu

jk

)−1

, Bv
jk =

(

1+
R∆t
Hv

jk

)−1

, (106)

Hu
jk =

1
2
(H j+1k+H jk), Hv

jk =
1
2
(H jk+1+H jk), (107)

U
n
jk =

1
4
(Un

jk +Un
j−1k+Un

j−1k+1+Un
jk+1), (108)
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1
4
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[
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n
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, (112)

[
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]v
=

1
2ρ0

(

[τy
s]

n
jk +[τy

s]
n
j−1k

)

. (113)

respectively. The appearance of the factorsBu,v
jk are due to our choice of evaluating the bottom

stress at the new time leveln+1, as specified in (84) and (85).

4.2 Non-linear version

The non-linear version is slightly more complicated because of the additional non-linear and
eddy viscosity terms. Because we made use of the Dufort-Frankel scheme for the eddy vis-
cosity terms an additional terms must be moved to the left-hand side, and hence the factors
Bu,v

jk must be expanded. Again it is only the momentum equations that are affected. Thus we
get

hn+1
jk = hn−1

jk − 2∆t
∆x

Du
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2∆t
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Dv
jk, (114)
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where
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and finally
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Êv
jk =

1
∆x2

(

Vn
j+1k−Vn−1

jk +Vn
j−1k

)

+
1

∆y2

(

Vn
jk+1−Vn−1

jk +Vn
jk−1

)

. (128)

4.3 Numerical stability condition

We note that the above schemes are numerically stable provided the Courant-Friedrich-Levy
(CFL) condition is satisfied. If we let∆x= ∆y= 2∆s andc0 =

√
gHmax, whereHmax denotes
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the maximum equilibrium depth, the CFL condition reads

∆t ≤ ∆s
√

2
c0

, (129)

provided∆s<< LR, whereLR = c0/ f is the Rossby radius of deformation.

4.4 Implementation of boundary conditions

We emphasize that the above FDEs are valid only away from any physical boundaries. As for
the continuous equations the boundary conditions prevail at the boundaries of the domain. As
alluded to this has some numerical consequences regarding the Coriolis terms, the non-linear
terms and the eddy viscosity terms. in order to properly satisfy the boundary conditions in our
FDEs. We underscore that the one of the main reason for using astaggered grid is to avoid
over-specifying the number of boundary conditions. The number of specified boundary con-
dition should exactly match the number of integration constants of the continuous, governing
equations (e.g.,Røed, 2011).

4.4.1 Closed boundaries

Let us first consider a motion within a rectangular domain bounded by solid, impermeable
walls on the four sides. Accordingly we have to change the FDEs for the points next to any
boundary to account for this fact. As alluded to in Section 3 it is common, if we employ
the staggered C-grid, to let the boundaries go throughU -points andV-points as displayed in
Figure 6. Thus the physical condition of no flow through an impermeable wall is satisfied by
lettingU = 0 andV = 0 along the respective boundaries in the appropriate cells.

In particular we have to reevaluate the Coriolis term in the cells neighboring a solid bound-
ary to avoid spurious residual flows close to the boundary using the ”wet-point-only” method
first suggested by (Jamart and Ozer, 1986). Looking at Figure 6, featuring a solid boundary
through theV-points in the cells numbered (j,KK −1), we notice that the averaging of the
Coriolis term in (104), that is,V

n+1
jk consists of four terms of which two of them are zero.

Hence the factor must be changed to one half instead of one fourth, that is, at these pointsV
n
jk

in (109) and (120) is replaced by

V
n
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1
2
(Vn

j ,KK−2+Vn
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Similarly follows that if there are solid walls along all boundaries that
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1
2
(Vn

j2+Vn
j+12), (131)
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22



4 SUMMARY OF THE FDES 4.4 Implementation of boundary conditions

For the non-linear version the number of integration constants are increased due to the
appearance of the eddy viscosity terms. Thus we also requirethe velocity along closed, solid
walls to be zero as well, that is, bothU = 0 andV = 0 must be satisfied at all boundaries. We
note that there are noU -points along the boundaries throughV-points, and vice versa. One
way to satisfy the boundary condition of no flow tangentiallyalong the (physical) boundary
is to interpolate across the boundary, so that the interpolated value at the boundary becomes
zero. As displayed in Figure 6 we achieve this by adding the cells outside of the boundary, and
let the value of the transport component in question be ”mirrored”. For instance look at the
U -points along thek= KK−1 closed boundary in Figure 6. To satisfy the condition ofU = 0
at the boundary we simply letUn

jKK = −Un
jKK−1 for all j (linear interpolation). Similarly we

let Vn
JJk=−Vn

JJk for j = JJ for all k.

4.4.2 Open boundaries

At open boundaries the governing equations are still valid.However, since our grid is finite
we have to specify a boundary condition within the cells featuring open boundaries. A host
of such conditions exist in the literature (e.g.,Røed and Cooper, 1987;Palma and Matano,
2000). A common denominator is that none of them are perfect.

We employ a particular simple one based on the so called Flow Relaxation Scheme (FRS)
suggested byMartinsen and Engedahl(1987), but first suggested for use in numerical weather
prediction (e.g.,Davies, 1976). The variables in the open boundary cell is first calculated sim-
ply by using a one-dimensional version of the governing equations. Commonly this solution is
referred to as the external solution to separate it from the internal solution, that is, the solution
of the true governing equation. Next we relax the internal solution to the external solution
through a buffer zone.

For instance, let the internal solution at time leveln+1 before relaxation beψ∗
jk in all cells

except for the boundary cells, whereψ is any of the prognostic variables. Furthermore, let
the external solution at time leveln+1 beψen+1

jk . We obtain the solution at the new time step
n+1 for the entire domain including the boundary cells by performing a simple relaxation,
that is,

ψn+1
jk = (1−α jk)ψ∗

jk +α jkψen+1
jk , (134)

whereα jk is a number between zero and one such that it varies monotonically from α jk = 0
inside of the buffer zones, that is, in the domain of interest, to α jk = 1 in the boundary cells.
Thus within the domain of interestψn+1

jk = ψ∗
jk, while in the boundary cellsψn+1

jk = ψen+1
jk .

As an example let us consider that the upper boundary displayed in Figure 6. The cells
j,KK for all j are then open boundary cells. The external solution is foundby use of the
governing (69) - (71) by neglecting all terms with a derivative across the boundary. In this
implies∂y = 0. Thus we get

∂tηe = −∂xU, (135)

∂tU
e = fVe−gH∂xηe+X, (136)

∂tV
e = − fUe+Y, (137)
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where we have dropped the sea surface pressure term. Similarly the FDEs to compute the
external solutions may be derived from (102) - (104). If we assume the computational domain
to be rectangular with open boundaries along they-axis to the left and right, then we get
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where
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k , (145)

5 Summary and final remarks

To summarize we have showed how simple one-layer, two-layerand 11
2-layer ocean models

may be derived from the full Reynolds Average Navier-Stokes(RANS) equations, and how
the one-layer model in particular may be replaced by finite difference equation. Both the linear
version and the non-linear version were included.

The rationale behind this derivation is to pave the way for use of these simple models
in ensemble prediction systems. Furthermore we would like to investigate the possibility
of solving these equations numerically making use of the computers Graphical Processing
Units (GPUs) rather than the Central Processing Units. To solve these equations on GPUs
require computer programs different form the traditional FORTRAN program language and
other common program languages in use today (e.g. C++). Thussolutions to well defined
benchmark case, by which the solutions using GPUs may be verified, are needed. In the
accompanying Part II (Røed, 2012) we therefore present such solutions. The benchmark cases
are solved using the traditional FORTRAN program language and Part II also present the
FORTRAN source code used to generate the solutions.
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