Report no. 20/2008
Oceanography

ISSN: 1503-8025

Oslo, September 10, 2008

Implementation of the SEIK assimilation
scheme into MIPOM

Ingunn Burud

7 e

5 5 ¢, §
(bj
E] ) o







) Norwegian
. Meteorological Institute

met.no report

Number | Subject Date Classification ISSN

20/2008 | Oceanography September 10, 2008 X Open 1503-8025
L] Restricted
[J Confidential

Title

Implementation of the SEIK assimilation scheme into MIPOM

Authors

Ingunn Burud

Client(s) Client reference

Abstract

The Singular Evolutive Interpolated Kalman filter (SEIK) has been implemented in
MIPOM, the current operational ocean model at met.no. The goal of implementing the
SEIK algorithm was to improve the performance of the ocean forecast maximizing the com-
puter efficiency of the data assimilation scheme. A twin experiment has been conducted to
look at the impact of the SEIK scheme and to compare its performance with that of the cur-
rent nudging assimilation method for the operational ocean forecast at met.no. A run with
the ROMS model was used as the truth and simulated data were extracted from this run to
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The local SEIK also produced more noisy model fields than with no assimilation and global
SEIK. We discuss various reasons for this and how it could be resolved.
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1 Introduction

Data assimilation is a concept encompassing any method for combining observations of vari-
ables into numerical models. Various data assimilation techniques have been developed in
order to make use of the observations in an optimal way. Data assimilation is today widely
used both in atmoshperic and ocean predictions. However, for the ocean the observations
are rather limited compared to the case for the atmosphere, and hence the data assimilation
schemes applied in ocean models are generally less developed than for atmospheric models.
Whereas most atmospheric systems use sophisticated statistical methods as e.g. 4D-Var, many
ocean forecast systems still use more simple assimilation shcemes such as nudging and opti-
mal interpolation.

The operational ocean forecast system at the Norwegian Meteorological Institute currently
uses a simple data assimilation scheme called nudging. In this report we will describe an
attempt of implementing a more statistically correct method in the forecast system. The fore-
cast system consists of daily forecasts of ice and ocean parameters for the Arctic and Nordic
seas. Satellite observations of sea surface temperature (SST) and sea ice concentration (SIC)
provided by the OSISAF (Ocean and Sea Ice Application Facility) project are being assimi-
lated into the coupled ice-ocean model using the nudging scheme described in Albretsen et al.
(2005). Although this assimilation scheme significantly improves the forecast compared to a
situation without any data assimilation, a more statistical correct method, yielding a multivari-
ate analysis update from the data assimilation is expected to further improve these forecasts.
The reason for this is that in a nudging scheme, only the assimilated variable is being corrected
whereas all the other model variables are adjusted within the model itself. Moreover, errors in
the observations are not taken into account in such a scheme which could yield unreal spurious
effects in the model. In a multivariate assimilation scheme however, all the variables in a de-
fined state vector is being updated at each analysis time, even if only one of the variables have
observations. The other variables are updated according to an error covariance matrix, that
gives an estimate of how the various model variables are cross-correlated. One could say that
the best assimilation scheme is hence the one that best estimates the model error covariance
matrix.

A multivariate scheme seems very attractive, but one has to keep in mind that it is also more
expensive in computer power compared to simpler schemes such as nudging. The choice of the
optimal assimilation scheme is therefore guided by two main factors: 1) it must yield improved
forecasts, and 2) it must be sufficiently computer efficient with today’s available computing
power, allowing daily forecast runs with large scale ocean models. In this project we have
implemented one type of multivariate scheme and compared it with the existing nudging.

There are two main families of multivariate assimilation schemes, variational methods and
Kalman filter methods. In this report we will only describe Kalman filter methods. These algo-
rithms are sequential, meaning that they only assimilate observations made in the past until the
time of analysis. Kalman filter schemes have attracted increased interest during the last years
since they provide a good utilization of the observations due to their dynamical approach to es-
timate the error covariance matrix of the estimated model state. To be able to handle the huge
computational cost of the Kalman filter when applied to a large-scale ocean model, several
approximating algorithms have been developed, such as the Ensemble Kalman Filter (EnKF,
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Evensen 1994, 2003), various square-root filters (Tippett et al. 2003), the Singular Evolutive
Extended Kalman filter (SEEK, Pham 1998) and the Singular Evolutive Integrated Kalman
filter (SEIK, Pham 1998). Nerger et al. (2005, 2006) showed that assimilation with the SEIK
filter bears advantages over both the EnKF and the SEEK filters. Based on this study we have
implemented SEIK into the MIPOM ocean model using the Parallel Data Assimilation Frame-
work (PDAF) provided by L. Nerger. This ensures an optimal usage of the parallel computer
processors.

In order to assess the impact of SEIK assimilation several experiments have been conducted.
The first experiment used a simplified version of SEIK with a fixed error covariance matrix.
For the full SEIK implementation a theoretical twin experiment has been set up for one of the
MIPOM model domains. In this experiment, output fields from a different model run over the
same region were used to simulate the observations to be assimilated into the ocean model.
In addition to this experiment, real satellite data has also been assimilated into a simulated
operational setup.

The report is organized in the following way: Section [2| describes the model system and
configuration, followed by a presentation of the Kalman filter in [3) the SEIK assimilation
scheme and the implementation of this in section ] In section [5] the experience with fixed
covariance matrix is presented. The experiments with the evolving error covariance are de-
scribed in section [6] (theoretical twin experiment) and in section [7] (assimilation of real data).
Finally, a discussion of the results and future challenges is given in section

2 The ocean forecast model

The ocean model MI-POM (met.no’s version of POM, Engedahl 1995,Engedahl 2001) is cur-
rently the operational forecast model at met.no. This is a version of the sigma coordinate
model POM (Princeton Ocean Model, Blumberg 1987). The model uses 21 sigma levels, with
increased resolution in the upper ocean. At the open boundaries a Flow Relaxation Scheme
(Martinsen 1987) applies climatological data (see Martinsen 1992, Engedahl 1995), consisting
of monthly means of sea surface elevation, currents, salinity and temperature. The model is
also relaxed toward climatological salinity and temperature at depths greater than about 1000
m and to climatological sea surface salinity. The atmospheric forcing is provided by the oper-
ational model at the European Centre for Medium-Range Weather Forecasts (ECMWF). The
ECMWEF data are available every 6 hour with a resolution of approximately 1° by 1°, and then
provided to the models by interpolating to the model grid.

3 The Kalman filter

The data assimilation problem amounts to finding an optimal estimate of the system state for
a certain time interval, given a dynamical model and observations at some discrete times. Let
us consider a physical system which is represented in discrete form by its true state x* of
dimension n. Because the model only approximates the true physics of the system, x! is a
random vector whose time propagation is given by the stochastic-dynamic time discretized
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model equation

X; = M 1[Xi_q] + 10 (D

Here M; ;1 is a, possibly non-linear, operator describing the state propagation between the
two consecutive time steps i — 1 and i. The vector 1); is the model error, which is assumed
to be a stochastic perturbation with zero mean and covariance Qj. At discrete times {#},
observations are available as a vector yp of dimension ny. The true state x' at time {#} is
assumed to be related to the observation vector by the forward measurement operator Hj as

Yh = Hi[x}] + & 2)

where H[x} ] describes what observations would be measured given the state x| . The vector
& 1s the observation error. It consists of the measurement error due to imperfect measurements
and representation error caused, e.g., by the discretisation of the dynamics. €& is a random
vector which is assumed to be of zero mean and covariance matrix Ry and uncorrelated with
the model error 7.

The state sequence {x}} is a stochastic process which is fully described by its probability
density function (PDF) p(x}) Accordingly, the filtering problem is solved by the conditional
PDF p(x!)|Yp of the true state given the observations Y§ = {y°,...,yo} up to time #. In
practice it is not feasible to compute this density explicitly for large-scale models. Therefore
one typically relies on the calculation of some statistical moments of the PDF such as the mean
and the covariance matrix.

3.1 The Extended Kalman filter

For linear dynamic and measurement models, the KF is the minimum variance and maximum
likelihood estimator if the initial PDF p(x{) and the model error and observation error pro-
cesses are Gaussian. The Extended Kalman filter (EKF) is a first-order extension to the KF
to non-linear models. It is obtained by linearizing the dynamic and measurement operators
around the most recent state estimate. A detailed approach to EKF is described in Jazwinski
(1970).

4 The SEIK filter

The Singular Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 1998) is a so-called
error subspace Kalman filter (KF). As all KFs, it assimilates the available observations in a
sequential manner. In a forecast phase the model is integrated up to the time when observations
are available. A new model state is then computed during the analysis phase, on the basis of
the predicted model state and the observations with weights computed from the error estimates
of both the observations and the model state estimate. Subsequently a new forecast phase is
performed. KF algorithms are of multivariate nature. In the case that observations of only
one type of physical field are available, other fields of the numerical model are updated in the
analysis phase via cross-correlations contained in the error covariance matrix.



4 The SEIK filter

e
H%‘H—FF{-’}H‘H:{ |

§ '+ P | .
i i+1 iTe i+3

Figure 1: A schematic view of a sequential ensemble-based assimilation method like SEIK.
The error bars around the model integration curve represent the ensemble spread.
The green point is the observed value which is compared with the ensemble mean
(red point). The blue point is the analysis update.

For a classical KF and the extended KF (see Jazwinski, 1970) the requirements of storage
and computation time are prohibitive due to the explicit treatment of the state error covariance
matrix. One approach to handle this problem is to approximate the covariance matrix by a
matrix of low rank, so that the analysis step operates in a low-dimensional subspace of the
true error space. Another approach is to run an ensemble of several perturbed model states
so that the ensemble spread represents the error covariance matrix. For a detailed review of
the SEIK filter and a comparison with the other well-known Kalman filter methods Ensemble
Kalman filter (EnKF) and the Singular Evolutive Extended filter (SEEK) see Nerger et al.,
(2005).

The SEIK filter can be interpreted as an ensemble-based Kalman filter using a precon-
ditioned ensemble and a very efficient scheme to incorporate the observational information
during the analysis phase of the filter. The algorithm computes the update of the state estimate
in the estimated error sub-space which is represented by the ensemble of model states. Figure
gives a schematic view of the sequential method with ensembles. At each analysis time, an
updates is carried out on the mean of all the ensemble model states. Then a new ensemble is
being generated before the next model integration phase.

In the SEIK filter the low-rank approximation of the initial covariance matrix By is typically
done by a singular value decomposition of Py which only retains a small number r of leading
eigen-values and corresponding eigenmodes. Py is approximated in a decomposed form as
VUVT ~ Py where U is a diagonal rxr matrix holding the leading eigenvalues. The matrix
V holds in its » columns the corresponding eigenmodes. For the forecast phase a random
ensemble {x',i = 1,...N} of minimum size {N = r+ 1} is generated which has the properties
that it exactly represents the state estimate x¢ and the approximated covariance matrix. This
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ensemble can be obtained by minimum order exact sampling (Pham 2001).

The KF analysis equations are applied to update the ensemble mean state and the matrix U.
The equations are formulated to treat the covariance matrix in the decomposed form VUVT,
Subsequently to the analysis phase, the state ensemble is transformed in a re-initialization
phase to represent the updated state estimate and the corresponding error covariance matrix.

A recent study by Nerger et al. (2006) showed that a localization method for the SEIK filter
showed advantages over the standard global analysis. In the local SEIK, the state update is
only computed on the basis of observations that lie within a specified distance from a grid
point of the model domain. This increases the number of degrees of freedom for the analysis
and can provide superior estimates of the model state. The region around each grid point
is weighted so that the points closest to the grid point gets the largest weight. The weight
decreases with the distance according to either an exponential decrease or by the 5Sth-order
function described in Gaspari & Cohn (1999), equation 4.10.

4.1 Implementation of SEIK into MIPOM

The Parallel Data Assimilation Framework (PDAF) from Nerger (2005) was used for the im-
plementation of SEIK into MIPOM. This framework allows one to run both ocean model and
assimilation scheme on parallel computer nodes in order to maximize the computer efficiency.
The MPI (message passing interface) parallelisation is used both for MIPOM and SEIK. The
implementation has the following structure (as shown in Fig[2). First the ocean model and
the SEIK filter are being initialized. An ensemble of model states is generated based on the
initial error covariance matrix. Then there is the model integration phase with the model time
loop and an ensemble loop around this so that the model integration is run as many times as
there are ensemble members. The model integration runs in time until an observation is being
read. Then all the ensemble members are gathered to a mean value which is compared with
the observed value. This is the analysis update phase. The ensemble mean is being updated
according to the observations and the SEIK gain matrix. This is followed by a resampling
of the model ensembles using the updated covariance matrix, before a new model integration
phase for each ensemble member begins.

The SEIK filter runs independently from the MIPOM model and the two can run on the
same or different processors. There are three calls to the SEIK filter in the MIPOM main
program. The first call is for the initialization which is outside the model time loop. Then for
each ensemble member in the time loop there is a call to SEIK in order to get the model state
from the actual ensemble member. In the end, before each observation is read, there is a call
that transfers the current model state to SEIK for the analysis update.

In addition to this, an input file with assimilation parameters is read into the MIPOM main
program. This input file contains the path to the files with the observations, the error on the
observations (which until now is a constant number), the ensemble size and the size of the
influence region for the observations. Ideally in and assimilation scheme, the model values
should be interpolated to the location of the observation. Here however, we used the model
value at the nearest grid point to the location of the observations both in the horizontal and
in the vertical. This simplification was made since both the model and SEIK run on parallel
processors. A full interpolation will require a much larger work in the parallel computing
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Figure 2: A schematic view of the SEIK implementation into the ocean model



process.

5 Experiment with fixed covariance matrix

A first experiment was conducted with fixed error covariance matrix during the whole model
run. Keeping this matrix fixed simplifies the implementation and the computer resources
needed. This matrix was determined from a model run over three years by defining the mean
and the deviations from the mean for each grid point and each variable in the state vector.
Since the cross-correlation are season dependent, one matrix was defined for each month.

The MIPOM model area used in this experiment covers the North Sea, the Skagerrak and the
Kattegat at 4km resolution. The assimilated data were SST-data from the OSISAF (Ocean and
Sea Ice Facility) project (http://saf.met.no, Fig[IT). These SST-fields were 10km half-daily
composites, meaning a value from the ECMWT operational analysis were read in the regions
where no satellite data were available, e.g. due ti clouds. The state vector in this experiment
consisted of sea surface height, velocities U and V, salinity and temperature. The experiment
was run for one month, July 2004.

The results from this experiment showed no improvement compared to the results from
nudging of the same data set. Fig. [3| shows the SST field averaged root mean square er-
ror compared with the assimilated OSISAF data. An independent set of measurements from
the cruise between Hirtshals in Denmark and Torungen in Norway!(1) was used to validate
the model results. Figure 4] shows the cross-section of temperature differences between the
measurements and the model run on July 9 2004 for the SEIK assimilation and the nudging.
These comparisons also show no improvements from the SEIK assimilation with fixed covari-
ance matrix. The model run closest to the observations seems to be the one with nudging of
SST-data. Since the fixed covariance matrix version of SEIK yielded no positive impact, a full
SEIK with evolving error covariance were carried out as described below.

6 Twin experiment with full SEIK

A twin experiment was conducted to assess the impact of the MIPOM+SEIK assimilation
scheme with an evolving error covariance matrix. Both the global and the local version of
SEIK were run. The defined ’true’ run was a model run with ROMS (Rutger Ocean Model
System) for a one month period, July 2004. Model fields of sea surface temperature (SST)
and 10 temperature profiles were extracted to simulate satellite SST data and typical in situ
measurements. These simulated data were assimilated into a MIPOM model run every 12th
hour during the one month period. The spinup time was 18 months and atmospheric forcing
was obtained from the ECMWEF for both ROMS and MIPOM run.

The MIPOM model area used in this experiment was the same as above, covering the North
Sea, the Skagerrak and the Kattegat at a 4km resolution. The grid points are identical for
MIPOM and ROMS in this setup. The state vector consisted of sea surface height, velocities

The Torungen-Hirtshals section data was kindly made available to us by the Institute of Marine Research,
Flgdevigen, Arendal.
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Figure 3: The bias, mean and root mean square error between the OSISAF data and the av-
eraged SST-field from the model run with no assimilation, nudging and SEIK with
fixed covariance matrix.



6.1 Results
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Figure 4: Cross-sections of the distance Hirtshals to Torungen showing the difference in tem-
perature between the observations and the model run without assimilation (left), with
nudging (middle) and SEIK assimilation with fixed covariance matrix (right).

U and V, salinity and temperature. The initial error covariance matrix was the same as the one
used in the experiment described above with a fixed error covariance.

The 5 following experiments were conducted with this model setup and assimilation with
global and local SEIK: 1) No assimilation into MIPOM; 2) Global SEIK assimilation of SST,
3) as experiment 2 plus 10 temperature profiles, 4) Local SEIK assimilation of SST, 5) as
experiment 4 pluss 10 temperature profiles. A sixth experiment was carried out where the
SST data were simply nudged into the model.

Various sizes of ensemble and influence regions were tried out but the results described here
were obtained with an ensemble size of 50 for both global and local SEIK. For the local SEIK
the influence region was 80x80km? and the Gaspar and Cohn 5th order function (Gaspar &
Cohn 1999) was chosen as weight function.

6.1 Results

A first validation by eye (Fig[5) already show that the assimilation had significant effect on
the temperature fields. The figure displays the difference in the SST-fields ROMS — MIPOM
without assimilation, and ROMS — LSEIK assimilation with local SEIK, just after the first
analysis update. The assimilation has significantly reduced the difference between the two
model runs.

The SST-fields after no assimilation, nudging, global SEIK and local SEIK are shown for
comparison in Fig. [6] There are two things to notice in this figure, 1) The run using local
SEIK is the one closest to the truth (ROMS) and 2) the local SEIK run also displays the most
noisy field.

For a more statistical validation we look at the the root mean square error (rmse) between
the ROMS and MIPOM values averaged over the model field. The rmse for SST, temperature
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Figure 5: Difference in the SST-fields, MIPOM — ROMS (left) and LSEIK — ROMS (right)
after the first analysis update for local SEIK assimilation.
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at 20m and the salinity at 20m is shown as a function of time for all the experiments in Fig.
Fig. [§]and Fig. 0

The displayed rmse values also indicate that the local SEIK assimilation performs better
than global SEIK for the temperature fields. The errors are reduced and maintain small over
time with local SEIK whereas for global SEIK the errors increase after a few assimilation
steps. The global SEIK performs rather well for the first two analysis updates, but then seems
to not take into account any observation anymore, hence increasing the rms with time. This
feature with global SEIK is a well known problem since this filter type tend to underestimate
the model error estimates (Nerger et al. 2005). A so-called forgetting factor p (Pham et
al.1998), (0 < p < 1) is often used to inflate the model errors. The forgetting factor increases
the error estimates in the error covariance matrix and hence guarantees a minimum amount
of estimated error. This can stabilize the filter process as SEIK, and other ensemble based
Kalman filters, are known to underestimate variances. However, even though p = 0.7 was
applied in this experiment it was clear that the algorithm still underestimated the variances.

For the salinity field the local SEIK has little impact, and towards the end of the run yields
larger errors than with no assimilation or nudging (Fig. [9).This is mainly due to the large
noise produced in the fields using local SEIK. Various sizes of the influence regions were tried
out in order to avoid the noisy fields. Increasing the region gave less noisy fields and the
variances became underestimated as for global SEIK. On the other hand, decreasing the size
of region means that fewer observations are taken into account and the noise even increased in
the field. Making the region smaller and smaller becomes similar to assimilating in situ-like
observations. The experiment showed that assimilating 15 temperature profiles in addition to
the SST data yields no improvement of the mean rmse. More detailed studies will be carried
out to see how in situ observations can be assimilated with SEIK with a positive impact.

Finally, we note that the nudging technique performs well for the assimilated variable (SST)
but gives poorer results for the other variables (such as temperature at 20m).

7 SEIK assimilation of OSISAF data in a simulated
operational mode

The SEIK assimilation was also tested in a simulated operational mode to see if it could
improve the forecast. An experiment with assimilation of real SST data was carried out for a
MIPOM model region covering the Arctic oceans at 20km horizontal resolution. Operational
mode here means that data are assimilated at -24h and -12h before analysis time (Oh), prior to
a forecast model run of 120 hours (see Fig. [I0). This sequence was repeated for 20 days. The
assimilated data were 12 hour mean SST fields provided by the OSISAF project.

For comparison, a forecast model run without any assimilation prior to each analysis was
also carried out. The SST-data themselves were used for validation which is far from optimal
since one should ideally validate against an independent data set. Nevertheless, this validation
gives an indication of the effects of assimilation. The mean rmse between the model run and
the SST data is shown as a function of forecast time in Fig. [[2] The rmse plots indicate that
there is a significant reduction in the rmse when data assimilation is applied. As in the previous

11
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experiment, the data assimilation also produced more noisy fields than with no assimilation.
There are therefore reasons to believe that the rmse could be reduced further with a more
optimal assimilation scheme that does not create these noisy fields.

8 Conclusion and further remarks

The SEIK assimilation scheme has been implemented into the MIPOM ocean model. This is
the first time the SEIK has been implemented into a POMS-type model. The MIPOM+SEIK
with fixed error covariance matrix has been tested in an experiment assimilating OSISAF SST-
data and the full SEIK setup with evolved error covariance has been tested both in a theoretical
twin experiment and with real OSISAF satellite data of SST. These experiments yield overall
positive results in the sense that the SEIK assimilation improves the model performance, and
for local SEIK it does so to a greater extent than the current nudging assimilation scheme.
However, the SEIK assimilation also tends to perturb some of the model fields. Noisy pathces
of high gradients can be seen in both the temperature and the salinity fields. This is particularly
the case when assimilating in situ data. Attempts with various sizes of the influence regions
showed that an infinite size gave the same results as the global SEIK, and hence did not reveal
any noisy regions, which is what one expects. However, we were not able to determine an
optimal size that removed the noisy parts without underestimating the model variances.

Unfortunately there are very few implementations of SEIK so far, and none in this type
of model. It is therefore a challenge to determine if the problem is due to the way MIPOM
responds to this assimilation scheme, the implementation of the scheme, or the definition of the
initial error covariance matrix. One way is to study the evolution of each ensemble member
in detail to check how the error covariance matrix is evolving. One could also implement
SEIK into another ocean model and perform the same experiment. If the problem is the way
MIPOM responds to the SEIK analysis update, it means that the model fields get some kind
of shock because the correction is too strong and immediate at the analysis time. One could
think that a more incremental update would improve this, avoiding giving the model a shock
in a certain direction but rather letting the model gradually learn the computed correction. The
SEIK method would then compute the total correction at the analysis time as before, but the
correction would be applied little by little over time until next analysis time. A follow-up on
all three of these points is planned.

9 Acknowledgment

The work was financed by the Norwegian Research Council through the projects no.152880/120
and no.176096/S30. I would like to thank Dr. Lars Nerger for providing the SEIK PDAF al-
gorithm and for helping in the implementation of this. My appreciations also goes to Jon
Albretsen for useful help and many discussions. Thanks alos to Lars Petter Rged for reading
through the manuscript.

12



10 References

Albretsen, J., and 1. Burud, Assimilation of sea surface temperature and sea ice concentration
in a coupled sea ice and ocean modelel., in European Operational Oceanography: Present and
Future. 2006. Proceedings of the 4th International Conference on EuroGOQOS., edited by H.
Dahlin, C. Flemming, P. Merchand, and S. E. Petersson, pp. 6612013666, Brest, France.

Blumberg, A. F. and G. L. Mellor, A description of a three-dimensional coastal ocean
circulation model, Three-dimensional Coastal Ocean Models, American Geophys. Union,
1987,Coastal and Estuarine Sciences, vol. 4

Engedahl, H., Implementation of the Princeton ocean model (POM/ECOM-3D) at the Nor-
wegian Meteorological Institute (DNMI), met.no research report no. 5, 1995

Engedahl, H. and B. Adlandsvik and E. A. Martinsen, Production of monthly mean clima-
tological archives of salinity, temperature, current and sea levelfor the Nordic Seas, met.no
research report no. 3, 1995

Engedahl, H.,Operational Ocean Models at Norwegian Meteorological Institute (DNMI),
met.no research note, 2001

Evensen, G., Sequential data assimilation with a non-linear quasigeostrophic model using
Monte Carlo methods to for
ecast error statistics. 1994, J. Geophys. res. 99(C5), 10143-10162.

Evensen, G.,The Ensemble Kalman Filter:Theoretical formulation and practical implemen-
tation, 2003, Ocean Dyn. 53, 343-367

Gaspari,G., Cohn,S.E., Construction of correlation functions in two and three dimensions,
1999, Quart. J. Roy.Meteor. Soc. 125, 723-757

Jazwinski, A.H., Stochastic Processes and Filtering Theory, 1970. Academic Press, New
York.

Martinsen, E. A. and H. Engedahl, Implementation and testing of a lateral boundary scheme
as an open boundary condition in a barotropic ocean model, 1987, Coast. Eng., Vol.11, 603-
627

Martinsen, E. A. and H. Engedahl and G. Ottersen and B. Adlandsvik and H. Loeng and B.
Balino, Martinsen, E. A. and H. Engedahl and G. Ottersen and B. Adlandsvik and H. Loeng

and B. Balino, met.no research report no. 100, 1992

Satra, @. and L. P. Rged and J. Albretsen, The DNMI RegClim Ice Model, The DNMI
RegClim Ice Model, no. 3, 1999

13



10 References

Nerger, L. 2003. Parallel filter algorithms for data assimilation in oceanography. Ph.D.
Thesis, University of Bremen, Germany, 189pp.

Nerger, L., Hiller, W. and Schréter, J., 2005. A comparison of error subspace Klaman fil-
ters, Tellus, 57, 715-735.

Nerger, L., Danilov, S., Hiller, W., Schroter, J, 2006, Using sea-level data to constrain a
finite-element primitive-equation ocean model with a local SEIK filter, Ocean Dyn. 56, 634-
649.

Nerger, L., Danilov, S., Kivman, G., Hiller, W., and Schréter, J. 2007a. Data assimilation
with the Ensemble Kalman Filter and the SEIK filter applied to a finite element model of the
North Atlantic Journal of Marine Systems, 65, Issues 1-4, 288-298

Pham, D.T., Verron, J. and Gourdeau, L. 1998. Singular evolutive Kalman filters for data
assimilation in oceanography. C.R. Acad. Sci., Ser. II 326(4), 255-260.

Pham, D.T., 2001. Stochastic Methods for Sequential Data Assimilation in Strongly Non-
linear Systems. Mon. Wea. Rev. 129,1194-1207.

Tippet, M.K., Anderson, J.L., Bishop,C.H.,Hamill, T.M. and Whitaker, J.S., Ensemble
square root filters, 2003, Mon Wea Rev., 131, 1485-1490

14



Figure 6: SST field after first analysis update. Top left: ROMS (truth). Top right: MIPOM
with no assimilation. Bottom left: Assimilation with global SEIK. Bottom right:
Assimilation with local SEIK.
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Figure 7: rmse in SST as a function of time for the various experiments
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Figure 8: rmse in temperature at 20m as a function of time for the various experiments
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Figure 9: rmse in salinity at 20m as a function of time for the various experiments
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Figure 12: rmse in SST as a function of forecast hour.
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