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Abstract

At sites with measurements or accurate estimates of precipitation, it is often possible to
enhance precipitation forecasts by means of statistical methods. The topic of this study is
calibration of ensemble precipitation forecasts, and to this end four statistical methods are
proposed and tested on real data: (i) transformation of ensemble members such that they in
the long run have the same climatology as the observations. (ii) as (i), but preceded by lin-
ear regression in order to take into account information about ciculation pattern. (iii) use of
scaling factors defined essentially as the ratio of the weighted mean observed precipitation
amount and the weighted mean model precipitation amount. (iv) the Bayesian processor of
output/ensemble. The first three methods all operate on eachensemble member individu-
ally without any regard to other members, while the latter uses all members simultaneously
and, thus, has better statistical foundation. The statistical methods are tested at nine sites
using ensemble precipitation forecasts by ECMWF’s EPS with lead times up to ten days
as input. Although the results vary considerably between the sites, the statistical methods
generally improves the raw ensemble forecasts considerably – especially for the shorter
lead times. Not surprisingly, the Bayesian processor of output/ensemble was on average the
best method, both in terms of continuous ranked probabilityscores and not least reliabil-
ity/calibration.
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1 Introduction

For producers of hydro power accurate precipitation forecasts are of vital importance for
smooth production planning and optimal trading. The basis of any precipitation forecast up to
about two weeks ahead is mathematical models of the atmosphere, usually callednumerical
weather prediction (NWP) models. These models are based on the fact that if the state of
atmosphere is known at given point in time, the laws of physics will foresee the future states.
As is well known, weather forecasts, and in particular precipitation forecasts, are not always
correct. The causes are essentially twofold; first, the solution of the governing equations of
the atmosphere is sometimes highly sensitive to uncertainties in the initial state, which is not
possible to determine exactly due to sparse measurements. Second, the NWP models are sim-
plifications of the atmospheric processes. Attempts to quantify the impacts of these causes
have led toensemble forecastingin which many forecasts are generated by making small per-
turbations to the most likely initial state and/or using several parametrization of the physical
processes.

Ensemble forecasts provide additional information compared to deterministic forecasts, but
when interpreted as probabilistic forecasts, the degree ofcalibration is often unsatisfactory.
For example, the spread of the ensemble can be too low, indicating too strong confidence,
or precipitation amounts can be too small or large on average. At many locations ensemble
forecasts can be enhanced by using statistical methods which take advantage of historical data
comprised of both observations and ensemble forecasts, anduse the relation between them to
make well calibrated forecasts.

In this report two types of statistical methods are described and tested at sites of interest to
the hydro power community. Statistical methods operating on each ensemble member indi-
vidually are considered in section 2, while section 3 deals with one using complete ensembles.
Methods for validating ensemble forecasts are the topic of section 4. The outcome of apply-
ing the statistical methods on real data is reported in section 5, followed by some concluding
remarks in section 6.

2 Statistical methods for ensemble members

2.1 Local quantile-to-quantile transformation (LQQT)

2.1.1 Brief description

A major source to imperfect ensemble forecasts is biases in the atmospheric models; for exam-
ple, the mean forecasted precipitation amounts can be less than the mean observed amounts.
The aim of this approach is to remove biases quite generally by constructing transformations
such that the adjusted forecasts have the same climatology or marginal distribution as the
observations. In short, this is obtained by sorting historical forecasts and observations (sep-
arately) and estimating the relationship between them. By applying the fitted relation to a
new ensemble forecast, that is to each ensemble member and each data point, a new adjusted
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2 Statistical methods for ensemble members

ensemble is made. Although the new probabilities or quantiles not necessarily can be trusted,
they may validate better than the raw ensemble forecasts, especially if the latter contains bi-
ases.

2.1.2 Details

Let FY andFX denote the cumulative distribution functions for observations and forecasts to be
calibrated. Then, by standard probability theory the random variable defined byF−1

Y (FX(X))
has the same distribution as the observations (FY). However, this relation is only valid for vari-
ables with continuous distributions and thus cannot be applied directly to daily precipitation
data. In addition, both distribution functions are unknownand must be estimated. To avoid
the latter, it is here proposed to estimate the transformation based on the relation between the
ordered samples of the two variables and make appropriate adjustments to deal with no pre-
cipitation events.

Assume that a training sample of sizen is given wherey(1) ≤ y(2) ≤ ... ≤ y(n) and x(1) ≤
x(2) ≤ ... ≤ x(n) denote sorted observations and forecasts, respectively. The transformation
may then be estimated on basis of the pairs(y(i),x(i)), i = 1, ...,n. Further, leti0 be the number
of pairs where either the observation or the forecast is zero(or below a lower threshold for
precipitation). Ifm() is the estimated transformation, then for a new forecastxnew the adjusted
forecastynew is given by

ynew(xnew) =

{

m(xnew) if xnew> 0
y( j) otherwise

(1)

where j is randomly selected from{1,2, ..., i0}.

The estimation ofm() can be accomplished using a variety of methods. In this study, local
linear regression is chosen and the estimation is performedas follows. In the neighbourhood
of the new predictorxnew, it is reasonable to assume that the relation can be represented by
a simple linear functionm(x) = α0 + α1(x− xnew). Its coefficients are then estimated by
minimizing the weighted least square loss function

n

∑
i=i0

(y(i)−m(x(i)))
2w(x(i),xnew) (2)

wherew() is a weight function defined such that cases with forecast values close toxnew get
more weight than those further away. The definition ofm() implies that the estimatem(xnew)
is simply the estimate ofα0. In theory, the minimization problem needs to be solved for every
new predictor value, but in practice it is usually sufficientto estimate the relation on a fine
grid and apply linear interpolation to make predictions in between. Ideally,m(x(i0)) should be
zero, but this constraint is not necessarily obeyed by (2). In practice, however, this is rarely a
problem, in particular for large training samples.
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2.2 Regression and local quantile-to-quantile transformation (REG+LQQT)

2.2 Regression and local quantile-to-quantile transforma tion
(REG+LQQT)

A potential disadvantage with the local quantile-to-quantile transformation method (LQQT),
is that only one predictor variable can be applied. In reality, however, the transformation could
benefit from being dependent on the weather situation at hand. One possibility would be to
divide the training sample into different classes according to a classification of the weather
patterns and apply LQQT to each category. With many classes and few data in each the esti-
mated transformation would become quite uncertain and in the end result in poor transformed
ensemble forecasts.

An alternative solution would be to reduce many predictors to a single new one and then apply
LQQT to this. Variable reduction by means of linear regression is here proposed. The new
variable to put into LQQT is then predictions from the regression. More flexible regression
techniques like neural networks could also be applied.

2.3 Scaling factor (SCL)

2.3.1 Brief description

A simple form for bias correction would be to scale the forecasts. The easiest option of this
kind is to sum all historical observations and similarly allhistorical forecasts and let the ratio
of the sums define the scaling factor. As above, it might be desirable to let the scaling factor
depend on the weather situation. To achieve this, the use of weighted sums is suggested.

2.3.2 Details

Again, assume that a training set of sizen is available, and lety1, ...,yn denote observed precip-
itation amounts and correspondingx1, ...,xn realizations of the predictor vector. Note that the
precipitation amountr i from the atmospheric model does not need to be among the predictors
x. The proposed scaling factors(x) is then defined as

s(x) =

(

α +
n

∑
i=1

w(x,xi)yi

)

/

(

α +
n

∑
i=1

w(x,xi) r i

)

(3)

wherew() are weights specified such that the historical events most similar tox get the largest
weights and, thereby, also the largest impact on the estimated scaling factor. For interpretabil-
ity, it is also assumed that the weights add up to one. The tuning parameterα is introduced to
make the scaling factor more robust in cases where precipitation is rare or the amounts modest.
When the sums are very small, theα tends to dominate and the scale limits to one, that is, no
adjustment of the original forecast.
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3 Bayesian processor of ensemble/output (BPE)

3 Bayesian processor of ensemble/output (BPE)

A major disadvantage with statistical techniques applied separately to each ensemble member,
is that there is no guarantee that the resulting probabilitydistributions will be well calibrated.
In contrast, statistical methods using the complete ensemble simultaneously should in theory
be able to generate well calibrated distributions. In this section, an approach of this kind called
the Bayesian processor of ensemble/output (BPE) is described [1] [2]. Since no precipitation
events frequently occurs, the modelling is carried out in two steps; first a model for the prob-
ability of precipitation, then a separate one for the distribution of precipitation amount given
that precipitation will occur.

3.1 Probability of precipitation

3.1.1 Brief description

The basic idea in the BPE method is to transform each variableto standard normal and carry
on as if the joint distribution is multivariate normal; moreprecisely, Bayes rule is applied to
decompose the estimation in simpler tasks. For probabilityof precipitation, this essentially
involves estimation of the distributions of the predictor for precipitation events and no precip-
itation events, respectively.

3.1.2 Details

Let Y be a binary variable representing precipitation occurrence, and assume that it takes the
value one when precipitation occurs and zero otherwise. Further, let f0(xxx∗) and f1(x∗) denote
the densities of the predictor vectorx∗ when no precipitation and precipitation are observed,
respectively. From Bayes rule and the law of total probability it follows that the probability of
precipitationπ can be formulated by

π = P(Y = 1 | x∗) =
πc f1(x∗)

(1−πc) f0(x∗)+πc f1(x∗)

=

[

1 +
1−πc

πc

f0(x∗)
f1(x∗)

]−1

(4)

whereπc = P(Y = 1) is the climatological probability of precipitation. In case f0(x∗) and
f1(x∗) are multivariate Gaussian with correlation matricesΣΣΣ0 andΣΣΣ1, equation (4) is

π =

[

1 +
1−πc

πc

|ΣΣΣ1|

|ΣΣΣ0|
exp

(

−
1
2
(x∗tΣΣΣ−1

0 x∗ − x∗tΣΣΣ−1
1 x∗)

)]−1

(5)

In practice, predictors based on output from atmospheric models are not Gaussian and trans-
formations of the original predictorsx are therefore necessary. A single multivariate trans-
formation of x to x∗ is complicated to find, but transformation of each variable is feasible
by means of the normal quantile transform [1]. Here, we applythe LQQT approach, section
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3.2 Precipitation amounts

2.1, in which the observations are replaced by quantiles in the standard normal distribution.
It is also possible to express (5) in terms of the original predictorsx by means of standard
probability transformations, see [1].

3.2 Precipitation amounts

3.2.1 Brief description

The BPE for continuous variates resembles the one for binarypredictands described in the
previous paragraph. First, the observed precipitation amounts and each predictor variable
are separately transformed to the standard normal distribution. Note that only cases with
precipitation occurrence are applied, that is, the distributions are conditioned on that there will
be precipitation. Further, it is assumed that the distribution of the predictor vector given the
observation can be modeled using multivariate linear regression [4]. Bayes rule is then applied
to find the distribution of the observation as a function of the predictor. This distribution is
also normally distributed, but transformed back to the original units, it can acquire a variety
of shapes. In conjunction with the probability of precipitation, the re-transformed distribution
forms the forecast.

3.2.2 Details

Let Y∗ andX∗ denote random variables for precipitation observations and predictors for days
with precipitation; in practice these will be transformed versions of the original variables.
Further, assume that the distribution ofY∗ and the relation betweenX∗ andY∗ can be modeled
as follows

Y∗ ∼ N (µ0, σ2
0)

X∗|Y∗ = y ∼ N (ααα +βββy, S) (6)

It can then be shown that the distribution ofY∗|X∗ = x is normally distributed with expectation
and variance

E[Y∗|X∗ = x] = µ0 + βββ tσ2
0(σ2

0ββββββ t +S)−1(x−ααα −βββ µ0)

Var[Y∗|X∗ = x] = σ2
0 − βββ tσ2

0(σ2
0ββββββ t +S)−1βββσ2

0 , (7)

see for example [5, Ch. 17.2.3]. By minimizing the mean squareerror, the parameters in the
conditional distribution ofX∗|Y∗ = y, can be formulated as

βββ = Cov(Y∗,X∗) / σ2
0

ααα = E[X∗] − βββ µ0

S = Cov(X∗) − Cov(Y∗,X∗) Cov(Y∗,X∗)t / σ2
0 , (8)

see for example [4, Ch. 7.8]. In practice, all parameters are unknown and plug-in estimates
are here used to fully determine the distribution ofY∗|X∗ = x.
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4 Validation methods

As mentioned precipitation observations and predictors are in reality not normally distributed
and transformations of these must be applied in order to makethe modelling described above
realistic. Transformations are carried out separately foreach variable by means of the normal
quantile transform which here is implemented using the LQQTapproach described in section
2.1. The conditional distribution in original units can be derived from the distribution of
Y∗|X∗ = x.

3.3 Application of BPE forecasts in hydrological models

Deterministic hydrological runoff models, like the HBV model, need amongst other temporal
simulations of precipitation and temperature as input. In this framework, calibration of en-
sembles using separate BPE models for each lead time may poseproblems, since the output
from BPE in principle are fully specified probability distributions and the temporal dimen-
sion is omitted. By simply sampling from each BPE model and randomly linking the sam-
ples in time, the inherent temporal dependencies in the raw ensemble forecasts are ignored.
To circumvent this dilemma, one may proceed as follows. First, for each lead time, com-
pute as many quantiles from the BPE model as there are ensemble members. The quantiles
should be evenly distributed; for example, if the number of ensemble members areN, then the
1/(N+1),2/(N+1), ...,N/(N+1) quantiles could be chosen. Second, for each raw ensem-
ble member, compute its rank at every lead time. Finally, foreach ensemble member, use its
ranks to choose corresponding BPE quantiles and link these in time. An example is given in
table 1.

Lead time +30 +54 +78 +102 +126 +150 +174 +198 +222
EPS rank 24 6 20 40 9 11 37 26 13
Percentile 47.1% 11.8% 39.2% 78.4% 17.6% 21.6% 72.5% 51.0% 25.5%

Table 1: An example of the ranks of an ensemble member and its corresponding percentiles as
a function of lead time. The percentiles are those that should be linked in time from
the BPE in order to form a single temporal simulation of precipitation.

4 Validation methods

Probabilistic forecasts provide more information to usersthan deterministic forecasts, and
are, consequently, also more extensive to validate. The attention will be paid to the two basic
properties of probabilistic forecasts,reliability andsharpness, and a measure summarizing the
performances. Rather than restricting the focus to validation of probabilities of precipitation
above a few predefined thresholds, as is commonly done, the “complete” probability distribu-
tions are here examined. The same validation methodology will be used to evaluate both the
proposed statistical calibration methods and the raw ensemble forecasts.
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4.1 Reliability

4.1 Reliability

Reliability roughly refers to the forecasting method’s ability to make probability distributions
that can be trusted. In the case of ensemble forecasts, the forecast probability distribution is of-
ten interpreted as a set of quantiles, defined such that the probability mass is evenly distributed
between the quantiles. For example, for an ensemble of 50 members, 51 bins or intervals are
formed, each with a claimed chance of 1/51 of containing the future observation. Assessment
of reliability therefore amounts to checking whether the real probabilities are approximately
equal by simply computing the proportion of observations ineach bin over many forecasts.
For precipitation ensembles, however, a slight modification is needed due to the fact that sev-
eral ensemble members may have zero precipitation [3]. In cases where zero precipitation is
observed and one or more of the ensemble members are zero, theevent is therefore randomly
assigned to one of the forecast bins with zero precipitation.

Evaluations of reliability are only carried out visually inthis report by means of histograms
of the proportions (frequently calledverification rank histograms). These histograms are not
only useful to draw conclusions on reliability, but also to reveal possible weaknesses in the
forecast system. For example, a U-shaped histogram indicates that the forecast distribution
is too narrow on average, while a dome shape is a sign of too sparse forecast distributions.
Further, asymmetric histograms are characteristic for biased ensembles.

4.2 Sharpness

Sharpness is a property depending only on the forecasts, notthe observations, and concerns the
spread of the probability mass. Intuitively, forecast uncertainty should be as low as possible
which is obtained by highly peaked probability densities orrapidly increasing cumulative
distribution functions. In practice, these characteristics are measured by the lengths of forecast
intervals formed by pairs of quantiles. In the experiments later, the average lengths of the 50%
and 90% forecast intervals defined by the 25th and 75th percentile, and the 5th and 95th
percentile, respectively, are applied to quantify sharpness.

4.3 Summary measure

Although reliability and sharpness more or less describe the quality of probabilistic forecast
systems, one is often confronted with the problem of comparing several forecast methods
and ranking them. For this task, summarizing measures are helpful, and a suitable score
for probabilistic precipitation forecasts is thecontinuous ranked probability score(CRPS).
Assuming the forecast is represented by the cumulative distribution functionF(x) andy is the
observation, the CRPS is defined as

CRPS=
∫

(F(x)− I(x > y))2dx (9)

whereI() is the indicator function which equals one if its argument istrue and zero otherwise.
The lower limit for the CRPS is zero and good forecasting models are characterized by having
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5 Experiments

scores as close to zero as possible. For many forecasts, the CRPS is computed for each fore-
cast and then averaged.

In order to compute the CRPS for ensembles of sizeN, the ordered ensemble members are
associated with the probabilities 1/(N +1),2/(N +1), ...,N/(N+1) and linear interpolation
is applied to evaluateF(x) between the members. Beyond the range of the ensemble, the
cumulative distribution function is for simplicity set to zero (below) or one (above). For
ensembles of size 50, as in this report, the cut-off has negligible effect on the score.

5 Experiments

5.1 Data

In order to test the statistical methods, nine sites in the southern Norway were chosen by the
hydro power companies, and daily precipitation measurements for the years 2004 and 2005
were made available, see table 2. For the same period, ensemble forecasts from ECMWF’s
ensemble prediction system (EPS) with a horizontal resolution of approximately 80×80 km2

were extracted and bilinearly interpolated to the sites. These forecasts were initiated at 00
UTC1 with lead times +30, +54, ..., +222 hour. The ensemble data comprised the meteorolog-
ical parameters total precipitation, relative vorticity,wind speed, and wind direction; the latter
three all at 850 hPa.

The climatology of each site is presented in table 2 in terms of a few statistics. For all sites,
there were clearly observed more dry events (less than 0.2 mm/day) than present in the EPS.
Since precipitation from the atmospheric models should be interpreted as the average over a
grid pixel, it is reasonable that the ratios are larger than 100%, but perhaps not as large as
those perceived here. For the percentiles, there were largevariations across the sites.

5.2 Description of experiments

The two years of data for each station was divided in a training set (2004) and a set for testing
the methods (2005). The specific implementations of the statistical methods were as follows.

5.2.1 Local quantile-to-quantile transformation (LQQT)

The transformation of the raw EPS precipitation was carriedout using only the shortest lead
time (+30h) and four randomly selected ensemble members; the latter was mainly adopted to
avoid too many redundant observations in the training sample. In the local linear least square
regression, the weight functionw() was defined as

w(xi,xnew) =

{

(1− ( |xi−xnew|
d )3)3 if |xi −xnew| < d

0 otherwise
(10)

1At met.no the 00 UTC run is currently available at approximately 09:45 local normal time.
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5.2 Description of experiments

Name Latitude Longitude # dry events 90 percentile Maximum
Lysebotn 59.06 6.65 242 136 171
Tustervann 65.83 13.91 214 92 94
Vågslid 59.77 7.37 244 70 203
Syrstad 63.02 9.44 227 87 74
Osen 61.25 11.74 186 107 112
Bygdin 61.33 8.80 394 106 96
Nelaug 58.66 8.63 208 100 151
Varaldset 60.67 8.25 427 71 52
Øyestøl 60.80 7.57 363 50 93

Table 2: List of sites, their locations and climates. The latter (last three columns) are specified
by the number of dry events, the 90 percentile and the maximumduring the two-year
period. For each site, the numbers are relative to the climatology of ECMWF EPS
and listed as percentages.

whered is a constant controlling the degree of smoothness in the transformation. For each
site, d was chosen, without any extensive testing, to be the distance from xnew to the 200th
nearest data point in the training sample.

5.2.2 Regression and local quantile-to-quantile transformat ion (REG+LQQT)

For each site, a linear regression with stepwise forward andbackward selection of predictors
was first performed on the training sample in order to produceadjusted precipitation forecasts
for all data. Every predictor mentioned in 5.1 were offered,including second degree polyno-
mials and first order interactions between variables; wind direction was included in terms of
four sine and cosine functions. The output from the linear regressions were then transformed
using LQQT as described in the previous paragraph.

5.2.3 Scaling factor (SCL)

In the scaling factor method (SCL), the factors were chosen tobe functions of the relative vor-
ticity, the wind speed and the wind direction; no attempts were made to include precipitation
amounts. The weight function was simply set to be one for the 20% nearest cases and zero for
the remaining. By that more robustness was likely gained forextreme situations. The param-
eterα was set to 0.5 implying that weather situations with modest precipitation amounts on
average got scaling factors close to one. The training data for (SCL) was only comprised of the
shortest lead time (+30h) in order to get as accurate relations between observed precipitation
and weather patterns as possible.
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5 Experiments

5.2.4 Bayesian processor of ensemble (BPE)

Originally, it was planned to include the four meteorological parameters available for all en-
semble members, that is 4×50 predictors, but brief experimentations concluded that it was not
feasible. Instead, two new predictors were created by usingthe adjusted ensemble obtained
by the REG+LQQT method. In the model for probability of precipitation only the mean was
applied, while for the conditional precipitation amounts the ensemble maximum was also in-
cluded.

In order to validate the BPE using the same approach as for theother forecast models, predic-
tions of the 1/51,2/51, ...,50/51 quantiles were made. Note that ifτ denotes the quantile of
interest andπ the probability of precipitation, then this implies that the(π −1+τ)/π quantile
must be estimated in the model for precipitation amount given precipitation occurrence. Esti-
mation was of course only carried out if(π −1+ τ)/π was positive; otherwise the quantiles
were set to the lower threshold for precipitation (0.1 mm).

5.3 Results

5.3.1 Reliability

The reliability of the various forecasting methods were examined, as explained in 4.1, by
means of verification rank histograms. Figure 1 shows these aggregated over the lead times.
Those for the raw EPS, clearly demonstrates that too many observations were below all en-
semble members and for some sites also above, but to a less degree. To some extent, the
former is due to the different scales of the measurements (rain gauges) and the size of the grid
boxes (about 80×80 km2). Too low spread in the ensemble may also be a reason.

The histograms for the scaling method (SCL) have roughly the same characteristics as those of
the EPS; thus, the method seemed to have no positive impact onthe reliability. This is slightly
surprising, but may be partly due to the small precipitationamounts which more or less are
left unaltered by the SCL method. The quantile-to-quantile transformation methods, LQQT
and REG+LQQT, on the other hand, should handle small amountswell, but still they were
not sufficiently reliable. The histograms for these two methods are more symmetric and also
U-shaped which is an indication of too little spread in the adjusted ensemble. The reliability
of the Bayesian processor of ensemble (BPE) was superior, with only slight deviations at a
few stations.

Figure 2 show similar histograms, but now aggregated over the stations. For the raw EPS and
the statistical ensemble member methods, the shortest leadtimes clearly posed most problems.
The main reason may be that the EPS is not designed to be properly calibrated for the two or
three first days. As expected, the problem decrease with leadtime as the forecast distributions
get more similar to the climatology and skill deteriorates.For unknown reasons, the BPE was
also somewhat unreliable for the first lead time. One possibility could be that the model for
probability of precipitation was not accurate enough. Another is that estimation uncertainty is
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5.3 Results

ignored which generally lead to too sharp distributions as is the case here.

5.3.2 Sharpness

Sharpness is evaluated on basis of the average lengths of the50% and 90% forecast inter-
vals, figures 3 and 4, respectively. With the reliability results in mind, it is not surprising
that the most reliable forecasting method, BPE, on average had quite long intervals for the
shortest lead times compared to those of the raw EPS. To some extent this was also evident
for the quantile-to-quantile transformation methods. Forthe scaling method (SCL), however,
no marked dependency on the lead time was observed which is likely due to the fact that the
estimated scaling factor is constructed on basis of training samples with lead time +30h only.
At two sites, Varaldset and Øyestøl, the raw EPS clearly had positive biases, as the statistical
methods were able to produce both more reliable and considerably sharper forecasts.

5.3.3 Overall score

The performances of the methods are summarized in figure 5 in terms of the continuous ranked
probability scores. The most notable feature is that for most sites the statistical methods were
better than the raw EPS. The improvements were largest for the shortest lead times and de-
creasing with lead time or as predictability worsen. Since biases, as those in the raw EPS, have
stronger influence on the CRPS when the uncertainty is low and statistical methods mainly are
able to reduce weaknesses due to biases, this is a reasonableobservation. Another and some-
what related explanation is that when predictability decreases, there is generally less potential
for improving the score. As a curiosity, it could also be mentioned that the absolute CRPSs
(not shown) of the raw EPS decreased with lead time at two of the sites. This is just another
indication of the strong negative impact biases may have on short lead times.

Among the statistical methods, the BPE had on average the best scores; the results at Syrstad,
Osen and Bygdin were especially convincing. Further, it canbe noticed that REG+LQQT
was clearly better than LQQT at a few sites which suggests that using information about the
synoptic circulation pattern was beneficial.

5.3.4 Heavy precipitation events

For hydro power applications heavy precipitation events are of considerable importance. In
figures 6, 7 and 8 the forecasts for the three events with the largest observed precipitation
amounts at each station are shown. In view of the good CRPSs forthe BPE, it is surprising
that the method was not able to predict the extreme cases better. In particular, it seems that the
predictions of probability of precipitation were quite poor in some instances. At Bygdin and
Osen, however, the predictions are relatively good which may explain why BPE is superior to
the other methods at these sites.

In figure 6, it can be noted that the cumulative distribution functions of REG+LQQT a few
times were “vertical” for large precipitation amounts. Although this improved the CRPS
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6 Concluding remarks

for these events, this feature should be regarded as a weakness in the implementation of the
method that should be possible to avoid.

At Vågslid, figure 6, two of the events were either very badly predicted or examples of errors
in the observational data. If the latter is true, these casesare detrimental for the statistical
methods and one might anticipate that the overall scores would have been better compared to
the raw EPS.

6 Concluding remarks

The study have demonstrated that it is possible to improve raw ensemble forecasts of precipi-
tation by means of statistical methods, but the improvements vary strongly from to site to site.
Well calibrated precipitation forecasts are in particularvital for applications where forecasts
directly are employed in succeeding physically based mathematical models like hydrological
runoff models. Thus, the role of statistical methods is immediate in such cases.

There is certainly scope for further developments of the statistical methods described here.
In the implementation of the quantile-to-quantile transformation method, cases with extreme
model precipitation may get very strong influence on the transformation of large amounts. In
order to make the transformation more robust in these situations, it would be beneficial to
apply some sort of resampling. The normal quantile transform in the BPE would also take
advantage of this.

On average BPE had the best performance on our data and is alsothe approach with the great-
est potential. However, our use of the method was not as originally planned; instead of using
every ensemble member as predictors, it ended up with using only a few statistics of the en-
semble as predictors. In principle, all ensemble members could be employed by letting them
have common parameters and maybe even by treating them as independent. Further experi-
ence is needed.

Future plans include the use of BPE with multi-model ensembles and more generally how
to deal with high-dimensional predictive information. Further, experiments have shown that
long homogeneous training samples, that is long periods with the same atmospheric model,
substantially can improve the quality of operational weather forecasts [6]. For hydro power
applications, it would be interesting to quantify the improvements of precipitation forecasts
as a function of the length of training period and relate these to the quality of raw operational
forecasts.
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Appendix A: Software

The statistical methods described in this report have been implemented using the statistical
programming language R and included in an R-package called SWEAP which can be ob-
tained from the author.

Some computer code examples are given below:

# load library
library(SWEAP)

# load ensemble data
# use ?lysebotn to get more information
data(lysebotn)

##
## Calibration by means of quantile-to-quantile transformation
##

# fit (using only the first ensemble member)
k <- lysebotn$NO == 1
fit <- lqqt.fit(lysebotn$RR.O[k], lysebotn$RR[k], lower=0.1,

nlls=20, tricube=TRUE)

# plot fitted transformation
plot(fit$x, fit$y, type="l", las=1, xlim=c(0,100), ylim=c(0,100),

xlab="Forecast (mm)", ylab="Observation (mm)", main="Transformation")
abline(0, 1, lty="dashed")

# calibrate a single ensemble forecast (generated 2005-09-12)
k <- lysebotn$ATIME == 2005091200
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cal <- lqqt.predict(fit, newx=lysebotn$RR[k])

# plot raw and calibrated forecasts as cumulative distribution functions
# original forecast (red), calibrated forecast (blue) and observation (black)
plot(sort(cal), 1:50/51, xlab="Precipitation", ylab="Cumulative probability",

type="b", col="blue", las=1)
lines(sort(lysebotn$RR[k]), 1:50/51, type="b", col="red")
abline(v=lysebotn$RR.O[k][1], col="black")
grid()

##
## Calibration by means of scaling
##

# estimate scaling factor for a single ensemble forecast
ktrain <- lysebotn$ATIME < 2005010100 & lysebotn$NO == 1
ktest <- lysebotn$ATIME == 2005091200
scl <- locscale.fit("RR.O", "RR", c("FF.L850","DD.L850","VO.L850"),

data=lysebotn[ktrain,], newdata=lysebotn[ktest,],
period=c(0,360,0))

# histogram of scaling factors
hist(scl, main="Scaling Factors for Ensemble Members")

# plot raw and calibrated forecasts as cumulative distribution functions
# original forecast (red), calibrated forecast (green) and observation (black)
plot(sort(scl*lysebotn$RR[ktest]), 1:50/51, type="b", col="seagreen3", las=1,

xlim=c(0,120), xlab="Precipitation (mm)", ylab="Cumulative probability")
lines(sort(lysebotn$RR[ktest]), 1:50/51, type="b", col="red")
abline(v=lysebotn$RR.O[ktest][1], col="black")
grid()

##
## Calibration by means of Bayesian Processor of Ensemble/Output
##

# load ensemble data
data(lysebotn2)

# compute ensemble mean and max
lysebotn2 <- cbind(lysebotn2,

EPS_0_MEAN=rowMeans(lysebotn2[,2:51]),
EPS_0_MAX=apply(lysebotn2[,2:51], 1, max))

# probability of precipitation
ktrain <- lysebotn2$TIME < 2005010100
ktest <- lysebotn2$TIME == 2005091406
pop.fit <- bpe2.fit(y=lysebotn2$RR.O[ktrain]>0.1,

x=lysebotn2[ktrain,"EPS_0_MEAN",drop=FALSE], sep="_")
pop <- bpe2.predict(pop.fit, newx=lysebotn2[ktest,"EPS_0_MEAN",drop=FALSE])

# precipitation amounts
k <- ktrain & lysebotn2$RR.O > 0.1
vars <- c("EPS_0_MEAN", "EPS_0_MAX")
prec.fit <- bpe.fit(y=lysebotn2$RR.O[k], x=lysebotn2[k,vars], lower.y=0.1, sep="_")

pr <- (1 - (50:1/51)) / pop # conditional quantile probabilities
precip <- bpe.predict(fit=prec.fit, newx=lysebotn2[ktest,vars], qt.prob=pr)

# plot raw and calibrated forecasts as cumulative distribution functions
# original forecast (red), calibrated forecast (green) and observation (black)
plot(sort(precip), 1:50/51, type="b", col="magenta4", las=1,

xlim=c(0,120), xlab="Precipitation (mm)", ylab="Cumulative probability")
lines(sort(unlist(lysebotn2[ktest,2:51])), 1:50/51, type="b", col="red")
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abline(v=lysebotn2$RR.O[ktest], col="black")
grid()
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Figure 1: Verification rank histograms for each method and station. The ranks are averaged
over the lead times. Well calibrated forecast methods have ranks close to the dashed
line. Note that some bars are clipped and should in fact be considerably longer than
they appear.
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Figure 2: Verification rank histograms for each method and lead time. The ranks are averaged
over the nine stations. Well calibrated forecast methods have ranks close to the
dashed line. Note that some bars are clipped and should in fact be considerably
longer than they appear.
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Figure 3: Average lengths of 50% forecast intervals as a function of lead time for the meth-
ods LQQT (blue), REG+LQQT (light blue), SCL (green) and BPE (magenta). The
interval lengths are specified in percentage of the EPS lengths (red and dashed).

18



References

Lead time (hour)

150

200

250

300

350

400

450

30 78 126 174 222

Lysebotn
LQQT
REG+LQQT
SCL
BPE

Lead time (hour)

100

120

140

160

30 78 126 174 222

Tustervann

Lead time (hour)

80

100

120

140

30 78 126 174 222

Vågslid

Lead time (hour)

100

150

200

250

30 78 126 174 222

Syrstad

Lead time (hour)

100

150

200

250

300

350

30 78 126 174 222

Osen

Lead time (hour)

100

150

200

250

300

30 78 126 174 222

Bygdin

Lead time (hour)

120

140

160

180

200

30 78 126 174 222

Nelaug (AE)

Lead time (hour)

55

60

65

70

75

80

85

30 78 126 174 222

Varaldset

Lead time (hour)

60

70

80

90

30 78 126 174 222

Øyestøl

Average width of 90% forecast intervals (% of EPS)

Figure 4: Average widths of 90% forecast intervals as a function of lead time for the meth-
ods LQQT (blue), REG+LQQT (light blue), SCL (green) and BPE (magenta). The
interval lengths are specified in percentage of the EPS lengths (red and dashed).
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scores are relative to the scores of EPS (red and dashed). Lowscores are best.
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Figure 6: Forecasts (+54h) in terms of cumulative distribution functions for the three cases
with largest observed precipitation amounts in the test data. The methods are raw
EPS (red), LQQT (blue), REG+LQQT (light blue), SCL (green) and BPE (magenta).
The observations are in black.
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Figure 7: Forecasts (+54h) in terms of cumulative distribution functions for the three cases
with largest observed precipitation amounts in the test data. The methods are raw
EPS (red), LQQT (blue), REG+LQQT (light blue), SCL (green) and BPE (magenta).
The observations are in black.
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Figure 8: Forecasts (+54h) in terms of cumulative distribution functions for the three cases
with largest observed precipitation amounts in the test data. The methods are raw
EPS (red), LQQT (blue), REG+LQQT (light blue), SCL (green) and BPE (magenta).
The observations are in black.
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Figure 9: Estimated transformations obtained by the LQQT method for each of the nine sites.
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Figure 10: Estimated transformations obtained by least square regression followed by the local
quantile-to-quantile transformation method for each of the nine sites.
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Figure 11: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Lysebotn.
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Figure 12: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Tustervann.
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Figure 13: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Vågslid.
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Figure 14: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Syrstad.
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Figure 15: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Osen.
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Figure 16: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Bygdin.
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Figure 17: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Nelaug.
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Figure 18: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Varaldset.
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Figure 19: Estimated scaling factors as a function of wind direction, wind speed and relative
vorticity (Vo) at Øyestøl.
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