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Abstract

At sites with measurements or accurate estimates of ptatigm, it is often possible to
enhance precipitation forecasts by means of statisticéhoos. The topic of this study i
calibration of ensemble precipitation forecasts, and t® éind four statistical methods are
proposed and tested on real data: (i) transformation ofrebkemembers such that they n
the long run have the same climatology as the observatiopas((i), but preceded by lint
ear regression in order to take into account informatiorudbezulation pattern. (i) use of
scaling factors defined essentially as the ratio of the weijimean observed precipitation
amount and the weighted mean model precipitation amowntth@ Bayesian processor of
output/ensemble. The first three methods all operate on eastmble member individu
ally without any regard to other members, while the lattersugll members simultaneously
and, thus, has better statistical foundation. The stedistnethods are tested at nine sites
using ensemble precipitation forecasts by ECMWF’'s EPS wiid lémes up to ten days
as input. Although the results vary considerably betweersites, the statistical methods
generally improves the raw ensemble forecasts consideralelspecially for the shorter
lead times. Not surprisingly, the Bayesian processor ghatnsemble was on average the
best method, both in terms of continuous ranked probalsttyres and not least reliabil-
ity/calibration.

(2]

Keywords
Statistical calibration, ensemble forecasting, preatmn




Disiplinary signature Responsible signature

Knut Helge Midtbg, Head Section Meteorology @ystein Hov, Researcbtdire

Postal address Office Telephone Telefax e-mail: met.inst@met.no Bank account Swift code
PO Box 43 Blindern Niels Henrik Abels vei 40 +47 2296 3000 +47 2296 3050 Web: met.no 76950500601 DNBANOKK
N-0313 Oslo

Norway




1 Introduction

For producers of hydro power accurate precipitation fosexare of vital importance for
smooth production planning and optimal trading. The bafs@ég precipitation forecast up to
about two weeks ahead is mathematical models of the atmsplsually callechumerical
weather prediction (NWP) modelsThese models are based on the fact that if the state of
atmosphere is known at given point in time, the laws of phg/aitl foresee the future states.
As is well known, weather forecasts, and in particular gretation forecasts, are not always
correct. The causes are essentially twofold; first, thetswiwf the governing equations of
the atmosphere is sometimes highly sensitive to unceiaiirt the initial state, which is not
possible to determine exactly due to sparse measuremasuasn®, the NWP models are sim-
plifications of the atmospheric processes. Attempts to fifiyatme impacts of these causes
have led teensemble forecastirig which many forecasts are generated by making small per-
turbations to the most likely initial state and/or usinges@V parametrization of the physical
processes.

Ensemble forecasts provide additional information coragdan deterministic forecasts, but
when interpreted as probabilistic forecasts, the degremlibration is often unsatisfactory.

For example, the spread of the ensemble can be too low, tmticeoo strong confidence,

or precipitation amounts can be too small or large on averdgenany locations ensemble
forecasts can be enhanced by using statistical method$wdke advantage of historical data
comprised of both observations and ensemble forecastsjsnthe relation between them to
make well calibrated forecasts.

In this report two types of statistical methods are descrilied tested at sites of interest to
the hydro power community. Statistical methods operatingeach ensemble member indi-
vidually are considered in section 2, while section 3 deatls ane using complete ensembles.
Methods for validating ensemble forecasts are the topieofien 4. The outcome of apply-
ing the statistical methods on real data is reported in @e&;j followed by some concluding
remarks in section 6.

2 Statistical methods for ensemble members

2.1 Local quantile-to-quantile transformation (LQQT)
2.1.1 Brief description

A major source to imperfect ensemble forecasts is biasé®iatmospheric models; for exam-
ple, the mean forecasted precipitation amounts can beHasstihe mean observed amounts.
The aim of this approach is to remove biases quite generglobstructing transformations
such that the adjusted forecasts have the same climatologyagginal distribution as the
observations. In short, this is obtained by sorting histdrforecasts and observations (sep-
arately) and estimating the relationship between them. plyéng the fitted relation to a
new ensemble forecast, that is to each ensemble member eimdi&a point, a new adjusted



2 Statistical methods for ensemble members

ensemble is made. Although the new probabilities or questibt necessarily can be trusted,
they may validate better than the raw ensemble forecagiecidly if the latter contains bi-
ases.

2.1.2 Details

Let /v andFx denote the cumulative distribution functions for obseors and forecasts to be
calibrated. Then, by standard probability theory the randariable defined bFY‘l(Fx(X))
has the same distribution as the observatiéq¥. (However, this relation is only valid for vari-
ables with continuous distributions and thus cannot beiegmlirectly to daily precipitation
data. In addition, both distribution functions are unknaand must be estimated. To avoid
the latter, it is here proposed to estimate the transfoondiased on the relation between the
ordered samples of the two variables and make approprigstatents to deal with no pre-
cipitation events.

Assume that a training sample of sirds given wherey(;) <y < ... <y andxy) <
X2) < oo < Xn) denote sorted observations and forecasts, respectivdlg. trtansformation
may then be estimated on basis of the p(ay(g,x(i)),i =1,...,n. Further, letig be the number
of pairs where either the observation or the forecast is t@rdelow a lower threshold for
precipitation). Ifm() is the estimated transformation, then for a new foregasithe adjusted
forecastynhewis given by

m if Xpew> 0
Ynew(Xnew) = { y(?;(new) othneerv\\/lvise (1)

wherej is randomly selected frorfil, 2, ...,ip}.

The estimation ofm() can be accomplished using a variety of methods. In this stodgl
linear regression is chosen and the estimation is perfoasddllows. In the neighbourhood
of the new predictok,ew it iS reasonable to assume that the relation can be repessby

a simple linear functiorm(X) = ag + a1(X — Xnew). Its coefficients are then estimated by
minimizing the weighted least square loss function

(i) — M(X(i))) 2 WXy Xnew) (2)

M=

lo

wherew() is a weight function defined such that cases with forecasiegatlose toxnew get
more weight than those further away. The definitiom®j implies that the estimate(X,ew)

is simply the estimate afp. In theory, the minimization problem needs to be solved f@rg
new predictor value, but in practice it is usually sufficiéatestimate the relation on a fine
grid and apply linear interpolation to make predictions @tvkeen. Ideallym(x;;,)) should be
zero, but this constraint is not necessarily obeyed by (2practice, however, this is rarely a
problem, in particular for large training samples.



2.2 Regression and local quantile-to-quantile transféiongREG+LQQT)

2.2 Regression and local quantile-to-quantile transforma tion
(REG+LQQT)

A potential disadvantage with the local quantile-to-quaritansformation method (LQQT),
is that only one predictor variable can be applied. In regtibwever, the transformation could
benefit from being dependent on the weather situation at.h@me possibility would be to
divide the training sample into different classes accaydim a classification of the weather
patterns and apply LQQT to each category. With many clagseé$eav data in each the esti-
mated transformation would become quite uncertain andarettd result in poor transformed
ensemble forecasts.

An alternative solution would be to reduce many predictors single new one and then apply
LQQT to this. Variable reduction by means of linear regresss here proposed. The new
variable to put into LQQT is then predictions from the regiea. More flexible regression
techniques like neural networks could also be applied.

2.3 Scaling factor (SCL)
2.3.1 Brief description

A simple form for bias correction would be to scale the fostsa The easiest option of this
kind is to sum all historical observations and similarlyt@itorical forecasts and let the ratio
of the sums define the scaling factor. As above, it might be&alas to let the scaling factor
depend on the weather situation. To achieve this, the useighted sums is suggested.

2.3.2 Details

Again, assume that a training set of size available, and lety, ..., y, denote observed precip-
itation amounts and correspondirg ..., X, realizations of the predictor vector. Note that the
precipitation amount; from the atmospheric model does not need to be among thecpresli
X. The proposed scaling factsfx) is then defined as

sS(x) = (a + _iw(x,xi)yi> / <a + iw(x,xi)ri> (3)

wherew() are weights specified such that the historical events maslesito x get the largest
weights and, thereby, also the largest impact on the estohstaling factor. For interpretabil-
ity, it is also assumed that the weights add up to one. Thaguparameteux is introduced to
make the scaling factor more robust in cases where pretgits rare or the amounts modest.
When the sums are very small, thetends to dominate and the scale limits to one, that is, no
adjustment of the original forecast.
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3 Bayesian processor of ensemble/output (BPE)

A major disadvantage with statistical techniques applegzhsately to each ensemble member,
is that there is no guarantee that the resulting probalalgtributions will be well calibrated.
In contrast, statistical methods using the complete enkesimultaneously should in theory
be able to generate well calibrated distributions. In tkeigi®n, an approach of this kind called
the Bayesian processor of ensemble/output (BPE) is dest[ij [2]. Since no precipitation
events frequently occurs, the modelling is carried out io steps; first a model for the prob-
ability of precipitation, then a separate one for the disttion of precipitation amount given
that precipitation will occur.

3.1 Probability of precipitation
3.1.1 Brief description

The basic idea in the BPE method is to transform each vartaldeandard normal and carry
on as if the joint distribution is multivariate normal; mqgpeecisely, Bayes rule is applied to
decompose the estimation in simpler tasks. For probalmlitgrecipitation, this essentially
involves estimation of the distributions of the predictor precipitation events and no precip-
itation events, respectively.

3.1.2 Details

LetY be a binary variable representing precipitation occuregeand assume that it takes the
value one when precipitation occurs and zero otherwisehEgret fo(x*) and f1(x*) denote
the densities of the predictor vectowt when no precipitation and precipitation are observed,
respectively. From Bayes rule and the law of total probghbitifollows that the probability of
precipitationrt can be formulated by

T f1(X")
(1— 1) fo(x*) + me fa(x*)
_ 1-7¢ fo(x*)]
- {” n n(x*ﬂ

m=P(Y=1|x)

(4)

wherer = P(Y = 1) is the climatological probability of precipitation. In @$(x*) and
f1(x*) are multivariate Gaussian with correlation matriggsandZ,, equation (4) is

-1
m= |1+ 17 |2 exp(—}(x*tialx* — x*tZle*))} (5)

% 2

In practice, predictors based on output from atmospheridetsoare not Gaussian and trans-
formations of the original predictors are therefore necessary. A single multivariate trans-
formation ofx to x* is complicated to find, but transformation of each varialsldéeiasible

by means of the normal quantile transform [1]. Here, we apipdyLQQT approach, section



3.2 Precipitation amounts

2.1, in which the observations are replaced by quantilehénstandard normal distribution.
It is also possible to express| (5) in terms of the originad®rsx by means of standard
probability transformations, see [1].

3.2 Precipitation amounts
3.2.1 Brief description

The BPE for continuous variates resembles the one for bipesglictands described in the
previous paragraph. First, the observed precipitation wartsoand each predictor variable
are separately transformed to the standard normal disimitbu Note that only cases with

precipitation occurrence are applied, that is, the digtrdns are conditioned on that there will
be precipitation. Further, it is assumed that the distrdmubf the predictor vector given the
observation can be modeled using multivariate linear sesjom [4]. Bayes rule is then applied
to find the distribution of the observation as a function @& tiredictor. This distribution is

also normally distributed, but transformed back to the ioagunits, it can acquire a variety
of shapes. In conjunction with the probability of precigtiba, the re-transformed distribution
forms the forecast.

3.2.2 Detalls

LetY* andX* denote random variables for precipitation observatiors@edictors for days
with precipitation; in practice these will be transformeersions of the original variables.
Further, assume that the distributionYdfand the relation betweeXi andY* can be modeled
as follows

Y* ~ A (Ho, 07)
XY=y ~ A(a+PBy, S (6)

It can then be shown that the distributionf X* = x is normally distributed with expectation
and variance

E[Y*|X*=x] = o+ B'0g(a5BB +9)*(x—a— BLo)
VarlY*|X* =x] = of — B'05(0§BB" +S) 'Bg, (7)

see for example [5, Ch. 17.2.3]. By minimizing the mean sqeamr, the parameters in the
conditional distribution oX*|Y* =y, can be formulated as

B = CouY"X*)/d§
a = E[X] - Buo
S = CovX*) — CofY* X*)CouY* X*) / aZ, (8)

see for example [4, Ch. 7.8]. In practice, all parameters akmown and plug-in estimates
are here used to fully determine the distributiorY6fX* = x.



4 Validation methods

As mentioned precipitation observations and predictogsrareality not normally distributed
and transformations of these must be applied in order to rrekenodelling described above
realistic. Transformations are carried out separatelyefuwh variable by means of the normal
guantile transform which here is implemented using the LPproach described in section
2.1. The conditional distribution in original units can beriged from the distribution of
Y*|X* =X.

3.3 Application of BPE forecasts in hydrological models

Deterministic hydrological runoff models, like the HBV meldneed amongst other temporal
simulations of precipitation and temperature as input. his framework, calibration of en-
sembles using separate BPE models for each lead time maypuasdems, since the output
from BPE in principle are fully specified probability didititions and the temporal dimen-
sion is omitted. By simply sampling from each BPE model andlcamly linking the sam-
ples in time, the inherent temporal dependencies in the reserable forecasts are ignored.
To circumvent this dilemma, one may proceed as follows. tFis each lead time, com-
pute as many quantiles from the BPE model as there are ensendvhbers. The quantiles
should be evenly distributed; for example, if the numberngfeamble members alMg then the
1/(N+1),2/(N+1),...,N/(N+ 1) quantiles could be chosen. Second, for each raw ensem-
ble member, compute its rank at every lead time. Finallyefach ensemble member, use its
ranks to choose corresponding BPE quantiles and link thresme. An example is given in
table 1.

Lead time +30 +54 +78 +102 +126 +150 +174 +198 +222
EPS rank 24 6 20 40 9 11 37 26 13
Percentile 47.1% 11.8% 39.2% 78.4% 17.6% 21.6% 72.5% 51.09b6%

Table 1: An example of the ranks of an ensemble member andritssponding percentiles as
a function of lead time. The percentiles are those that shbellinked in time from
the BPE in order to form a single temporal simulation of ppéetion.

4 Validation methods

Probabilistic forecasts provide more information to usiian deterministic forecasts, and
are, consequently, also more extensive to validate. Tleataih will be paid to the two basic
properties of probabilistic forecastgliability andsharpnessand a measure summarizing the
performances. Rather than restricting the focus to vabdadf probabilities of precipitation
above a few predefined thresholds, as is commonly done, treplete” probability distribu-
tions are here examined. The same validation methodolotyyp&used to evaluate both the
proposed statistical calibration methods and the raw ebkeforecasts.



4.1 Reliability

4.1 Reliability

Reliability roughly refers to the forecasting method’slapito make probability distributions
that can be trusted. In the case of ensemble forecasts rdeaki probability distribution is of-
ten interpreted as a set of quantiles, defined such that ttapility mass is evenly distributed
between the quantiles. For example, for an ensemble of 50b@men51 bins or intervals are
formed, each with a claimed chance g5l of containing the future observation. Assessment
of reliability therefore amounts to checking whether thal igrobabilities are approximately
equal by simply computing the proportion of observationgath bin over many forecasts.
For precipitation ensembles, however, a slight modificaisoneeded due to the fact that sev-
eral ensemble members may have zero precipitation [3]. $es<ahere zero precipitation is
observed and one or more of the ensemble members are zesyehis therefore randomly
assigned to one of the forecast bins with zero precipitation

Evaluations of reliability are only carried out visually this report by means of histograms
of the proportions (frequently callecerification rank histograms These histograms are not
only useful to draw conclusions on reliability, but also eveal possible weaknesses in the
forecast system. For example, a U-shaped histogram irdichtt the forecast distribution
is too narrow on average, while a dome shape is a sign of toseparecast distributions.
Further, asymmetric histograms are characteristic fosdmleensembles.

4.2 Sharpness

Sharpness is a property depending only on the forecastd)@observations, and concerns the
spread of the probability mass. Intuitively, forecast uteiaty should be as low as possible
which is obtained by highly peaked probability densitiesrapidly increasing cumulative
distribution functions. In practice, these charactersstire measured by the lengths of forecast
intervals formed by pairs of quantiles. In the experimeatsii the average lengths of the 50%
and 90% forecast intervals defined by the 25th and 75th pgleeand the 5th and 95th
percentile, respectively, are applied to quantify shasgne

4.3 Summary measure

Although reliability and sharpness more or less descrileegtinality of probabilistic forecast
systems, one is often confronted with the problem of conmgaseveral forecast methods
and ranking them. For this task, summarizing measures dpfuheand a suitable score
for probabilistic precipitation forecasts is tleentinuous ranked probability sco(€RPS).
Assuming the forecast is represented by the cumulativelslision functionF (x) andy is the
observation, the CRPS is defined as

CRPS— /(F(x)—l(x>y))2dx ©)

wherel () is the indicator function which equals one if its argumertug and zero otherwise.
The lower limit for the CRPS is zero and good forecasting meded characterized by having



5 Experiments

scores as close to zero as possible. For many forecasts, th8 @Romputed for each fore-
cast and then averaged.

In order to compute the CRPS for ensembles of diz¢he ordered ensemble members are
associated with the probabilitiegMN +1),2/(N+1),...,N/(N+1) and linear interpolation

is applied to evaluaté& (x) between the members. Beyond the range of the ensemble, the
cumulative distribution function is for simplicity set teem (below) or one (above). For
ensembles of size 50, as in this report, the cut-off has giédgi effect on the score.

5 Experiments

5.1 Data

In order to test the statistical methods, nine sites in thettgon Norway were chosen by the
hydro power companies, and daily precipitation measurésnin the years 2004 and 2005
were made available, see table 2. For the same period, etesémntcasts from ECMWF's
ensemble prediction system (EPS) with a horizontal resmiwf approximately 8 80 kn?
were extracted and bilinearly interpolated to the sitesesehforecasts were initiated at 00
UTC! with lead times +30, +54, ..., +222 hour. The ensemble datgpdsed the meteorolog-
ical parameters total precipitation, relative vorticityind speed, and wind direction; the latter
three all at 850 hPa.

The climatology of each site is presented in table 2 in terfresfew statistics. For all sites,
there were clearly observed more dry events (less than 0.&laynthan present in the EPS.
Since precipitation from the atmospheric models shouldhberpreted as the average over a
grid pixel, it is reasonable that the ratios are larger th@@9%, but perhaps not as large as
those perceived here. For the percentiles, there were \@mgtions across the sites.

5.2 Description of experiments

The two years of data for each station was divided in a trgiset (2004) and a set for testing
the methods (2005). The specific implementations of thesstatl methods were as follows.

5.2.1 Local quantile-to-quantile transformation (LQQT)

The transformation of the raw EPS precipitation was caraetusing only the shortest lead
time (+30h) and four randomly selected ensemble membeazdatter was mainly adopted to
avoid too many redundant observations in the training saniplthe local linear least square
regression, the weight functiom() was defined as

(1— (B=X0ed)3)3 if |3 — xpeu) < d

; 10
0 otherwise (10)

W(Xj, Xnew) = {

1At met.no the 00 UTC run is currently available at approxiena09:45 local normal time.



5.2 Description of experiments

Name Latitude Longitude #dryevents 90 percentile Maximum
Lysebotn 59.06 6.65 242 136 171
Tustervann 65.83 13.91 214 92 94
Vagslid 59.77 7.37 244 70 203
Syrstad 63.02 9.44 227 87 74
Osen 61.25 11.74 186 107 112
Bygdin 61.33 8.80 394 106 96
Nelaug 58.66 8.63 208 100 151
Varaldset 60.67 8.25 427 71 52
dyestal 60.80 7.57 363 50 93

Table 2: List of sites, their locations and climates. Theelaflast three columns) are specified
by the number of dry events, the 90 percentile and the maxichuring the two-year
period. For each site, the numbers are relative to the ctitogy of ECMWF EPS
and listed as percentages.

whered is a constant controlling the degree of smoothness in tmsfivamation. For each
site, d was chosen, without any extensive testing, to be the distfmom x,ew to the 200th
nearest data point in the training sample.

5.2.2 Regression and local quantile-to-quantile transformat ion (REG+LQQT)

For each site, a linear regression with stepwise forwardewkward selection of predictors
was first performed on the training sample in order to procagjasted precipitation forecasts
for all data. Every predictor mentioned|in 5.1 were offened)uding second degree polyno-
mials and first order interactions between variables; wimeation was included in terms of

four sine and cosine functions. The output from the linegressions were then transformed
using LQQT as described in the previous paragraph.

5.2.3 Scaling factor (SCL)

In the scaling factor method (SCL), the factors were chosde tiunctions of the relative vor-
ticity, the wind speed and the wind direction; no attemptsenaade to include precipitation
amounts. The weight function was simply set to be one for 0% Rearest cases and zero for
the remaining. By that more robustness was likely gaine@xtreme situations. The param-
etera was set to 0.5 implying that weather situations with modestipitation amounts on
average got scaling factors close to one. The training @da{&ICL) was only comprised of the
shortest lead time (+30h) in order to get as accurate relati@tween observed precipitation
and weather patterns as possible.
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5.2.4 Bayesian processor of ensemble (BPE)

Originally, it was planned to include the four meteoroladiparameters available for all en-
semble members, that is<b0 predictors, but brief experimentations concluded thaas not
feasible. Instead, two new predictors were created by usiagdjusted ensemble obtained
by the REG+LQQT method. In the model for probability of ppatation only the mean was
applied, while for the conditional precipitation amourtie Ensemble maximum was also in-
cluded.

In order to validate the BPE using the same approach as fathes forecast models, predic-
tions of the ¥51,2/51, ...,50/51 quantiles were made. Note thatiflenotes the quantile of
interest andt the probability of precipitation, then this implies thaettt— 1+ 1) /T quantile
must be estimated in the model for precipitation amountrgmecipitation occurrence. Esti-
mation was of course only carried out(ifft— 1+ 1) /7T was positive; otherwise the quantiles
were set to the lower threshold for precipitation (0.1 mm).

5.3 Results
5.3.1 Reliability

The reliability of the various forecasting methods werersieed, as explained in 4.1, by
means of verification rank histograms. Figure 1 shows thggeegated over the lead times.
Those for the raw EPS, clearly demonstrates that too mangraedisons were below all en-
semble members and for some sites also above, but to a lessedefp some extent, the
former is due to the different scales of the measuremerits §eauges) and the size of the grid
boxes (about 8& 80 kn?). Too low spread in the ensemble may also be a reason.

The histograms for the scaling method (SCL) have roughlydineescharacteristics as those of
the EPS; thus, the method seemed to have no positive impa&oe oaliability. This is slightly
surprising, but may be partly due to the small precipitatmmounts which more or less are
left unaltered by the SCL method. The quantile-to-quanta@sformation methods, LQQT
and REG+LQQT, on the other hand, should handle small amaueits but still they were
not sufficiently reliable. The histograms for these two noehare more symmetric and also
U-shaped which is an indication of too little spread in thpuattd ensemble. The reliability
of the Bayesian processor of ensemble (BPE) was superitir,omiy slight deviations at a
few stations.

Figure 2 show similar histograms, but now aggregated owvesthtions. For the raw EPS and
the statistical ensemble member methods, the shortediiteeslclearly posed most problems.
The main reason may be that the EPS is not designed to be |yrepébrated for the two or

three first days. As expected, the problem decrease withtieadas the forecast distributions
get more similar to the climatology and skill deterioratEsr unknown reasons, the BPE was
also somewhat unreliable for the first lead time. One po#silmould be that the model for

probability of precipitation was not accurate enough. Amots that estimation uncertainty is

10



5.3 Results
ignored which generally lead to too sharp distributionssahé case here.

5.3.2 Sharpness

Sharpness is evaluated on basis of the average lengths 6D#eand 90% forecast inter-
vals, figures 3 and'4, respectively. With the reliabilityuks in mind, it is not surprising
that the most reliable forecasting method, BPE, on averageduite long intervals for the
shortest lead times compared to those of the raw EPS. To sei@et ¢his was also evident
for the quantile-to-quantile transformation methods. fharscaling method (SCL), however,
no marked dependency on the lead time was observed whidtelg tiue to the fact that the
estimated scaling factor is constructed on basis of trgisamples with lead time +30h only.
At two sites, Varaldset and @yestgal, the raw EPS clearly lusitige biases, as the statistical
methods were able to produce both more reliable and cormdijesharper forecasts.

5.3.3 Overall score

The performances of the methods are summarized in figuregbrmstof the continuous ranked
probability scores. The most notable feature is that fortraibss the statistical methods were
better than the raw EPS. The improvements were largest éoshiortest lead times and de-
creasing with lead time or as predictability worsen. Sinesés, as those in the raw EPS, have
stronger influence on the CRPS when the uncertainty is low tatidtical methods mainly are
able to reduce weaknesses due to biases, this is a reasobablgation. Another and some-
what related explanation is that when predictability dases, there is generally less potential
for improving the score. As a curiosity, it could also be memed that the absolute CRPSs
(not shown) of the raw EPS decreased with lead time at twoesites. This is just another
indication of the strong negative impact biases may havehort ead times.

Among the statistical methods, the BPE had on average thest@®s; the results at Syrstad,
Osen and Bygdin were especially convincing. Further, it bamoticed that REG+LQQT
was clearly better than LQQT at a few sites which suggestsuiag information about the
synoptic circulation pattern was beneficial.

5.3.4 Heavy precipitation events

For hydro power applications heavy precipitation evenesarconsiderable importance. In
figures 6, 7 and 18 the forecasts for the three events with tigesa observed precipitation
amounts at each station are shown. In view of the good CRPSkddPE, it is surprising
that the method was not able to predict the extreme cases.detparticular, it seems that the
predictions of probability of precipitation were quite pan some instances. At Bygdin and
Osen, however, the predictions are relatively good whick exglain why BPE is superior to
the other methods at these sites.

In figure 6, it can be noted that the cumulative distributiandtions of REG+LQQT a few
times were “vertical” for large precipitation amounts. dugh this improved the CRPS

11



6 Concluding remarks

for these events, this feature should be regarded as a wesaknéhe implementation of the
method that should be possible to avoid.

At Vagslid, figure 6, two of the events were either very badly joted or examples of errors
in the observational data. If the latter is true, these casesletrimental for the statistical
methods and one might anticipate that the overall scoresdd@ayve been better compared to
the raw EPS.

6 Concluding remarks

The study have demonstrated that it is possible to improweerssemble forecasts of precipi-
tation by means of statistical methods, but the improvesesaty strongly from to site to site.

Well calibrated precipitation forecasts are in particudaal for applications where forecasts
directly are employed in succeeding physically based nmagtieal models like hydrological

runoff models. Thus, the role of statistical methods is irdrate in such cases.

There is certainly scope for further developments of thésdteal methods described here.
In the implementation of the quantile-to-quantile tramsfation method, cases with extreme
model precipitation may get very strong influence on thedfamation of large amounts. In
order to make the transformation more robust in these sisit it would be beneficial to
apply some sort of resampling. The normal quantile tramsfor the BPE would also take
advantage of this.

On average BPE had the best performance on our data and thelapproach with the great-
est potential. However, our use of the method was not asnaligiplanned; instead of using
every ensemble member as predictors, it ended up with usitygaofew statistics of the en-
semble as predictors. In principle, all ensemble membeuiidoe employed by letting them
have common parameters and maybe even by treating themegseimdent. Further experi-
ence is needed.

Future plans include the use of BPE with multi-model ensesilaind more generally how
to deal with high-dimensional predictive information. Eher, experiments have shown that
long homogeneous training samples, that is long periods thi same atmospheric model,
substantially can improve the quality of operational weattorecasts [6]. For hydro power

applications, it would be interesting to quantify the imyements of precipitation forecasts
as a function of the length of training period and relate ¢htesthe quality of raw operational

forecasts.
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Appendix A: Software

The statistical methods described in this report have begabemented using the statistical
programming language R and included in an R-package caNgBAF which can be ob-
tained from the author.

Some computer code examples are given below:

# load library
I'i brary( S\EAP)

# | oad ensenbl e data
# use ?lysebotn to get nore information
dat a(l ysebot n)

#it
##t Cal i bration by means of quantile-to-quantile transformation
#it

# fit (using only the first ensenbl e nmenber)

k <- lysebotn$NO == 1

fit <- lqgqt.fit(lysebotn$RR O k], |ysebotn$RR[ k], |ower=0.1,
nl 1 s=20, tricube=TRUE)

# plot fitted transformation
plot(fit$x, fit$y, type="I", las=1, xlimrc(0,100), ylinrc(0,100),

x|l ab="Forecast (mMm)", ylab="CObservation (nm", nain="Transfornation")
abline(0, 1, Ity="dashed")

# calibrate a single ensenble forecast (generated 2005-09-12)
k <- |ysebot n$ATI ME == 2005091200
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cal <- Iqqt.predict(fit, newx=lysebot n$RR[ k])

# plot raw and calibrated forecasts as cumul ative distribution functions

# original forecast (red), calibrated forecast (blue) and observation (bl ack)

plot(sort(cal), 1:50/51, xlab="Precipitation", ylab="Cunulative probability"
type="b", col ="blue", |as=1)

lines(sort(lysebotn$RR[k]), 1:50/51, type="b", col ="red")

abl i ne(v=l ysebot n$RR. J k] [ 1], col ="bl ack")

grid()

H#

##t Cal i bration by means of scaling
#it

# estimate scaling factor for a single ensenble forecast

ktrain <- |ysebot n$ATI ME < 2005010100 & | ysebot n$NO ==

ktest <- |ysebotn$ATI ME == 2005091200

scl <- locscale.fit("RR O, "RR', c("FF.L850","DD.L850","VO L850")
dat a=l ysebotn[ ktrain,], newdata=l ysebotn[ktest,],
peri od=c(0, 360, 0))

# histogram of scaling factors
hi st (scl, main="Scaling Factors for Ensenbl e Menbers")

# plot raw and calibrated forecasts as cunul ative distribution functions

# original forecast (red), calibrated forecast (green) and observation (bl ack)

pl ot (sort (scl x| ysebot n$RR[ kt est]), 1:50/51, type="b", col ="seagreen3", las=1
xlimFc(0, 120), xlab="Precipitation (mm", ylab="Cunulative probability")

lines(sort(lysebotn$RR[ ktest]), 1:50/51, type="b", col ="red")

abl i ne(v=l ysebot n$RR. J ktest][1], col ="bl ack")

grid()

##

##t Cal i bration by means of Bayesian Processor of Ensenbl e/ Qut put
#it

# | oad ensenbl e data
dat a(| ysebot n2)

# conpute ensenbl e nmean and max

| ysebot n2 <- cbind(Iysebot n2
EPS_O0_MEAN=r owmeans( | ysebot n2[, 2: 51]),
EPS_0_MAX=appl y(l ysebotn2[, 2: 51], 1, nax))

# probability of precipitation
ktrain <- | ysebot n2$TI ME < 2005010100
kt est <- |ysebot n2$TI ME == 2005091406
pop.fit <- bpe2.fit(y=lysebotn2$RR  ktrain]>0.1,
x=l ysebot n2[ kt rai n, "EPS_O_MEAN", dr op=FALSE], sep="_"

pop <- bpe2.predict(pop.fit, newx=lysebotn2[ktest,"EPS 0_MEAN', dr op=FALSE] )
# precipitation anounts

k <- ktrain & lysebotn2$RR. O > 0.1

vars <- c("EPS_O_MEAN', "EPS_0_MNAX")

prec.fit <- bpe.fit(y=lysebotn2$RR O k], x=lysebotn2[k, vars], |ower.y=0.1, sep="_")

pr <- (1 - (50:1/51)) / pop # conditional quantile probabilities
precip <- bpe.predict(fit=prec.fit, newx=lysebotn2[ktest,vars], qt.prob=pr)

# plot raw and calibrated forecasts as cumul ative distribution functions
# original forecast (red), calibrated forecast (green) and observation (bl ack)
pl ot (sort (precip), 1:50/51, type="b", col ="magenta4", |as=1

x| i mec(0, 120), xlab="Precipitation (mm", ylab="Cunulative probability")
lines(sort(unlist(lysebotn2[ktest,2:51])), 1:50/51, type="b", col ="red")
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abl i ne(v=l ysebot n2$RR J ktest], col ="bl ack")
grid()
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EPS LQQT REG+LQQT scL BPE

Lysebotn

Tustervann

Vagslid

Syrstad

Osen

Bygdin

Nelaug (AE)

Dyestgl

Figure 1: Verification rank histograms for each method amdi@t. The ranks are averaged
over the lead times. Well calibrated forecast methods hawks close to the dashed
line. Note that some bars are clipped and should in fact beiderably longer than
they appear.
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Figure 2: Verification rank histograms for each method amad me. The ranks are averaged
over the nine stations. Well calibrated forecast methods lmanks close to the
dashed line. Note that some bars are clipped and should irb&considerably
longer than they appear.
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Figure 6: Forecasts (+54h) in terms of cumulative distidgiutfunctions for the three cases
with largest observed precipitation amounts in the test.ddhe methods are raw
EPS (red), LQQT (blue), REG+LQQT (light blue), SCL (greend 8PE (magenta).
The observations are in black.

21



References

Syrstad

04 06 08 1.0

Cumulative probability

0.2

0.0
|

\ \ \ \
0 10 20 30

Precipitation (mm)

Osen

08 1.0
|

0.6

Cumulative probability
0.4

0.2

0.0

\ \ \
15 20 25

Precipitation (mm)

Bygdin

08 1.0
|

0.6

Cumulative probability
0.4

0.2

0.0

\ \ \ \ \
10 15 20 25 30

Precipitation (mm)

Cumulative probability

0.2

Cumulative probability

0.2

Cumulative probability

0.2

08 1.0
|

0.6

0.4

0.0

08 10

0.6

0.4

0.0

08 1.0

0.6

0.4

0.0

Syrstad

|

\

T T T
5 10 15 20 25 30 35

0
Precipitation (mm)
Osen
T T T T T T 1
0O 5 10 15 20 25 30
Precipitation (mm)
Bygdin
[
T T T T 1
0 10 20 30 40

Precipitation (mm)

Cumulative probability

0.2

Cumulative probability

0.2

Cumulative probability

0.2

08 10

|

0.6

0.0

08 1.0

0.6

0.4

0.0

08 1.0

0.6

0.4

0.0

|

|

|

Syrstad
T~
T T T T T 1
0 5 100 15 20 25
Precipitation (mm)
Osen
7 I
T T T T T T 1
0 5 10 15 20 25 30
Precipitation (mm)
Bygdin
T T T T T
0 5 10 15 20 25 30

Precipitation (mm)

Figure 7: Forecasts (+54h) in terms of cumulative distrdiutfunctions for the three cases
with largest observed precipitation amounts in the test.ddhe methods are raw
EPS (red), LQQT (blue), REG+LQQT (light blue), SCL (greend &P E (magenta).
The observations are in black.

22



References

o . Nelaug (AE) o . Nelaug (AE) o . Nelaug (AE)
— / - —
e / ) - //‘/
= o = O = o
3 3 3
Qo o 2 o 2 ©
=i ° S g s |
2 £ < 2 < /
‘_g [} % o ‘_g [} /
g g g
o g o 3 o g
< | o _| o |
o 1 1 1 1 1 1 1 © 1 1 1 1 o 1 1 1 1 1 1
0 10 20 30 40 50 60 70 0 10 20 30 40 0 10 20 30 40 50 60
Precipitation (mm) Precipitation (mm) Precipitation (mm)
o Varaldset o Varaldset o Varaldset
- - 7] /I - | |_—
> @ | > @ | > @ | /
£ o £ o £ o
2 2 2
Qo o 2 o 2 ©
23] 23] 23]
3] [ 3]
2 < | 2 < | R
‘_:5 o f_; o ‘_:5 o
g g g
o S+ oS- o S+
o |7 o | £ o |
© 1 1 1 1 1 1 S 1 1 1 1 1 © 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25
Precipitation (mm) Precipitation (mm) Precipitation (mm)
o . Dyestgl ) dyestgl o . Jyestgl
— — — %
N 23 N
3 3 3
N g, / N /
23] 23] 23]
] [ 3]
2 < | 2 < | 2 < |
% o % =} % o
g g g
o S+ oS- oS-
o |I A o o |
© 1 1 1 1 1 1 S 1 1 1 1 © 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 0 10 20 30 40 50
Precipitation (mm) Precipitation (mm) Precipitation (mm)
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Local Quantile to Quantile Transformations (LQQT)
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Figure 9: Estimated transformations obtained by the LQQThoetfor each of the nine sites.
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Regression and Local Quantile to Quantile Transformations (REG+LQQT)
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Figure 14: Estimated scaling factors as a function of wirrdation, wind speed and relative
vorticity (Vo) at Syrstad.
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Figure 15: Estimated scaling factors as a function of wirrdation, wind speed and relative
vorticity (Vo) at Osen.
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Figure 16: Estimated scaling factors as a function of wirréation, wind speed and relative

vorticity (Vo) at Bygdin.
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vorticity (Vo) at Nelaug.
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Figure 18: Estimated scaling factors as a function of wirrdation, wind speed and relative
vorticity (Vo) at Varaldset.
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Figure 19: Estimated scaling factors as a function of wirrdation, wind speed and relative

vorticity (Vo) at Qyestal.
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