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ABSTRACT

The results for 2000–2100 from six global climate models following the latest SRES B2 emission scenarios were
examined in terms of common Empirical Orthogonal Functions (cEOFs). These common EOFs were also used as a basis
for empirical downscaling, employing a stepwise multiple regression and a number of different predictors and domains.
Statistics is presented for linear trend estimates and their associations with GCMs, predictors and domains. The sea level
pressure (SLP) is not considered as an appropriated predictor for temperature, as the warming signal is not well captured
by the SLP. The downscaling analysis indicated a general warming of the local climate, however, there were a few cases
where negative temperature trends had been obtained. An explanation for these negative trends is that the predictor
domains chosen were not appropriate.

The GCMs were generally not able to reproduce the observed annual cycle in the precipitation for interpolated
locations. However, the downscaling analysis suggested generally good skill for the models using large-scale precipitation
as predictor. Through empirical downscaling, local precipitation series with a realistic annual cycle can be constructed, but
the large scatter in local seasonal precipitation variations interpolated from GCMs calls for the question whether current
GCMs are able to predict how precipitation patterns will change under an enhanced greenhouse warming. There was no
clear signal or consensus regarding future precipitation trends in traditional SLP based downscaling, but new downscaling
models employing anomalous large-scale precipitation rates point to slight future trends in the precipitation for a selection
of locations.

Key words: Climate change empirical downscaling monthly mean temperature monthly precipitation
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Downscaling and climate analysis 5

1 Introduction

Since the the downscaling of temperature and precipitation scenarios carried out by Benestad (2002a)
a new set of emission-based climate scenarios have become available. The new set of emission scenarios
are commonly referred to as the Special Report Emission Scenarios (SRES) (IPCC, 2001). This report
updates the work by Benestad (2002a) with the new SRES-based climate scenarios.

2 Data & Methods

2.1 Data

The climate scenarios were downloaded from the IPCC Internet site∗ and subsequently converted to the
netCDF format (Benestad, 2003c). The R-based statistical package clim.pact (Benestad, 2003a,b) was
employed in order to compute EOFs and then to downscale the GCM results to local station values for the
Nordic region. The empirical downscaling followed the procedure described in Benestad (2002a,b, 2001b),
but using multiple regression instead of Canonical Correlation Analysis (CCA) for model calibration.
The empirical downscaling was carried out for a set of stations (Tuomenvirta et al., 2001) in the Nordic
countries, and the location of these stations are shown in Figure 1.

2.2 Method

The climatic trends presented in this report consist of linear best-fit evolution to time over the 2000-2100
interval, using the R regression model “lm()”. The empirical downscaling was applied using adjusted
EOFs (Imbert & Benestad, 2003) in order to correct for systematic GCM errors and to improve the
match between the GCM simulations and the real world, unless otherwise stated. The EOF adjustment
consisted of re-scaling the part of the PCs describing the GCM results so that they have the same mean
and variance as the part describing the observations before year 2000.

Although Benestad (2003c) applied a “first-order” quality control to the SRES-based GCM results
and found realistic description of the mean values, it is important to assess the realism of the models’

∗http://ipcc-ddc.cru.uea.ac.uk/dkrz/dkrz index.html
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Figure 1. Map showing the location the Nordklim stations
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variability and their description of the spatial structure of the climatic anomalies. By examining the
common EOFs (Sengupta & Boyle, 1998; Barnett, 1999; Flury, 1988), a simple evaluation can be made
which is directly relevant to the empirical downscaling, as the downscaling was carried out in the com-
mon EOF reference frame. Here, the evaluation was performed on mixed-common EOFs, which involve
different entities as well as different data sources (i.e. observation and GCM). The 2-meter temperature
[T(2m)] and sea level pressure (SLP) data were combined by synthesising new maps holding the maps
of the T(2m) and SLP side-by-side in a similar fashion as the ’CPCA’ approach described in Bretherton
et al. (1992). The construction of these mixed fields was carried out using the mixFields()-function in
the clim.pact-package for R. The mixed data sets were concatinated (along the time axis) in the same
way as described by Sengupta & Boyle (1998); Barnett (1999); Flury (1988) (using the catFields()-
function from clim.pact), and EOFs (henceforth referred to as ’mixed common EOFs’) were estimated
for these combined mixed fields (using the EOF()-function from clim.pact). Mixed-common EOFs has
been employed before in empirical downscaling for local temperature on Svalbard (Benestad et al., 2002).
The phrase ’common EOFs’ (without ’mixed’) will be used to denote EOFs estimated from a concati-
nated field (e.g. a gridded analysis and GCM results) but using one meteorological paramater only (e.g.
SLP). The empirical downscaling was implemented with the DS()-function from clim.pact (e.g. see the
examples given in the documentation of the clim.pact-package for R).

3 Results

3.1 Quality control: common EOFs

Figures 2 – 7 show January unadjusted mixed-common EOF diagnostics for the ECHAM4/OPYC3 GS-
DIO integration, the ECHAM4/OPYC3 B2 SRES integration, the CCCma B2 SRES integration, the
CSIRO B2 SRES integration, the HadCM3 B2 SRES integration, and the NCAR-PCM B2 SRES integra-
tion respectively. A superficial inspection suggests similar large-scale feature in the ECHAM4/OPYC3
and the CCCma results. However, the part of the PCs representing the CCCma results has smaller am-
plitude than the observations (Figure 4b). The CSIRO GCM appears to give less realistic temperature
pattern and smoother SLP anomalies (Figure 5a). These spatial structures are dominated by the GCM
results because the GCM record was longer than that of the observations. The HadCM3 results give
more prominent small-scale details in the temperature field than the other models, and SLP field hints
to a realistic storm track (Figure 6a). The NCAR-PCM results suggest a presence of systematic errors in
the SLP anomalies, and problems describing the land-sea temperature contrasts (Figure 7a). The strong
weights over ocean areas in the temperature pattern may be a result of unrealistically cold conditions in
the models description of the present-day climate and a southward bias in the ice-edge location. These
EOF structures are dominated by the GCM because of the simulated longer record, and the amplitude
of the leading PC weights are only slightly greater for the GCM than for the observations (Figure 7b).

Panel c in Figures 2 – 7 show show scatter plots between the leading two PCs. The two leading
PCs exhibit similar distributions for all the models, except for CCCma where the weights in the leading
PC are weaker for the GCM than the NCEP re-analysis. For the second PC, the distribution of the
NCEP values exhibits three outliers (Figure 4c). Panel d in Figures 2 – 7 show show the proportional
variance (eigenvalues) associated with the leading EOFs. The two leading modes were well separated
(North et al., 1982) for the NCEP-ECHAM4/OPYC3 and the NCEP-HadCM3 EOFs, but not for the
other GCMs. Although the first and second EOFs were not resolved for the NCEP-NCAR-PCM data
according to North et al. (1982), their error bars barely overlapped. The second and third modes were
clearly degenerate (a ’pair’ with similar values) in the various mixed-common EOF results except for
the CSIRO model.

In summary, the ECHAM4/OPYC3 and HadCM3 models appear to give the most realistic descrip-
tion of the anomalies over northern Europe.
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Figure 2. Mixed-common EOF products from the ECHAM4/OPYC3 GSDIO integration for January. (a) leading
spatial EOF patterns, (b) leading PC (red= NCEP; blue= GCM), (c) comparison between scatter plots between
the two leading PCs from NCEP reanalysis (1958–1998) and the GCM (“1860”–”2050”), (d) the proportional

variance described by the leading modes.
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Figure 3. Mixed-common EOF products from the ECHAM4/OPYC3 B2 SRES integration for January. (a)
leading spatial EOF patterns, (b) leading PC (red= NCEP; blue= GCM), (c) comparison between scatter plots
between the two leading PCs from NCEP reanalysis (1958–1998) and the GCM (see Table 4 for time intervals),

(d) the proportional variance described by the leading modes.
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Figure 4. Mixed-common EOF products from the CCCma B2 SRES integration for January. (a) leading spatial
EOF patterns, (b) leading PC (red= NCEP; blue= GCM), (c) comparison between scatter plots between the
two leading PCs from NCEP reanalysis (1958–1998) and the GCM (see Table 4 for time intervals), (d) the

proportional variance described by the leading modes.
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Figure 5. Mixed-common EOF products from the CSIRO B2 SRES integration for January. (a) leading spatial
EOF patterns, (b) leading PC (red= NCEP; blue= GCM), (c) comparison between scatter plots between the
two leading PCs from NCEP reanalysis (1958–1998) and the GCM (see Table 4 for time intervals), (d) the

proportional variance described by the leading modes.
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Figure 6. Mixed-common EOF products from the HadCM3 B2 SRES integration for January. (a) leading spatial
EOF patterns, (b) leading PC (red= NCEP; blue= GCM), (c) comparison between scatter plots between the
two leading PCs from NCEP reanalysis (1958–1998) and the GCM (see Table 4 for time intervals), (d) the

proportional variance described by the leading modes.



12 Benestad

a

−40 −20 0 20 40

55
60

65
70

75
80

EOF pattern #1(field)

NCEP & NCAR−PCM−B2 temp + slp + temp  ( Dec )
Longitude

La
tit

ud
e

slp
temp

b

1960 1980 2000 2020 2040 2060 2080 2100
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Principal component (field)

NCEP & NCAR−PCM−B2 temp + slp + temp  ( Dec )
yymm

P
C

[, 
i.e

of
]

c

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

PC scatter plot: NCEP v.s. NCAR−PCM−B2

c(eof$PC[, 1] − 0.1, eof$PC[, 1] + 0.1)

c(
eo

f$
P

C
[, 

2]
 −

 0
.1

, e
of

$P
C

[, 
2]

 +
 0

.1
)

NCEP
NCAR−PCM−B2

d

5 10 15 20

0
10

20
30

40

The fraction of variance accounted by the EOFs

NCEP & NCAR−PCM−B2 temp + slp + temp  ( Dec )
EOF order

V
ar

ia
nc

e 
(%

)

Figure 7. Mixed-common EOF products from the NCAR-PCM B2 SRES integration for January. (a) leading
spatial EOF patterns, (b) leading PC (red= NCEP; blue= GCM), (c) comparison between scatter plots between
the two leading PCs from NCEP reanalysis (1958–1998) and the GCM (see Table 4 for time intervals), (d) the

proportional variance described by the leading modes.
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3.2 Skill & trend statistics

Summary statistics were produced for the downscaled results of the climate model output following the
SRES B2 emission scenario in order to get a quick overview over the main downscaled characteristics. The
predictands in this study were taken from the Nordklim data (Tuomenvirta et al., 2001) (see Figure 1).
Figure 8 shows a measure of the predictor skill associated with the various predictor choices, here the R2-
estimates associated with the multiple regression between the local series and the large-scale anomalies.
The R2 values indicate how much of the variance the downscaled results describe, where 0% denotes no
skill and 100% means a perfect reproduction. Panel (a) shows the R2 estimates for the temperature for
all calendar months (January–December) and panel (b) shows the same analysis for the precipitation.
anels (c) and (b) show the downscaled linear trend estimates associated with the various predictors for
temperature and precipitation respectively. The interpretations of Figure 8(a) are that temperature-
based (purely temperature or mixed-field predictor including temperature) are associated with the best
description of the link between the large and small temperature scales. Precipitation rate and SLP give
similar skill in the region R2

∼ 40–70% in describing the link between large and small scales, whereas
humidity-based predictors yield lower scores. Panels (c) and (d) show the trend statistics related to the
various predictors. SLP gives significantly lower trend estimates than the temperature-based predictors.
The various predictors for precipitation do not distinguish much from one another, with the exception
of the mixed field giving a greater spread.

Figure 9 shows trend statistics related to the various GCMs, each box-and-whisker entity based
on all the Nordklim stations. The GCM-based differences for indivudual sites will be resolved later on
in this paper. All the climate models indicate a warming of a similar magnitude. Hence, there is a
good agreement amongst the various GCMs regarding the general warming. The same statistics for the
downscaled precipitation trends (panel b), shows that all the GCMs indicate a scatter centred around
zero, but with different range for different GCMs. CSIRO, ECHAM4/OPYC3 and GFDL suggest a
greater range (stronger trends) than CCCma, HadCM3 and NCAR-PCM. Panels (c) and (d) show
trend statistics associated with different predictor domain choices. The multi-model ensemble results
(all Nordklim stations) do not appear, from these statistics, to be very sensitive to the predictor domain.
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Figure 8. Box-whisker plots of R2-estimates dervied from the multiple regresion between the local series and
large-scale anomalies (a,b), and linear trend rates (in time, the unit is ◦C/decade or mm/month per decade)
associated with varous predictors. The box shows the interquantile range and the whiskers extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box. The outliers are shonw

seperately.
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Figure 9. Box-whisker plots whowing linear trend rates (in time) associated with the individual GCMs (a,b)
and different predictor domain (c,d). The unit of the tend rates are ◦C/decade and mm/month per decade for
panels (a,c) and (b,d) respectively. The box shows the interquantile range and the whiskers extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box. The outliers are shown

seperately.



16 Benestad

3.3 Cases with a projected cooling

Although the statistics indicate a general warming, there are some cases where negative temperature
trends have been calculated for the downscaled SRES B2 scenarios. It is important to look in more detail
on the cases where a cooling is obtained in climate scenarios that are known to describe a warming trend.
It is expected that predictors based solely on SLP, which does not capture the general warming signal
well (Figure 8(c)), may result in a number of cases with negative temperature trends due to random
variability (year-to-year variations). Table 1 lists the number of negative trends associated with the
different predictors, and the SLP-only predictor is responsible for most of these cases. However, there
are a number times where the temperature-based predictors also produce a negative temperature trend,
contrary to expectations. In order to examine some of these, the next summary of statistics is limited
to the temperature-only predictor and to the cases with R2 >50%. Tables 2 and 3 show the number of
negative temperature trends associated with the different GCM, domain, and calendar month. Most of
the negative trends (30%) are associated with the Canadian climate model CCCma whereas the German
ECHAM4/OPYC3 model accounted for 8%. The CCCma model had lower spatial resolution than the
others, with the exception of the Australian CSIRO model (Table 4). There is also a tendency for the
negative trend estimates being more common during winter when the inter-annual variability is most
pronounced (Table 3).

Table 5 shows the number of negative trend-estimates according to location. The locations with
most cases included Bjørnøya (36), Svalbard (32), Akureyri (29), Vardø (28), Jan Mayen, Karasjok, (26),
Tromsø (25), Nesbyen (24), Vestervig (24), and Stykkisholmur (22). The predictor domains were either
20◦W–40◦E & 52◦N–70◦N or 40◦W–40◦E & 52◦N–80◦N. The former domain does not extend sufficiently
far north as to make it an appropriate choice for empirical downscaling of Arctic stations. Figure 10
illustrates how domains that do not sufficiently cover the vicinity of the stations may produce too low
warming trends. Benestad (2002b) warned against the danger in applying a ’blind’ analysis without
inspecting the predictor patterns e.g. for physical plausibility, and illustrated how cooling trends can be
inferred for Greenlandic stations when the predictor domain focuses on northern Europe. In that case,
the downscaling models (correctly) identifies the North Atlantic Oscillation (NAO) pattern with an anti-
correlation between the temperature in western Greenland and northern Europe as the main feature. If
the GCMs project a stronger warming over northern Fennoscandia for the future, then the established
empirical relationship can produce a misleading picture with a (spurious) cooling over Greenland. Since
it is practically impossible to manually check the plausibility of the large sample of downscaled trends
presented here, this analysis admitedly suffers from being ’blindly’ downscaled. The predictor domains
are nevertheless believed to be appropriate for a large number of the stations presented here if the Arctic
stations are excluded (a different set of predictor domains should be used for the Arctic stations).

.slp. .slp.temp. .temp. total
CCCma count 795 298 235 13192
CSIRO count 1460 140 81 13192
ECHAM4/OPYC3 count 1139 166 64 13192
GFDL count 126 3332
HadCM3 count 1209 160 159 13056
NCARPCM count 1096 94 124 13056
all count 5699 858 789 69020
all proportion 35% 3% 4% 100%

TABLE 1. Number of cases with a negative temperature trend for each predictor type. Here all the trend
estimates for the SRES A2 (476) and B2 (68544) scenarios were included. The total number of trend estimates
is 170544, of which 24604 (14.4%) were negative. The time interval over which the linear trend was estimated

was the same as in Figure 3–7 (see Table 4 for time intervals).
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month CCCma CSIRO ECHAM4/OPYC3 GFDL HadCM3 NCARPCM
Jan 43 4 8 19 17 32
Feb 44 3 5 12 78 11
Mar 16 6 3 5 7 23
Apr 9 1 0 9 0 4
May 18 12 3 11 4 4
Jun 8 7 16 13 5 3
Jul 25 10 1 10 0 9
Aug 11 2 2 2 1 3
Sep 8 10 7 4 7 1
Oct 8 9 8 9 2 19
Nov 22 7 6 23 14 3
Dec 21 8 5 7 23 10
all 233 79 64 124 158 122

TABLE 2. Number of cases with a negative temperature trend for each GCM. Here only the trends estimates
derived using the temperature only predictor (“.temp.”) and with R2 >50% were included (780 [4.0%] cases of

negative trend in total of in the category “.temp.” and R2 >50%). SRES A2 (476) and B2 (68544).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
D1 70 77 32 15 6 3 41 8 8 8 30 22
D2 24 29 20 8 20 8 11 12 10 39 22 27
D3 9 29 6 0 20 32 0 1 16 4 20 19
D4 20 18 2 0 6 9 3 0 3 4 3 6
all 123 153 60 23 52 52 55 21 37 55 75 74

TABLE 3. Number of cases with a negative temperature trend for each calendar month. Here only the trends
estimates derived using the temperature only predictor (“.temp.”) and with R2 >50% were included. The domains
are definedd as follows: D1=0E50E–62N82N, D2=20W40E–52N70N, D3=20W50E–32N75N, and D4= 40W40E–

52N80N. SRES A2 (476) and B2 (68544). Total number of data is 69020, which includes 68 stations.

Model Flux adj. ny×nx country A2 B2 period
CCCma Yes 96 × 48 Canada 136 13056 1900–2100
CSIRO Mk2 Yes 64 × 56 Australia 136 13056 1961–210
ECHAM4/OPYC3 Yes 128 × 64 Germany 136 13056 1990–2100
GFDL-30 No 96 × 80 U.S.A. 68 3264
GFDL-30 (SLP) 192 × 80
HadCM3 No 96 × 73 U.K. 0 13056 1950–2099
NCAR-CSM No 128 × 64 U.S.A. 0 0 2000–2099
NCAR-PCM No 128 × 64 U.S.A. 0 13056 1980–2099

TABLE 4. A summary of the GCMs and their spatial resolution. The notations nx and ny denote the number
of grid boxes along the zonal and meridional directions respectively.
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ABISKO AKUREYRI BERGEN-FLORIDA BJOERNOEYA
D1 3 10 4 4
D2 9 2 0 27
D3 2 15 2 4
D4 0 2 0 1
all 14 29 6 36

BORAAS FALSTERBO FALUN FERDER
D1 6 9 4 6
D2 0 2 0 4
D3 2 1 0 4
D4 1 2 0 0
all 9 14 4 14

GLOMFJORD GOETEBORG GOTSKA HAERNOESAND
D1 0 8 4 2
D2 1 0 0 0
D3 2 2 0 2
D4 0 2 0 0
all 3 12 4 4

HALMSTAD HAMMERODDE HAPARANDA HELSINKI
D1 9 10 2 4
D2 1 2 2 1
D3 1 1 1 1
D4 2 4 0 0
all 13 17 5 6

HOBURG HOLMOEGADD JAN MAYEN JOKKMOKK
D1 5 4 5 2
D2 0 0 20 1
D3 1 1 0 1
D4 0 1 1 0
all 6 6 26 4

JYVAESKYLAE KAJAANI KALMAR KARASJOK
D1 2 2 7 2
D2 3 1 0 20
D3 1 2 1 4
D4 1 3 3 0
all 7 8 11 26

KARESUANDO KARLSTAD KJOEREMSGRENDI KOEBENHAVN
D1 3 2 9 10
D2 12 1 1 1
D3 4 1 3 2
D4 0 0 0 2
all 19 4 13 15

KUOPIO KUUSAMO KVIKKJOKK LAERDAL
D1 2 0 3 7
D2 2 6 4 3
D3 0 1 1 1
D4 2 1 0 2
all 6 8 8 13

LANDSORT LAPPEENRANTA NESBYEN NORDBY
D1 5 2 13 6
D2 0 5 3 1
D3 0 0 6 2
D4 0 2 2 2
all 5 9 24 11

OELANDS OESTERSUND OKSOEY ONA
D1 8 3 7 3
D2 1 2 2 1
D3 0 1 1 4
D4 3 0 1 1
all 12 6 11 9

OSLO-BLINDERN OULU PITEAA REYKJAVIK
D1 5 0 3 6
D2 1 2 0 2
D3 1 1 1 7
D4 0 1 1 4
all 7 4 5 19

SHIP M SODANKYLAE STENSELE STOCKHOLM
D1 2 1 0 7
D2 0 4 0 1
D3 2 2 0 1
D4 1 0 0 0
all 5 7 0 9

TABLE 5. Number of cases with a negative temperature trend (see Table 4 for intervals) for each calendar
location. Here only the trends estimates derived using the temperature only predictor (“.temp.”) and with
R2 >50% were included (780 cases of negative trend in the grand total of 62,167, i.e. 1%). The domains are
defined as follows: D1=0E50E–62N82N (N = 17612), D2=20W40E–52N70N (N = 17136), D3=20W50E–32N75N

(N=17136), and D4= 40W40E–52N80N (N = 17136). SRES A2 (476) and B2 (68544) and from 6 GCMs.
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STYKKISHOLMUR SVALBARD SVEG SVENKSA
D1 7 1 5 7
D2 2 21 1 1
D3 11 9 2 0
D4 2 1 0 1
all 22 32 8 9

TAERNABY/HEMAVAN TAMPERE TEIGARHORN TORSHAVN
D1 1 2 4 4
D2 0 1 0 0
D3 1 1 6 7
D4 0 0 1 1
all 2 4 11 12

TRANEBJERG TROMSOE TURKU UPPSALA
D1 10 0 4 5
D2 1 18 1 0
D3 1 6 0 0
D4 2 1 1 1
all 14 25 6 6

UTSIRA VAERNES/TRONDHEIM VAEXJOE VARDOE
D1 7 2 7 0
D2 1 3 0 22
D3 2 3 1 3
D4 2 1 2 3
all 12 9 10 28

VESTERVIG VESTMANNAEYAR VINGA VISBY
D1 13 4 7 9
D2 3 3 1 0
D3 5 4 0 1
D4 3 2 2 0
all 24 13 10 10

TABLE 5. Number of cases with a negative temperature trend for each calendar location. Here only the
trends estimates derived using the temperature only predictor (“.temp.”) and with R2 >50% were included
(780 cases of negative trend in the grand total of 62,167, i.e. 1%). The domains are defined as follows:
D1=0E50E–62N82N (N = 17612), D2=20W40E–52N70N (N = 17136), D3=20W50E–32N75N (N=17136), and

D4= 40W40E–52N80N (N = 17136). SRES A2 (476) and B2 (68544) and from 6 GCMs.

0E50E–62N82N 20W40E–52N70N 20W50E–32N75N 40W40E–52N80N total
CCCma 78 75 36 44
CSIRO 9 49 13 8
ECHAM4/OPYC3 12 19 31 2
GFDL 70 21 24 9
HadCM3 71 34 48 5
NCARPCM 80 32 4 6
all 320 230 156 74

TABLE 6. Number of cases with a negative temperature trend for each calendar month. Here only the trends
estimates derived using the temperature only predictor (“.temp.”) and with R2 >50% were included. SRES A2

(476) and B2 (68544) and from 6 GCMs.
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Figure 10. Downscaled annual mean temperature at Tromsø (a), Vardø (b), Jan Mayen (c), and Bjørnøya (d)
using different domains. These scenarios were derived from the ECHAM4/OPYC3 GSDIO integration following

the IS92a emission scenario (as opposed to the SRES B2 emission scenario for the rest of the results).



Downscaling and climate analysis 21

3.4 Downscaled temperature

Figure 11 shows seasonally stratified monthly mean temperatures downscaled for Oslo-Blindern. In
contrast to Figure 9(a), the different GCMs indicate slightly different temperature estimates for the
individual stations and seasons. The CCCma model has a tendency to produce estimates in the lower
part of the range from all GCMs. Also contrary to the impression from earlier studies based on IS92a
emission scenarios (Benestad, 2002b, 2004, 2002a, 2000b, 2001a), the winter-time warming does not
appear to be the strongest: here the magnitude of the spring-time warming is similar, apparently in
closer agreement with the observed trends in Norway (Benestad, 2001a). The GFDL model gives the
impression of smallest scatter, but this is because only the ’.temp.’ predictor was used for downscaling
this GCM (SLP was not available as only the surface pressure was available).

Figure 12 and 13 show the time series of winter temperature downscaled for Oslo, Tromsø, Bergen,
Reykjavik (Iceland), Helsinki (Finland), Jokkmokk (Sweden), Stockholm (Sweden), and Copenhagen
(Denmark), based on the different GCMs. Most of the scenarios indicate realistic variance, apart from
the CCCma which has a tendency to produce too weak inter-annual variations.

Figure 14 shows the same analysis as in Figure 11a, but for Tromsø, Reykjavik, Stockholm and
Abisko instead of Oslo. The estimates derived from the NCAR-PCM model tend to have a slightly
greater scatter than for the other models. The different GCMs tend to indicate similar future winter
warming in Tromsø, albeit with slightly weaker values for CCCma. At Stykkisholmur, there are some
variations amongst the different GCM-based estimates, with strongest warming in NCAR-PCM and
GFDL. The estimates based on the GFDL GCM have a smaller range than the others for Abisko, due
to the exclusion of SLP and the SLP-T(2m) mixed fields in the GFDL predictor set.

Figure 15– 20 present the results from Figures 11 & 14 as histograms and provides a crude measure
of probabilities associated with the warming at Oslo-Blindern, Tromsø, Bergen-Florida, Helsinki, Abisko
and Copenhagen, given the SRES B2 emission scenario and assuming the climate models and the em-
pirical downscaling are unbiased. These histograms show the distribution of all the trend estimates, also
those derived using only SLP as predictor. There is a bias towards zero trend in the SLP-based results,
which does not reflect the underlying CO2-related warming trend (Table 1 and Figure 8(c)). The tail
of the distribution has a tendency to protude further into negative values in winter than for the other
seasons, in agreement with the findings from Table 3. There are hints of secondary peaks around zero in
the distributions of winter, spring and summer temperatures, however, this feature is less pronounced
in autumn. The secondary peak around zero due to the SLP-only predictor is present in many of these
plots and therefore these distributions are biased. Hence, the actual warming projected by the models
is expected to be higher than that deduced from these histograms. The SLP-only predictor is therefore
not an appropriate predictor for local temperature.
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Figure 11. Downscaled monthly mean temperature trends for Oslo-Blindern for December–February (a), March–
May (b), June–August (c) and September–November (d). The trend estimates were derived using all predictor
types and domains, but only R2 >50% were included. The number of data points in each box is denoted near

the bottom axis.
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Figure 12. Downscaled winter temperature trends for Oslo-Blindern (a), Tromsø (b), Bergen-Florida (c) and
Reykjavik (d). The trends estimates derived using all predictor types and domains, but only R2 >50% were

included.
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Figure 13. The same as Figure 12, but for Helsinki (a), Jokkmokk (b), Copenhagen (c) and Stockholm (d).
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Figure 14. Downscaled winter temperature trends similar to Figure 11(a), but for for Tromsø (a), Stykkisholmur
(b), Stockholm (c) and Abisko (d). The trend estimates were derived using all predictor types and domains, but

only R2 >50% were included.
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Figure 15. Histograms of downscaled monthly mean temperature trends for Oslo-Blindern presented in Figure 11
for December–February (a), March–May (b), June–August (c) and September–November (d). The trend estimates
were derived using all predictor types and domains, but only R2 >50% were included. The thin black dashed
line shows the best-fit Gaussian distribution of all the trend estimates and the red, blue, and green curves show
histogram for subsets derived using temperature, SLP and a combination of temperature and SLP respectively.
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Figure 16. Histograms of downscaled monthly mean temperature trends for Tromsø presented for December–
February (a), March–May (b), June–August (c) and September–November (d). The trend estimates were derived
using all predictor types and domains, but only R2 >50% were included. The thin black dashed line shows the
best-fit Gaussian distribution of all the trend estimates and the red, blue, and green curves show histogram for

subsets derived using temperature, SLP and a combination of temperature and SLP respectively.
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Figure 17. Histograms of downscaled monthly mean temperature trends for Bergen-Florida for December–
February (a), March–May (b), June–August (c) and September–November (d). The trend estimates were derived
using all predictor types and domains, but only R2 >50% were included. The thin black dashed line shows the
best-fit Gaussian distribution of all the trend estimates and the red, blue, and green curves show histogram for

subsets derived using temperature, SLP and a combination of temperature and SLP respectively.
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Figure 18. Histograms of downscaled monthly mean temperature trends for Helsinki for December–February
(a), March–May (b), June–August (c) and September–November (d). The trend estimates were derived using
all predictor types and domains, but only R2 >50% were included. The thin black dashed line shows the best-fit
Gaussian distribution of all the trend estimates and the red, blue, and green curves show histogram for subsets

derived using temperature, SLP and a combination of temperature and SLP respectively.
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Figure 19. Histograms of downscaled monthly mean temperature trends for Abisko for December–February (a),
March–May (b), June–August (c) and September–November (d). The trend estimates were derived using all
predictor types and domains, but only R2 >50% were included. The thin black dashed line shows the best-fit
Gaussian distribution of all the trend estimates and the red, blue, and green curves show histogram for subsets

derived using temperature, SLP and a combination of temperature and SLP respectively.
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Figure 20. Histograms of downscaled monthly mean temperature trends for Copenhagen for December–February
(a), March–May (b), June–August (c) and September–November (d). The trend estimates were derived using
all predictor types and domains, but only R2 >50% were included. The thin black dashed line shows the best-fit
Gaussian distribution of all the trend estimates and the red, blue, and green curves show histogram for subsets

derived using temperature, SLP and a combination of temperature and SLP respectively.
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3.5 Precipitation from the GCMs

3.5.1 The seasonality of precipitation

Large-scale fields of precipitation were used as predictor for the local rainfall (Figure 8(c,d)) and the
quality of the trend estimates for these depends on whether the GCMs can reproduce realistically the
large-scale prediction. One can assess the GCMs’ ability to reproduce the annual variations in the precip-
itation in order to get an idea about the confidence that can be attached to the GCM output. Figure 21
shows the annual cycle of precipitation interpolated from the NCEP reanalysis and the various GCMs.
Station-based observations (thick solid black line) are also shown to provide a reference to the actual
precipitation. The solid grey curve shows the precipitation from the NCEP reanalysis, and is more ap-
propriate for model evaluation because it relates to larger spatial scales the same way as the GCMs
do. It is important to keep in mind that ’point’ observations, such as station-based measurements, are
not directly comparable to grid-box values from weather models. Large inter-model differences in the
description of the seasonal cycle in precipitation is evident. In Bergen (a), the NCEP reanalysis gives a
similar annual cycle as the station measurements at Bergen-Florida, however, some GCMs tend to get
the annual peak too late in the autumn. Most GCMs tend to overestimate the mean precipitation. At
Falun (b), the NCEP-reanalysis gives substantially stronger annual peaks than the in-situ observations.A
number of GCMs get the annual timing of the precipitation peak right, but there are also GCMs that
predicts the peak too late in the autumn. Neither the NCEP-reanalysis nor any of the GCMs reproduce
the magnitude of the precipitation recorded at Glomfjord (c). Most GCMs give a reasonable description
of the magnitude of rain fall annual cycle in Helsinki (d), albeit a few months later than the actual
peak. One exception is the CCCma model that produces a seasonal cycle that is anti-correlated with the
observations. Similar results for Copenhagen, Oslo, Stockholm and Tromsø are shown in Figure 22. The
ECHAM4/OPYC3 and the NCAR-PCM models produce completely unrealistic results for Copenhagen
(a), and there are no GCM that reproduces the annual cycle for this location. The NCEP-reanalysis
has a bias towards lower values, but otherwise a realistic seasonal cycle. Once more, the CCCma model
gave unrealistic results. Most of the GCMs produced a phase-lag in the annual cycle for Oslo (b) but
the magnitude of the cycle was in general realistic, albeit with an offset in the mean level. The GCM
results interpolated to Stockholm (c) were characterised by phase lag and unrealistic magnitudes. Even
the NCEP re-analysis indicated a phase lag and a low bias. Part of these discrepancies may be related
to inappropriate interpolation, e.g. where grid boxes over say the ocean have too much influence for
the interpolated location. As in Copenhagen, the CCCma produced unrealistic results. In Tromsø, most
GCMs got the phase of the annual cycle right, albeit with too weak magnitude. In this case, the GCMs
seemed to produce a more realistic seasonal cycle than the NCEP re-analysis. Again, the CCCma dis-
tinguishes itself from the other GCMs by producing a seasonal cycle that is anti-correlated with the
observations.

The large differences between the annual precipitation cycle interpolated from the various GCMs,
and the large discrepancies regarding the observed and re-analysed data, may have serious implications.
If the GCMs are not able to describe how the precipitation responds to annual variations in the boundary
forcing, then how can these models be expected to account for how the preciptation will change with
increased atmospheric consentrations of greenhouse gases? In order to answer this question, one must
examine the seasonal cycle of the observations to see if it is robust and well-defined or whether the annual
variations in the boundary conditions have a weaker influence on the precipitation in the in-land locations.
Figure 23 shows the spread about the annual cycle in Oslo and Copenhagen, and it is clear from this plot
that (chaotic) internal variations in these locations are more prominent than the influence from the annual
variations in the short-wave radiation. For Bergen, on the other hand, the good correspondence between
the modelled and observed seasonal variations suggest a strong external influence on the precipitation
on the west coast of Norway where the wind direction and orographic influences play an important
role. Hence, the lack of consistency in describing the seasonal precipitation cycle amongst the GCMs
doesn’t mean that these models necessarily are flawed, but it highlights the difficulty predicting future
changes in the precipitation. This interpretation is in accord with Ruosteenoja et al. (2003), who found
substantial differences between modeled and observed annual cycle in precipitation over sub-continental
scale regions (106–108km2). They also suggested that part of the model-observation discrepancies may be
due to stronger inter-annual variations in precipitation and stronger influence of small-scale geographical
features on local precipitation.
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Hanssen-Bauer et al. (2003) and Goodess et al. (2003) found that a more realistic annual cycle
can be obtained through empirical downscaling. An evaluation based on the clim.pact support their
finding. Figure 24 shows the empirically downscaled monthly precipitation for the whole year for Oslo-
Blindern and Copenhagen. The top panels show the time series of full values whereas the lower panels
show the seasonal precipitation cycle. The empirical downscaling ensures a realistic annual cycle since
it produces anomalies that are superimposed onto the observed annual cycle. The reasonably high skill-
scores (R2 > 50%) suggests that the anomalies are well described. This example shows the problem
taking precipitation directly from GCMs in order to describe local precipitation.
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Figure 21. A comparison between the annual cycle in the precipitation for Bergen, Falun, Glomfjord and Helsinki.
The station-based measurements (black) are shown together with the NCEP-reanalysis and bi-linearly interpo-
lated estimates for various GCMs. The time interval varies for the different GCMs depending on the starting

model date of the integration ()



34 Benestad

a

5 10 15 20

0
1

2
3

4

Precipitation climatology Koebenhavn

Station value (1890−1999), NCEP (1948−2003), GCM B2 SRES (up to 2020)
month

P
re

ci
pi

ta
tio

n 
(m

m
/d

ay
)

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0

1

2

3

4
Obs
NCEP
EC4
HC3
PCM
CCC
CSIRO
GFDL

b

5 10 15 20
0

1
2

3

Precipitation climatology Oslo−Blindern

Station value (1890−1999), NCEP (1948−2003), GCM B2 SRES (up to 2020)
month

P
re

ci
pi

ta
tio

n 
(m

m
/d

ay
)

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0

1

2

3

Obs
NCEP
EC4
HC3
PCM
CCC
CSIRO
GFDL

c

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Precipitation climatology Stockholm

Station value (1890−1999), NCEP (1948−2003), GCM B2 SRES (up to 2020)
month

P
re

ci
pi

ta
tio

n 
(m

m
/d

ay
)

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Obs
NCEP
EC4
HC3
PCM
CCC
CSIRO
GFDL

d

5 10 15 20

0
1

2
3

4

Precipitation climatology Tromsoe

Station value (1890−1999), NCEP (1948−2003), GCM B2 SRES (up to 2020)
month

P
re

ci
pi

ta
tio

n 
(m

m
/d

ay
)

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

0

1

2

3

4
Obs
NCEP
EC4
HC3
PCM
CCC
CSIRO
GFDL

Figure 22. A comparison between the annual cycle in the precipitation for Copenhagen, Oslo-Blindern, Stockholm
and Tromsø. The station-based measurements (black) are shown together with the NCEP-reanalysis and bi-

linearly interpolated estimates for various GCMs.
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Figure 23. The substantial scatter about the seasonal variations in monthly precipitation at Oslo and Copenhagen
suggests that the annual cycle is not well-defined.
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Figure 24. Evaluation of empirically downscaled precipitation for Oslo and Copenhagen based on NCEP large-
scale precipitation fields. R2-scores for Oslo precipitation: 78, 68, 53, 70, 53, 65, 64, 56, 60, 88, 80, 77% for the 12
Calendar months respectively, and for Copenhagen 61, 73, 69, 71, 58, 80, 52, 56, 69, 81, 64, 77%. Top: absolute

values; bottom: seasonal cycle.
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3.5.2 Large-scale precipitation anomalies

In order to examine the large-scale precipitation in more detail, the common EOF products based on
the NCEP re-analysis and GCM precipitation were plotted in a similar fashion as the mixed-common
EOFs in Figures 2 – 7. Figure 25 shows these diagnostics for January monthly mean precipitation in the
ECHAM4/OPYC3 SRES B2 results, indicating maximum weights west off Scotland that also covers an
extensive part of the North Sea and south of Iceland. The model magnitudes are similar to those in the
NCEP re-analysis. Somewhat surprisingly, very similar spatial patterns and magnitude are seen in the
HadCM3 and the NCAR-PCM results (Figure 27). The CCCma model (Figure 28) produces too weak
variability in the precipitation, whereas the CSIRO results (Figure 29a) are consistent with the other
GCMs’.
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Figure 25. Common EOF products for large-scale precipitation from the ECHAM4/OPYC3 B2 integration for
January. (a) leading spatial EOF patterns, (b) leading PC, (c) comparison between the scatter of the two leading

PCs from NCEP reanalysis and the GCM, (d) the proportional variance described by the leading modes.
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Figure 26. Common EOF products for large-scale precipitation from the HadCM3 B2 integration for January.
(a) leading spatial EOF patterns, (b) leading PC, (c) comparison between the scatter of the two leading PCs

from NCEP reanalysis and the GCM, (d) the proportional variance described by the leading modes.
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Figure 27. Common EOF products for large-scale precipitation from the NCAR-PCM B2 integration for January.
(a) leading spatial EOF patterns, (b) leading PC, (c) comparison between the scatter of the two leading PCs

from NCEP reanalysis and the GCM, (d) the proportional variance described by the leading modes.
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Figure 28. Common EOF products for large-scale precipitation from the CCCma B2 integration for January. (a)
leading spatial EOF patterns, (b) leading PC, (c) comparison between the scatter of the two leading PCs from

NCEP reanalysis and the GCM, (d) the proportional variance described by the leading modes.
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Figure 29. Common EOF products for large-scale precipitation from the CSIRO B2 integration for January. (a)
leading spatial EOF patterns, (b) leading PC, (c) comparison between the scatter of the two leading PCs from

NCEP reanalysis and the GCM, (d) the proportional variance described by the leading modes.
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3.6 Spectral properties of large-scale precipitation anomalies

A wavelet analysis (Addison, 2004; Torrence & Compo, 1998) was applied to the leading PCs in order
to compare and investigate the spectral characteristics of the Dec precipitation anomalies in the GCMs
with reference to the NCEP reanalysis (Figure 30–31. The ECHAM4/OPYC3 model described more pro-
nounced low-frequency variability in the precipitation, especially toward the end of the integration (e.g.
for the future). HadCM3 and NCAR-PCM produced similar spatial characteristics as seen in the NCEP
December precipitation. For June, the NCEP precipitation exhibits more pronounced low-frequency fluc-
tuations, and none of the GCMs give similar spectral characteristics. The HadCM3 results are closest to
the NCEP in terms of June spectral properties, as this GCM produced strongest low-frequencies of the
GCMs.
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Figure 30. Wavelet analysis of the leading common PC (Using Rwave: cwt()) for the December month: a) CSIRO,
b) ECHAM4/OPYC3, c) HadCM3, and d) NCAR-PCM. The wavelet analysis for CCCma is not shown.
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Figure 31. Wavelet analysis of the leading common PC (Using Rwave: cwt()) for the June: a) CSIRO, b)
ECHAM4/OPYC3, c) HadCM3, and d) NCAR-PCM. The wavelet analysis for CCCma is not shown.
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3.7 Downscaled precipitation trends

Figure 32 shows a similar analysis as shown in Figure 11, but for precipitation instead of temperature.
There is little evidence of a common signal: most of the boxes straddle the zero-line. The largest scatter is
found in summer. There may be a weak hint of a bias towards lower precipitation in spring and summer,
although not significant, and four out of six GCMs give trends toward wetter autumn conditions.

Figure 33 presents a summary of the winter precipitation at Tromsø, Stykkisholmur, Stockholm
and Abisko. For Tromsø (a), there are substantial inter-model differences: the GFDL and the HadCM3
models produce much smaller range of values and these are clearly well below the zero-line. Four out
of the six GCMs indicate a bias toward wetter future autumn conditions. For Stykkisholmur (b), most
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Figure 32. Downscaled monthly mean precipitation trends for Oslo-Blindern for December–February (a), March–
May (b), June–August (c) and September–November (d). The trend estimates were derived using all predictor
types and domains, but only R2 >50% were included. The number of data points in each box is denoted near

the top axis.
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of the GCMs indicate a bias towards positive precipitation trends, and it is only the HadCM3 that
points to dryer conditions. The HadCM3 model produces unrealistically cold conditions for the present-
day climate in this region (Benestad et al., 2002), and the reliability of these estimates are therefore
questionable. There is little discernable signal in the trends for winter precipitation in Stockholm (c)
and Abisko (d).

Figure 34 is similar to Figure 15 but for precipitation in Oslo rather than temperature. The his-
tograms indicate that the distributions peak near zero-trend, although there are hints of secondary
peaks at negative values in summer and positive values in autumn. When the precipitation rate is used
as a predictor (red), then the results tend to point to wetter trends than when the SLP is used. Fig-
ures 35–39 show similar analysis for Tromsø, Bergen-Florida, Helsinki, Abisko, and Copenhagen. The
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Figure 33. Downscaled monthly mean precipitation trends for December–February in Tromsø (a), Stykkisholmur
(b), Stockholm (c) and Abisko (d). The trend estimates were derived using all predictor types and domains, but

only R2 >50% were included. The number of data points in each box is denoted near the top axis.



46 Benestad

SLP-predictor gave wetter winter-estimates for Tromsø than predictors consisting of large-scale precip-
itation (Figure 36a). The spread reflects the range of values, with the widest distribution in Bergen
and narrow distributions in Abisko and Copenhagen. These differences in spread is expected and due to
the differences in the total precipitation amounts. In general,there was no clear consensus between the
GCMs as to whether one can expect a wetter or drier future climate if the derivation of local precipita-
tion was based on both SLP and large-scale precipitation rate. If, on the other hand, the downscaling
only included the latter predictor, then the results point to a tendency of wetter climates in the future
for Oslo (winter and spring), Tromsø (spring), Bergen, Helsinki, Abisko and Copenhagen (all seasons).
The reason for the systematic difference between trends derived from SLP only and those from the other
predictors may be that a gradual global warming doesn’t influence the SLP field in a way that can bee
seen in terms of local temperatures and precipitation.
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Figure 34. Histograms of downscaled monthly mean precipitation trends for Oslo-Blindern presented in Figure 11
for December–February (a), March–May (b), June–August (c) and September–November (d). The trend estimates

were derived using all predictor types and domains, but only R2 >50% were included.
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Figure 35. Histograms of downscaled monthly mean precipitation trends for Tromsø presented in Figure 11 for
December–February (a), March–May (b), June–August (c) and September–November (d). The trend estimates

were derived using all predictor types and domains, but only R2 >50% were included.
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Figure 36. Histograms of downscaled monthly mean precipitation trends for Bergen-Florida presented in Fig-
ure 11 for December–February (a), March–May (b), June–August (c) and September–November (d). The trend

estimates were derived using all predictor types and domains, but only R2 >50% were included.
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Figure 37. Histograms of downscaled monthly mean precipitation trends for Helsinki presented in Figure 11 for
December–February (a), March–May (b), June–August (c) and September–November (d). The trend estimates

were derived using all predictor types and domains, but only R2 >50% were included.
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Figure 38. Histograms of downscaled monthly mean precipitation trends for Abisko presented in Figure 11 for
December–February (a), March–May (b), June–August (c) and September–November (d). The trend estimates

were derived using all predictor types and domains, but only R2 >50% were included.
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Figure 39. Histograms of downscaled monthly mean precipitation trends for Copenhagen presented in Figure 11
for December–February (a), March–May (b), June–August (c) and September–November (d). The trend estimates

were derived using all predictor types and domains, but only R2 >50% were included.
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4 Shortcomings of the downscaling analysis

Figure 40 allows an examination of the downscaled Tromsø summer temperatures in more detail through
the inspection of the large-scale temperature anomalies associated with the temperature swings in
Tromsø. For realistic scenarios, it is expected to see pronounced weights in the vicinity of the station in
Figure 40. The domain choices with most realistic weights are 0◦E–50◦E/62◦N–82◦N, 40◦W–40◦E/52◦N–
80◦N, and 90◦W–60◦E32◦N–80◦N. In all these cases, the strongest anomalies are nevertheless located
to the east of Tromsø, because the temperature variations are stronger in Finnmark with a more conti-
nental type climate than near the coast where they are moderated by the sea (maritime climate). The
domain choices 0◦E–35◦E/57◦N–70◦N and 20◦W–40◦E/52◦N–70◦N do not give weights near the station,
and therefore give an indication for less confidence. One problem with these domains is that Tromsø is
located at the edge of the predictor domain, and the analysis latches on to the anti-correlation between
southern and northern Norway. Benestad (2002b) warned against this type of mistake, using Greenland
stations downscaled from large-scale temperature anomalies over Fennoscandia as an illustration.

The downscaled scenarios associated with the domain choices in Figure 40 and the ECHAM4/OPYC3
A2 scenario are presented in Figure 41. Panels (c) and (e) show negative trends whereas (d) and (f) ex-
hibit weak trends. The two domains 0◦E–35◦E/57◦N–70◦N and 0◦E–50◦E/62◦N–82◦N yield a warming in
the ECHAM4/OPYC3 A2 scenario. The most surprising result is the negative trend associated with the
40◦W–40◦E/52◦N–80◦N domain. Figure 42 shows how the downscaling with the 40◦W–40◦E/52◦N–80◦N
domain produces a cooling trend instead of a warming trend: there is an anti-correlation between the
temperature on Greenland and Tromsø, and the ECHAM4/OPYC3 A2 integration produces a stronger
warming over Greenland than over northern Norway. Furthermore, the EOF pattern has very strong
negative weights located over a small Greenland location which does not look very realistic. Benestad
et al. (2002) found spurious patterns in their mixed-common EOF products over Greenland, and sug-
gested that the data from this region was of questionable quality. The weights in this region can also
be seen in Figure 40(e), and the strong warming trend in this “hot spot” is responsible for the spurious
negative trend dervied with this domain choice. Figure 40(f) and Figure 41(f) show the diagnostics for
the largest predictor domain 90◦W–60◦E32◦N–80◦N, and although this analysis includes Greenland, the
trend produced for the July temperature in Tromsø is still positive, albeit weak. Figure 43 shows the
same dignostics as Figure 42, but for the 90◦W–60◦E32◦N–80◦N domain. These diagnostics suggest that
the leading common EOF represents a warming over the continental as well as over Greenland, and
the east-west dipole associated with the NAO is less pronounced with the larger domain. Too extensive
domain are dangerous, and it is better with too small than too large although it is desirable to have a
predictor domain that is larger than the skillfull spatial scale Grotch & MacCracken (1991).

5 Best estimates and comparison with earlier work

The bulk statistics presented above has revealed that using SLP only as predictor does not capture the
temperature or precipitation trends, and it is therefore necessary to remove the cases for which SLP
has been the sole predictor in order to get realistic trend statistics. The subsequent analysis has also
dropped the results from CCCma and the CSIRO models. The above discussion has also focussed on the
SRES B2 scenario, but it is desirable to look at the results from more than one emission scenario. Below,
the rate of change (in ◦C/decade or [mm/month]/decade) derived for the 2000-2100 interval using the
A2 and B2 emission are furthermore presented together with trend rates for 1980–2050 from the IS92a
scenarios reported in Benestad (2002a). Figure 44 presents histograms of the trend rates for January
(a), April (b), July (c) and October (d). The ensembles for the older IS92a scenarios are larger (48 for
temperature; 50 for precipitation, representing 17 independent GCM integrations) than the more recent
SRES scenarios (ensemble size is 26, but representing only 6 independent GCM integrations). Hence,
the comparison in Figure 44 only gives a crude description of the results. For the temperature trends in
Oslo, the new scenarios have similar distributions to those based on the IS92a for January and October,
but indicate stronger warming in April and July. The B2 scenario gives slightly weaker winter warming
in Oslo whereas the A2 scenario indicates similar warming rate. In the autumn, the B2 indicates slightly
slower warming while the A2 produces a somewhat stronger warming. In spring the A2 and B2 give
similar warming rates.

The histograms for precipitation rates are “noisy” and not well-defined (Figure 45). However, the



54 Benestad

greatest differences between the various scenarios are seen in July. The new SRES-based scenarios indi-
cate drier future July months in Oslo.

The results for the temperature in Bergen (Figure 46) suggest some difference between the various
emission scenarios for Bergen, and the more recent SRES-based scenarios give slightly wider distribu-
tions. The B2-based derivations point to weaker warming in January and similar trends in October, but
stronger warming for the other months. The A” scenario produces stronger warming for all the cases.
The histograms for rainfall in Figure 47 are difficult to interpret, as there is a tendency of several peaks
interspersed with low counts. Because of a substantial scatter in the estimates, the ensemble size for the
precipitation is probably too small for a trustworthy interpretation. The new results are nevertheless
roughly similar to the old estimates based on the IS92a emission scenario (Benestad, 2002a).

Figure 48 shows the histograms for the temperature trends downscaled for Tromsø. Apart for in
April, there are small differences between the various scenarios. The portion of negative July temperature
trends derived from the SRES A2 scenario is due to shortcomings mentioned above, and the confidence
in these results need to be questioned (see Figures 41–43 and section 4). Tromsø is situated near the
edge of the predictor domain used here. Figure 49 shows the histograms for the downscaled precipitation
trends in Tromsø. A number of outliers are visible in the SRES scenarios for all months. There is a slight
hint of an increase in the January precipitation relative to the older IS92a-based results (a), however,
the distribution for April is largely similar for the different scenarios (b). One difference is that the
A2- and B2-based scenarios yield greater scatter. For July, the SRES scenarios produce much broader
distributions (c), and in October, the A2 scenarios suggests marginally drier conditions than the B2 and
the older IS92a scenarios.

6 Discussion & Conclusions

Mixed-common EOFs were examined in order to evaluate the output of the various climate models.
The ECHAM4/OPYC3 and the HadCM3 model exhibited the most realistic spatial structures and
magnitudes. The CCCma and the CSIRO GCMs, on the other hand, did not produce realistically
looking spatial patterns of variability, possibly due to their low spatial resolution. There were also
some indications suggesting discrepancies between the spatial modes in the NCAR-PCM results and the
observations, possibly due to unrealistically cold conditions in the vicinity of Greenland and pronounded
variations in the vicinity of the ice-edge. SLP by itself is not appropriate for downscaling temperature as
associated temperature trends exhibited no clear warming. SLP doesn’t capture trends in atmospheric
moisture, and may underestimate the precipitation as well. New empirical models based on predictors of
large-scale precipitation rate appear more promising than the more traditional SLP-based derivations.
Predictors consisting of mixed temperature-SLP fields and temperature-only fields produced similar skill
scores and trend estimates for temperature.

The downscaled scenarios confirmed the general tendency of warming. There was a small number
of cases where the downscaled temperature trends were negative, and the majority of these involved
the Arctic∗ stations as well as the less realistic GCMs CCCma and CSIRO. The GCMs with higher
confidence did nevertheless also produce a few cases with apparent cooling trends. Since these were not
credible, it was speculated as to whether these results were due to inappropriate predictor domains.
This point raises the question of whether an objective scheme can be deviced for choosing an optimal
predictor domain. Future work will address this question by using spatial correlation maps as a basis for
selecting the predictor area. Large inter-annual variations in the high-latitudes may also have affected
the trend estimates.

The inspection of interpolated values for the annual cycle in precipitation may at first sight suggest
that the description of precipitation by GCMs is problematic: None of the GCMs did skillfully reproduce
the phase, amplitude of precipitation measured at the stations or interpolated by the NCEP re-analysis.
This underlines the danger of using interpolated precipitation values from the GCMs. By applying
empirical downscaling, it can be demonstrated that description of local precipitation is on the other
hand realistic. The discrepancies associated with the seasonally varying rainfall in some locations raises
questions regarding the confidence in long-term changes in precipitation. It is argued that for these
sites local precipitation is only weakly affected by changes in the boundary conditions and more strongly

∗Here referring to Svalbard, Bjrnya, and Jan Mayen
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affected by internal chaotic dynamics and local cloud formation. The differences between the interpolated
results also may have been due to local geographical influence. A comparison of the seasonal rainfall
variation in Bergen, on the other hand, suggests a good correspondence between the GCMs and the
observations. Furthermore, much of the summer rainfall is due to local small-scale convection rather
than weather systems extending over 100km. The assessment of the downscaling models based on large-
scale precipitation as a predictor points to considerable skill for anomalies. The striking inter-model
similarity in the EOF patterns and similar magnitude in the re-analysis and GCM output suggests that
the GCMs reproduce the variability of large-scale precipitation quite well over the oceans.

The precipitation in northern Europe is strongly influenced by the type of circulation pattern, and
there are large year-to-year variations in the rainfall. There is no clear trend in circulation patterns
important for the local temperatures when the SLP is one of the major predictors, resulting in no clear
trend in precipitation. Trends derived from large-scale precipitation rate only, on the other hand, point
to slight shifts in the trend distribution about zero. The conclusions for the downscaled precipitation
scenarios from this study is similar to findings reported in Benestad (2002a). It is also important to
note that the results derived in that study, although also employing the common EOF frame work,
were based on a different linear model using Canonical Correlation Analysis instead of regression and
was coded for Matlab as opposed R. The gridded observations used also differed since they were based
on Benestad (2000a) whereas the derivation of these results involved the NCEP reanalysis (the two
gridded data sets are not entirely independent of each other). The similarity between the results despite
these differences therefore point to a degree of robustness in these results. Furthermore, the lack of clear
trends in precipitation is also consistents with findings by Ruosteenoja et al. (2003) who noted that
simulated precipitation changes on sub-continental scales, considered on their own, are predominantly
not statistically significant to modelled natural variability. They also obtain both positive and negative
trends for one given region, possibly due to the finding that several models simulate precipitation changes
of opposite sign with various forcing scenarios and low signal-to-noise ratios.

Although there is a fairly robust picture for the temperature with a general warming trend, the
results for precipitation exhibit a great scatter. Hence, there is a need for larger ensembles in order to
produce robust statistics that would be required to resolve the issue of trend for these locations. Large
ensembles may become available in the near future from the climatepredction.net project (Allen,
2003).
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using the R (Ellner, 2001; Gentleman & Ihaka, 2000) data processing and analysis language, which is
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Figure 40. Spatial pattern of the large-scale temperature anomaly that is associated with July (June in Panel
d) temperature variations in Tromsø. The different panels show the patterns obtained using different domain

choices.
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Figure 41. Downscaled scenarios for July (June in Panel d) temperature variations in Tromsø associated with
the large-scale temperature structures in Figure 40. ECHAM4/OPYC3 A2 scenario.
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Figure 42. common EOF products for the ECHAM4/OPYC3 A2 July temperature.
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Figure 43. common EOF products for the ECHAM4/OPYC3 A2 July temperature.
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Figure 44. Histograms of downscaled monthly mean temperature trends for Oslo-Blindern for January (a), April
(b), July (c) and October (d). The trend estimates were derived using the ’temp.’ and ’.slp.temp.’ predictor types

only, all domains, and only the results for which R2 >50% were included.



Downscaling and climate analysis 61

a

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Oslo−Blindern

Jan
Trend (mm/month per decade)

D
en

si
ty

SRES A2
SRES B2
IS92a

b

−5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

Oslo−Blindern

Apr
Trend (mm/month per decade)

D
en

si
ty

SRES A2
SRES B2
IS92a

c

−10 −5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Oslo−Blindern

Jul
Trend (mm/month per decade)

D
en

si
ty

SRES A2
SRES B2
IS92a

d

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Oslo−Blindern

Oct
Trend (mm/month per decade)

D
en

si
ty

SRES A2
SRES B2
IS92a

Figure 45. Histograms of downscaled monthly mean precipitation trends for Oslo-Blindern for January (a), April
(b), July (c) and October (d). The trend estimates were derived using the ’temp.’ and ’.slp.temp.’ predictor types

only, all domains, and only the results for which R2 >50% were included.
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Figure 46. Histograms of downscaled monthly mean temperature trends for Bergen-Florida for January (a),
April (b), July (c) and October (d). The trend estimates were derived using the ’temp.’ and ’.slp.temp.’ predictor

types only, all domains, and only the results for which R2 >50% were included.
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Figure 47. Histograms of downscaled monthly mean precipitation trends for Bergen-Florida for January (a),
April (b), July (c) and October (d). The trend estimates were derived using the ’temp.’ and ’.slp.temp.’ predictor

types only, all domains, and only the results for which R2 >50% were included.
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Figure 48. Histograms of downscaled monthly mean temperature trends for Tromsø for January (a), April (b),
July (c) and October (d). The trend estimates were derived using the ’temp.’ and ’.slp.temp.’ predictor types

only, all domains, and only the results for which R2 >50% were included.
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Figure 49. Histograms of downscaled monthly mean precipitation trends for Tromsø for January (a), April (b),
July (c) and October (d). The trend estimates were derived using the ’temp.’ and ’.slp.temp.’ predictor types

only, all domains, and only the results for which R2 >50% were included.
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