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A SURVEY OF POSSIBLE TELECONNECTIONS AFFECTING FENNOSCANDIA

By Rasmus E. Benestad and Ole Einar Tveito
The Norwegian Meteorological Institute, PO Boz 43, 0313, Oslo, Norway *

October 14, 2002

ABSTRACT

A regression analysis is used for identifying statistical relationships between sea-ice cover and 2 meter air temperature
in Fennoscandia, and the relationships are shown as maps of the linear variance (R?) accounted by the sea-ice. The analysis
is repeated with a time lag and with sea-ice cover replaced by sea surface temperature, the North Atlantic Oscillation index,
an EL Nino Southern Oscillation index, and an index describing latitudinal excursion of the Gulf Stream extension.

The analysis suggests there may be a weak influence of the Arctic sea-ice on the temperature and precipitation in
Fennoscandia. The link between the sea-ice and temperature is strongest during winter, but there may also be a weak
link between the sea-ice cover and precipitation winter, spring and autumn. There is furthermore a faint sign of a lagged
relationship between sea-ice and temperature during spring and autumn.

The results from the same analysis applied to North Atlantic sea surface temperatures (SSTs) indicate a clear effect on
the land air surface temperatures, especially in southern Scandinavia. The corresponding R® estimates for the precipitation
suggest much weaker links with the North Atlantic SSTs. v ]

Estimates of R2 were computed from correlation analysis between the monthly mean values of the North Atlantic
Oscillation Index (NAOI) and the respective station records. The well documented link between the winter-time tempera-
tures in northern Europe and the NAOI ig also found, as is the link between the NAOI and precipitation along the western
coast of Norway and southern Sweden.

The study explored the latitudinal excursions of the Gulf Stream extension branching off from the north American
continent to see if these can be associated with temperature or precipitation variations over northern Europe. The results
suggests that any effects, if at all, are marginal. Likewise, the analysis could not find any links between ENSO and climatic
variations over northern Europe.

KEy woRrDps: Teleconnection Temperature Sea-ice Sea surface temperature

* Corresponding author: R.E. Benestad, rasmus.benestad@met.no, The Norwegian Meteorological Institute, PO Boz 43,
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2 Benestad & Tveito

1—Introduction

In order to derive local or regional climate information from global climate models (atmospheric-oceanic
general circulation models, AOGCMs) it is important to account for teleconnections. It is for instance
well-known that the North Atlantic Oscillation (NAO) has a profound impact on the winter temperature
and precipitation over Europe (Marshall et al., 2001; Deliang & Hellstrom, 1999; Hurrel, 1995). The
possibility of the existence of other types of teleconnections should also be investigated. One important
question is how important the Arctic sea-ice cover is for the regional and global climate (Deser et al., 2000;
Rind et al., 1995; Vinje, 2001; Holland et al., 2001; Parkinson et al., 2001; Benestad et al., 2002a,b). Other
types of teleconnection that could be important may include sea surface temperature (SST) (Benestad
& Melsom, 2002) and variations in the Gulf Stream extension. _

This study provides a statistical survey of statistical relationships between the sea-ice extent; SST,
Gulf Stream variations and the NAO and local climate elements in the Nordic countries.

2 Methods & Data

The influence of sea-ice, sea surface temperature (SST) or the North Atlantic Oscillation (NAO) on the
land surface temperature, precipitation or air pressure in northern Europe was inferred from a step-
wise regression analysis based on R data-analysis language (Ihaka & Gentleman, 1996; Eliner, 2001;
Gentleman & Ihaka, 2000)* and the functions Im and step. The predictor fields (explaining variable)
were decomposed into EOFs and the 20 leading modes were used as input for the stepwise regression.
The annual cycle is the most pronounced feature in the EOF products, but a sub-sampling of the data by
analysing each calendar month individually eliminates the effect of the annual cycle on the outcome. The
modes used for describing the local temperatures were determined according to whether they minimise
the Akaike information criterion (AIC, Wilks (1995), p.301-302). The subset of selected modes obtained
from the stepwise regression was subsequently used in a cross-validation analysis based on a least squares
fit. The results from the cross-validation analysis were then compared with the actual observation based
on Pearson correlation and variance (R?) estimates. The p-valuest were estimated from a correlation
analysis confidence testt: :

One objective of this study was to assess the robustness of the teleconnection patterns, and one way
to achieve this is to compare the results for adjacent calendar months, assuming that the patterns change
slowly with the seasons. Thus, the analysis was carried out for each of the 12 months of the year. The
analysis was also carried out for the NAO versus station observations in order to test the results against
a well-known teleconnection pattern. Furthermore, the analysis was done for simultaneous observations
as well as with a one month lag (ie the sea-ice leading the land temperature).

A crude analysis in the spirit of Monte Carlo was carried out to compare the observed spatial
variance patterns with results obtained from the same analysis with stochastic values as inputs in order
to test the significance of the patterns. Because the computer-intensive analysis, it is not feasible to
generate a large sample on which a null-distribution can be derived. Here only 12 stochastic fields are
produced, but these will nevertheless give an indication of the significance levels.

The station observations were taken from the Nordklim data (parameter codes 112,122,101,601) set
( Tuomenvirta et al., 2001), the sea-ice and the SST were obtained from the HadISST1.1 product. The
NAO index was obtained from the Climate Research Unit at the University of East Anglia (UK.). The
analysis was done for monthly mean temperature, maximum and minimum temperature (for a given
month), monthly accumulated precipitation, maximum 24-hour precipitation (for a given month), and
sea level pressure (SLP). The analysis was carried out on time series of various lengths, with the shortest
time series spanning the 1965-1995 period§ and the longest series covered 1950-1999.

The latitude of the Gulf Stream’s northern boundary (“The GSNW index”) obtained from Plymouth

* A Freeware clone of S-plus URL: http://www.R-project.org/ .

1The probability that the null-hypothesis, e.g. that there is no correlation, holds. A “statistically significant” relationship
is associated with a low p-value (typically less than 0.05). The p-value is often estimated from standard regression analysis
of variance (ANOVA). :

1Using the R ctest package/library function cor.test: URL http://cran.r-project.org.

§The figure title shows only the shortest time periods.
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Marine Laboratoryq was used as an index for the Gulf Stream’s position. These data have been derived
from aircraft, satellite and surface observations ( Taylor, 1996, 1995) covering the period 1966-2000. The
latitudes of the north wall were estimated at six longitudes: 79°W, 75°W, 72°W, 70°W, 67°W and 65°W.
The NINO3|| index was used to describe the temporal evolution of ENSO.

3 Results

3.1 Sea-ice and land temperature

Figure 1 shows one map for each calendar month on which the R*-estimates between (simultaneous)
monthly mean station temperatures and the sea-ice cover in the Greenland-Iceland-Norwegian (GIN)
sea’, are indicated by the size of the circles. Unless there is an a physical reason for why there should
be abrupt changes in the geographical distribution of R? known priori, the true geographical pattern
should vary gradually throughout the year. A comparison between the 12 calendar months may therefore
identify robust patterns or sampling fluctuations. Moreover, it is expected that some of the estimates
may give spuriously high values for R? for isolated cases as a result of the problem of multiplicity (Wilks,
1995, p. 151-157). The fact that station records from different locations often are correlated, implies that
spurious values may be expected for a groups of station series as well as for single (remote) locations.

The results shown in Figure 1 suggests that there is a weak (R? ~20%) but robust association
between the GIN Sea sea-ice cover and the monthly mean temperature over parts of the Norwegian Sea,
particularly during winter. The same analysis applied to a greater region (domain: 90°W- 90°E, 70°N-
85°N) only produced high R? estimates for January (R? ~ 40%), which cannot be considered as a robust
and real link (not shown). The larger domain gave similar results to those in Figure 1 for the other
months. ' ,

Figure 2 shows the results of the same analysis applied on temperatures lagging the GIN sea-ice by
one month. The results suggest that there may indeed be a connection between the sea-ice cover and
the temperature of the following month during late winter and autumn, although this link is weak and
still uncertain. :

The analysis was applied to the absolute maximum and the minimum temperature of the month as
well as the monthly mean value. The R? estimates for the maxima and minima are not expected to be as
high as for the mean value, partly because these consist of single measurements (extremes) that are more
prone to random noise! than mean values of many independent measurements? where random variations
tend to (partially) cancel. On the other hand, extreme events may be related to particular (ephemeral)
conditions occurring simultaneously, but may not exhibit a clear relationship with large-scale features
averaged over a month. In other words, the signal-to-noise ratio is higher for the monthly mean than for
minima or maxima.

The analysis for the monthly maximum temperature (Figure 3) suggest that the there is a weak
statistical relationship between the maximum temperature and the GIN Sea sea-ice cover during winter.
For the minimum temperature, there seems to be a stronger link with the sca-ice cover (Figure 4). The
same analysis was repeated with EOFs for the domain 90°W- 90°E, 70°N- 85°N (not shown). For the
maximum temperature, the results gave high values over Finland in April-May. Again, there seemed to
be a more prominent link between the minimum temperature and the sea-ice cover.

A students paired t-test between the R? estimates between the sea-ice and maximum (mean value
= 0.130) and minimum (mean value = 0.170) temperature (for all months) respectively suggests that
their difference is statistically significant at the 0.1% level (p-value =< 2.2 x 10~'%). Furthermore, the
relationship between the lowest monthly minimum temperatures and the sea-ice appears to be stronger
than for even the monthly mean values: the mean R? for all months’ monthly mean temperature and
sea-ice is 0.154 (paired t-test p-value = 9.2 x 10~°).

YURL: http://www.pml.ac.uk/gulfstream/

[IThe spatial mean SST anomaly over the region 150°W-50°W, 5°S-5°N.

*Domain: 50°W-~ 50°E, 67°N- 85°N. )

tPossibly due to several sources, including sampling fluctuations, instrumental uncertainties, instrumental failure (i.e. that
the most extreme event was missed), reading errors, and mistyping.

1The correlation analysis is not very sensitive to systematic errors as long as these are constant through out the analysis
period.
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Figure 1. The variance (R2) in % of the monthly mean temperature that can be explained by the sea-ice in the GIN Sea

in Jan (a), Feb (b), Mar (c), Apr (d), May (e), Jun (f). The size of the circles is proportional to R? with solid symbols

representing statistically significant results at the 1% level whereas the open circles are not statistically significant. The
results for Jan Mayen are shown at 9°W, 71°N. ‘
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Figure 3. The variance (R?) in % of the monthly maximum temperature that can be explained by the sea-ice in the GIN
Sea in Jan (a), Feb (b), Mar (c), Apr (d), May (e}, Jun (f).
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Figure 4. The variance (R?) of the lowest monthly minimum temperature that can be explained by the sea-ice in the
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12 Benestad & Tveito

The maximum R? value estimated for sea-ice is 0.71 for the Arctic domain (not shown, 0.64 for the
GIN Sea in Figure 3). This extreme value was found for maximum December temperature at Glomfjord,
and is unrealistically high (i.e. a coincidental result).

In general the geographical distribution of the R? values suggests that the monthly mean temper-
ature in the mid-Norwegian mountain regions are less affected by the sea-ice during winter (Figure 1)
and the sea-ice signal is most prominent in southeastern Sweden. The autumn values for the R? esti-
mates appear to be homogeneous for the one-month-lagged analysis (Figure 2). With the exception of
the December values at Glomfjord, the strongest associations between the sea-ice and the maximum and
minimum monthly temperature are seen in Finland, Sweden and around the Baltic Sea.

Figure 3.1 shows the same analysis as before, but now applied to stochastic (random) series instead
of principal components of real observations such as sea-ice. The results in Figure 3.1 therefore provide -
a reference level for how statistical fluctuations may cause spuriously high R? estimates, and can give an
rough indication of the results obtained with the sea-ice data can be considered as real. The R? values
estimated from the stochastic series are systematically lower than those estimated for the sea-ice, even
for a one-month-lagged relationship, suggesting that there is a real link between the sea-ice cover and the
temperatures in the Nordic countries. However, Figure 3.1 shows that R? up to 20% easily may occur
by chance in 1-3 cases out of 12 (problem of multiplicity - see the discussion).

3.2 Sea surface temperature and land temperature

Figure 6 shows the R? estimates for the North Atlantic* SST-based analysis. The results suggest that
there are strong links between the North Atlantic SST anomalies (SSTAs) and the monthly mean tem-
perature, especially in southern Scandinavia. This link seems to be prominent in winter and summer
and slightly weaker during spring and autumn. :

The analysis was repeated for a smaller EOF domain' also indicating a prominent relationship
between the SSTA and the monthly mean temperature (not shown).

The R? estimates for monthly mean temperatures lagging the North Atlantic SSTs by one month-
(Figure 7) are substantially lower than for the instantaneous monthly mean temperatures. The analy-
sis nevertheless points to robust links during winter (R? ~ 20%) and summer. A comparison with the
stochastic results in Figure 3.1 suggests that there is indeed a real relationship between the SSTs and
the following month’s mean temperature in winter and summer. These results are in line with earlier
studies on predictability (Colman & Davey, 1999; Benestad, 1999).

The regression analysis between the North Atlantic SST and the highest monthly maximum (Figure
8) and minimum (Figure 9)temperature produced R? estimates that in many locations were higher than
for the monthly mean temperature in winter and summer. The better fit between these extreme values
than for the monthly mean values are unexpected according to statistical considerations, since the signal-
to-noise ratio is expected to be much higher for the monthly mean estimate than for a single observation.
A physical reasoning, on the other hand, is required to explain why the SST may have a stronger effect
on the extreme values. These results suggest that warm or cold periods do not occur unless the the
conditions (SST) are right.

The mean value of the R? estimates for the monthly mean temperature was 0.402, 0.229 for the
highest monthly maximum temperature, and 0.238 for lowest monthly minimum temperature. Again, the
link was weaker for the maximum temperature than for the minimum temperature (the p-value from a
paired t-test between the two estimate populations is 0.008). The highest R? estimates for the maximum
and minimum temperature tend to cluster around southern Scandinavia, although high values can also
be seen in Finland.

3.3 NAOI and land temperature

In order to explore the statistical relationship between climatic indices and the station records, the
variance attributed to the local variability was estimated as R? = cor(NAOI, y;)?, i denoting the station
station. Figure 10 shows the results for the station temperature, which are consistent with the well-known

*Domain: 90° W- 40°E, 40°N- 75°N.
tDomain: 20°W- 40°E, 50°N- 75°N.
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Figure 5. Similar analysis as for Figure 1 but carried out for synthesised (stochastic) data from a random number
generator. The analysis is meant to illustrate typical results that can be obtained from random sampling fluctuations and
is a poor substitute of an extensive Monte Carlo approach.
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Figure 6. The variance (R?) of the monthly mean temperature that can be explained by the North Atlantic SST in Jan
(a), Feb (b), Mar (c), Apr (d), May (e), Jun (f).
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Figure 10. The variance (R2) of the monthly mean temperature that can be explained by NAOI in Jul (g), Aug (h), Sep
(i), Oct (j), Nov (k) and Dec (1).
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connection between the NAO and the north European temperatures. There is a clear difference in the
autumn-winter months (October-March) and the spring-summer (April-September) months where the
NAO association is pronounced for the former, but there is no association between the NAQO and the
spring- to summer-time temperatures. '

3.4 The Gulf Stream and land temperature

Figure 11 shows the results of a similar analysis to that applied to the NAOI and station temperature
(Figure 10) but now carried out on the GSNW index and the station temperatures. The analysis sug-
gests that little, if any, of the temperature variations in the Nordic countries can be attributed to the
latitudinal excursions of the Gulf Stream in the western North Atlantic. The exception may possibly be
for December, for which the R? estimates are considered high (R? ~ 30%). The interesting question is
whether these are just coincidental (problem of multiplicity) or whether there really is a physical link
between the latitudinal excursions of the Gulf Stream and the temperature in December. A comparison
with the stochastic results in Figure 3.1 points to statistical fluctuation as the explanation for the higher
December values. The one-month-lagged analysis (not shown) did not produce any convincing evidence
of any lagged relationships between the GSNW index and the temperatures. Thus, there seems to be no
link between the GSNW index (latitudinal excursions of the Gulf Stream extension in the western part
of the North Atlantic) and the temperature in the Nordic countries.

3.5 ENSO and land temperature

The relationship between ENSO and the monthly mean temperature in the Nordic countries was explored
through an analysis similar to that for the NAOI and the GSNW index (Figure 12). The results suggests
that ENSO has no effect on the temperature in the Nordic counties. The same conclusion can be made
for the one-month-lagged temperature (not shown).
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Figure 11. The variance (R?) in % of the monthly mean temperature that can be explained by the GSNW index in Jan
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3.6 Sea-ice and precipitation

Figure 13 shows the results of an analysis in a similar way as in Figure 1, but for precipitation instead of
temperature. The results indicate that the sea-ice has some (R? ~ 20 — 40%) influence on the precipitation
during winter, spring and autumn. The link appears to be most pronounced in the southern part of
Fennoscandia. _ '

The sea-ice cover also seems to have a weak influence on the following month’s precipitation both
during late winter and autumn (Figure 14). The R? estimates are 10 - 30%, and the relationship is

strongest in late winter and spring.

3.7 SST and precipitation

There is a robust relationship between the North Atlantic SSTs and the precipitation during winter and
late summer (Figure 15). The geographical pattern of R? values bears some similarities to the results
obtained using the monthly mean NAOI (Figure '17). A couple of interesting observations can be made
regarding the comparison with the results obtained with the NAOI: (i) high values of R? appear to be
more (geographically) wide-spread for the SST link during winter; (ii) there is substantially stronger SST
than NAO signal in the monthly rainfall during summer. Although the NAQ involves both circulation
shifts (SLP variations) and SST anomalies, it appears that the SST contain information which is not
embodied in the NAO. :

It is interesting to focus on the November rainfall around Oslo and compare the R? value of 11%
" with the results of Benestad & Melsom (2002), who argued that there is a definite link between the
North Atlantic SST and that the extreme November 2000 rainfall (564 mm at Bjgrnholt, just north of
Oslo city) could partly be explained by unusually strong SST anomalies in the western North Atlantic.
Benestad & Melsom (2002) reported R? in the range 22 — 46%, depending on the geographical region
of SST and time interval (1900-2000 and 1883-1999). The results obtained here are lower than the
results in Benestad € Melsom (2002), partly because a different time interval was used here (1928-1990)
and partly because this study also incorporated a cross-validation analysis in addition to the step wise
regression. In both cases, however, the results suggests there indeed is a relationship between the North
Atlantic SSTs and the rainfall around Oslo.

The mean value of all B? estimates between precipitation and SST is 0.123 where (for the two
domains 90°W- 40°E [the “North Atlantic” domain], 40°N - 75°N and 20°W- 40°E, 50°N - 75°N
[the “Nordic Seas” domain]) and the corresponding value for the NAOI-based analysis is 0.0563. The
difference between these two values is statistically significant at the 0.0% level (paired t-test between
the results from the North Atlantic domain and the NAOI p-value =< 2.2 x 107'%).

The one-month-lagged analysis suggests a weak connection between the North Atlantic SSTs and
the following month’s precipitation, which is most pronounced for the February — March precipitation
and the June-August rainfall. A comparison with Figure 3.1 suggests that the link between SSTs at one
month’s lead time and the precipitation is real, but marginal.

3.8 NAO and precipitation

. The R? estimates indicate a prominent (R2 ~ 40%) and robust relationship between the NAOT and the
precipitation along the western coast of Norway and southern Sweden (Figure 17). The link between the
NAO and the precipitation is strongest during winter, and is seen for the west coast of Norway throughout
the year. The analysis suggests that the NAO has little impact on the precipitation over Finland and
the eastern part of Fennoscandia. This pattern is consistent with the well-known relationship between
the NAOQ and the rainfall pattern over Europe.

3.9 The Gulf Stream and precipitation

The strength of the relationship between the GSNW index and the precipitation in the Nordic countries
is shown in Figure 18. The analysis does not point to a convincing link, perhaps with the exception
southwestern Sweden and southeastern Norway in November, January and February and the Stockholm-
Gotland region in June-August and November. However, R? values ~ 20% may also arise from statistical
fluctuations. '
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R-squared for SST vs accum. precip. 1028 — 1990 (Jul - Aug)
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Figure 16. The variance (Rz) in % of the accumulated monthly precipitation that can be explained by the North Atlantic
SST with one month’s lead time in Jul (g), Aug (h), Sep (i), Oct (j), Nov (k) and Dec (1).
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Figure 17. The variance (R?) in %

of the accumulated monthly precipitation that can be explained by NAOI in Jan (a),
Feb (b), Mar (c), Apr (d), May (e), Jun (f).
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Figure 17. The variance (R?) in % of the accumulated monthly precipitation that can be explained by NAOI in Jul (g),
Aug (h), Sep (i), Oct (j), Nov (k) and Dec (1).
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Figure 18. The variance (R2?) in % of the monthly precipitation that can be explained by the GSNW index in Jan (a),
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Figure 18. The variance (R2) in % of the monthly precipitation that can be explained by the GSNW index in Jul (g),
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3.10 ENSO and precipitation

The results of an exploration of statistical links between ENSO and the precipitation in the Nordic
countries are shown in Figure 19. The results do not give strong evidence for a real association between
ENSO and the rainfall, but shows a similar picture as the GSNW index in Figure 18.

4 Discussion & Conclusions

The problem of multiplicity implies that there is a greater probability of obtaining coincidentally (spuri-
ous) high confidence values for N independent observations than if only one single case is considered. The
probability of finding n cases that qualify as statistically significant at the 5% confidence level (X > z)
can be estimated from a binomial distribution:

n . N!
P(n incidents withX > z) = Z.—i'(N 0

=1

P(X>z)'[1-P(X>z)V* (1)

Taking 12 individual months (these are almost independent since the month-to-month correlation
tend to be small), N =12. The probability of finding one set of results exceeding the 5% confidence
limit out of 12 months is according to equation (1) 34%, and the respective probabilities for finding
two or three cases are 10% and 2%. The climate variations recorded at the different stations tend to
be correlated. Thus, the spatial degree of freedom is substantially lower than the number of stations.

" It is therefore not straight forward to estimate the probability of observing more than one station with
statistically significant estimate of RZ.

One interesting observation was that there seemed to be a stronger statistical link between the
sea-ice cover and the minimum temperature than there is for maximum temperature for all of the 12
calendar months. Trigo et al. (2002) studied the relationship between the NAQO phases and maximum
and minimum temperatures in the NCEP re-analysis (Kalnay et al., 1996) and observed that the NAO
has a stronger effect on the minimum temperature than the maximum temperature. They explained this
asymmetry in terms of associated changes in the cloudiness, and they argued that positive NAO winter
phase favours a more anti-cyclonic circulation pattern over central Europe and the Iberian Peninsula.
The enhanced anti-cyclonic activity is associated with reduced precipitation and reduced cloud cover.
A similar asymmetry between the maximum and minimum temperature response to variations in the
sea-ice or the SST can be at least partly be explained in terms their connection between the NAO.

This survey explored the data and identified some statistical relationships. The next step is to look
for physical explanations for some of these associations. If the links can be explained in terms of physical
mechanisms, then models can be constructed that can be used for prediction studies. If the verification
of the predictions (using independent data) suggest that the models are skillful, then these links can be
considered as being real.

The fact that the North Atlantic SSTs may have an impact on the climate in the Nordic countries
is important in terms of climate scenarios, since this implies that the global climate models (GCMs)
must give a realistic description of the ocean currents and the air-sea interaction which are believed to
be important for the SSTs. Furthermore, it is important that the GCMs can reproduce the statistical
relationships between the local climate parameters and the large-scale SSTs. '

The connection between the sea-ice and the regional climate over the Nordic countries puts severe
requirements on the GCMs in terms of producing climate scenarios under a global warming. Various
climate models different descriptions of the present-day ice-edge (Benestad et al., 2002a) and the retreat
of the sea-ice is inconsistent in the global climate scenarios (Benestad et al., 2002b). Furthermore, the
analysis presented here shows the statistical links between the sea-ice and the local climate elements in
the Nordic countries for only modest changes in the ice-cover. The model scenarios, on the other hand,
suggest a much more substantial retreat of the Arctic sea-ice than has been observed until now, and it
is not know if the response in the Nordic countries (or the rest of the world) will be the same as in the
past for such large perturbations to the Arctic climate.

Acknowledgments: This work was done under the Norwegian Regionél Climate Development
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Figure 19. The variance (R?) in %

of the monthly precipitation that can be explained by NINO3 in Jan (a), Feb (b),
Mar (c), Apr (d), May (e), Jun (f).
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Figure 19. The variance (B?) in % of the monthly precipitation that can be explained by NINO3 in Jul (g), Aug (h), Sep
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