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Maps of monthly mean sea surface temperature and sea level pressure have been reconstructed
Jor the 1900-2000 period. Analysis of the sea level pressure and sea surface temperature together
with monthly mean station observations suggests a real relationship between certain spatial
patterns and the subsequent monthly-to-seasonal mean temperature at various locations in
Fennoscandia in winter. There is also a possible weak lag relationship in summer, but the results
give no indication of any predictive skill in spring. Three prototype month-to-seasonal
forecasting models have been tested.

The test results suggest that there may be some predictability associated with monthly mean and
seasonal mean temperature. At least part of the predictability of temperature is associated with
the high winter-time autocorrelation. The monthly-to-seasonal mean precipitation is generally
more difficult to forecast than temperature according to the estimated skill scores.

A new strategy for developing empirical month-to-seasonal forecasting models is proposed.
Historical data contain some errors which affect the calibration of the empirical models. One
way to deal with errors is to use of weighting functions based on data quality, but in many cases
the the quality has not been established. The proposed strategy deals with errors by selecting
only a few data points, potentially avoiding bad data. Long historical records of monthly mean
observations are sub-sampled iteratively by selecting different random ensembles over a large
number of times. The random-ensemble-model (REM) strategy produces a large number of
Jforecasts that can be used to estimate a forecast probability distribution (p.d.f.). The REM model
has been tested with climate station records as predictor, but is designed to use any kind of data
(e.g. SST fields) as input.
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Figure 0-1. (a) The annual temperature cycle and (b) annual precipitation cycle at Oslo-Blindern, estimated by taking
the mean value of all the individual calendar months (January values, then all February values, and so on). The grey area
marks the range (maximum and minimum) of values obtained for each month.

0.1 Introduction

It is well-known that the weather is difficult to forecast further ahead than approximately a week.
Lorenz (1963) established that the atmospheric flow may in principle not be predictable beyond this
time horizon. Small errors or perturbation in the initial conditions grow exponentially and may have
consequences for the subsequent state of a complex non-linear. system. The lack of predictability is a
consequence of the so-called “chaos effect”. In order to explore various possible outcomes for a weather
system, dynamical atmospheric models have used an ensemble approach where many models are run in
parallel, but use slightly different starting conditions. The predictability derived from these ensemble type
integrations can be inferred from the spread in the solutions. One example of such ensemble forecasts is
the seasonal forecasting carried out with a coupled atmosphere-ocean model at the European Centre for
Medium-Range Weather Forecasts (ECMWF). A large scatter indicates little predictability. Experience
also shows that the use of ensembles improves the weather forecasts.
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The “chaos effect” may at first sight seem to indicate that it is not possible to make forecasts for
months and seasons ahead. However, weather statistics is affected by the boundary conditions (external
factors), such as the state of the surface and the energy input. A trivial demonstration of how the
boundary conditions affect monthly temperature and precipitation in Oslo is illustrated in Figure 0-
1. The temperature in Oslo follows a clear annual cycle, indicating that the temperature statistics are
affected by external factors such as the solar inclination (i.e. the incoming solar energy). The annual cycle
in the precipitation is less pronounced, which may suggest that the precipitation is less systematically
affected by external factors. It is trivial to predict that the July temperature in Oslo will be higher
than the January temperature. The question that we want to address is whether we can do better than
predicting the climatology- (the seasonal cycle).

There are a priori reasons to believe that it is in principle possible to do better than just assuming
climatological values. For instance, the ocean transports an anomalous amounts of heat into the North
Atlantic and the Norwegian Sea, and it is assumed that this heat at some later stage will affect the local
climate. The mean influence of oceanic heat transport on the local climate is well-known. Norway, for
instance, experiences a substantially milder winter climate than Siberia.

Anomalous sniow cover or sea-ice extent may affect the regional albedo, and may therefore influence
the regional energy balance both through an albedo effect and because snow melt may require a sub-
stantial amount of energy. The physically-based reason for month-to-seasonal predictability seems to be
supported by empirical evidence. Benestad & Tveito (2002) carried out a survey on possible teleconnec-
tions between factors such as sea-ice and local temperature and precipitation variations in the Nordic
countries and found indications that suggest there is a connection in spring and autumn between the
sea-ice and the subsequent month’s temperature (R? as high as ~ 0.3). Regression analysis with one-
month-lag also indicated a relationship between SSTs in the North Atlantic and temperature anomalies
in southern Scandinavia, in agreement with results by Benestad (1999a). Benestad & Twveito (2002)
furthermore reported statistical relationships between the sea-ice and precipitation for the subsequent
month over southern Scandinavia during late winter-spring and in the autumn (highest R? ~ 0.3).

If the surface conditions change slowly, then it is plausible that some of the weather statistics can
be predicted over longer time ranges. For instance, the oceans and sea-ice have much higher thermal
inertia than the atmosphere and tend to vary more slowly, and the ocean surface may contain precursors
for the subsequent atmospheric evolution.

Traditionally, there has been little serious work on forecasting with a time horizon of months to
seasons. Only recently, with the advent of a rapid increase in computational power, improved under-
standing of our climate system, and the improved availability of data, has month-to-seasonal forecasting
become feasible. Initially, month-to-seasonal forecasting focussed on the El Nifio Southern Oscillation
which has a preferred time scale of 2-8 years.

The Norwegian Meteorological Institute (met.no) has recently carried out a number of studies on the
potential predictability in Scandinavia (Benestad, 2001; Farland et al., 1999; Benestad, 1999a; Fgrland &
Nordli, 1993). A number of different approaches has been utilized for the prediction of subsequent months
asd seosons. The simplest models consist of statistics such as autocorrelation- (Fgriand & Nordli, 1993)
or condivonal probabilities (Figure 0-2). The observational records suggests long-term trends (warming),
such as seen in Figure 0-2(a), and the question is whether these trends are predictable and can be utilised
in month-to-seasonal prediction. Figure 0-2(b) suggests that there seems to be a statistical relationship
between the January temperature and February temperature in Oslo.

In addition to simple forecasting approaches based on statistics, three more advanced models will
be discussed in this report:

a A simple test-model used for hindcast studies (henceforth “test-model”).
b A prototype operational model (henceforth “DNMI-model”)
¢ A new model designed for operational use (henceforth the “REM” model)

In addition, reference is made to a “benchmark” model which involves taking the mean of the
previous 10 years of anomalies corresponding to predicted value.

A distinction will be made in this report between the terms “prediction”, “forecast”, and “hindcast”.
The term “forecast” will refer to predictions made for the future, whereas a “hindcast” is a prediction
made for the past but where the values that we are trying to predict have not been used in model
calibration (i.e. independent values). The term “prediction” is used in the general sense referring to the
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Figure 0-2. (a) A time series of the February mean temperature at Oslo-Blindern shown together with an estimate of
the long-term trend. (b) The distribution of the February temperature for the entire record (grey) and of those February
months following the 20 warmest (red) and coldest (blue) January months. )

model output. The term “seasonal” in this report normally refers to a 3-month average, which can start
- in any calendar month (i.e. March-May). The word “climatology” refers to the annual cycle, and an
“anomaly” is the deviation from this cycle. A month-to-seasonal forecast may not be just a prediction
of a future event, but may also entail a comprehensive analysis of expected errors, probabilities and
prediction skill. - '

This report serves as a documentation of the research into month-to-seasonal forecast at met.no
carried out as a pilot programme in partnership with Natsource Tullett (then CBF).

The outline of this report is as follows: a Method & Data chapter is followed by a chapter describing
the main results of these studies. The results from the test-model are described as well as the DNMI-
model and preliminary results with the REM-model. The reason for describing three different models
is that the test-model and the REM-model are designed to use the same input for model calibration.
The DNMI-model uses different data for input, and the reason was that it was desirable to set up a
model quickly and start making operational forecast for Natsource Tullett Scandinavia on a test-basis.
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A more detailed description of these models is given in the following sections. This report concludes with
a discussion and conclusions.
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TABLE 1. A summary of sources of data used for the reconstruction of the 1900-2000 monthly mean North Atlantic SLP
and SST records.

source period

Benestad (2000) SLP 1873 - 2000

NCEP (Kainay et al., 1996) 1947 - present
COADS SST 1856 — 1992

GISST2.2 SST 1904 - 1994

Reynolds € Smith (1994) SST 1981 — present

Kaplan SST 1856 — 1991

met.no climate archive ~1900 — present
ECMWTF surface analysis January 1985 ~ present

ECMWF ERA-40 (not yet available) 1958 ~ 1997

0.2 Methods & Data

0.2.1 Model development

Empirical forecasting requires long and high-quality (homogeneous) data sets for model calibration. The
models furthermore need constantly updated predictor fields if they are to be used in an operational
forecasting system. The long regional or global data records tend to consist of analyses made for past
observations, but a problem is that many of these are not continuously updated (Table 1). The data
which are continuously updated, on the other hand, tend not to be sufficiently long for model calibration,
possibly with one exception for the NCEP (Kalnay et al., 1996) data. Furthermore, comparison of
different data sets over a common time interval tends to reveal differences (Fig. 0-3). Even the most
recent data based on climate model assimilations, such as the NCEP reanalysis, may suffer from data
problems (see appendix A). Thus, the main problem associated with making empirical month-to-seasonal
forecasting is the lack of long high quality data records that are continuously updated.

0.2.2 The empirical data

In order to develop and thoroughly test the empirical downscaling methods, 101-year long data records
of sea level pressure (SLP) and sea surface temperature (SST) were constructed for the period (1900-
2000) by combining various data sets. Since there are differences between the data from the different
sources (Figure 0-3), the combination of the different sets is not trivial. The data furthermore come
on different grids with different resolution, different time span, and with gaps of missing data. But, as
long as the reconstructed record contains a real signal that produces useful predictions, these caveats
do not necessarily have to be a problem. The reconstruction of the data was done by projecting past
data onto their respective eigen-patterns (U)(Figure 0-4) estimated from the Reynolds & Smith (1994)
SST and NCEP SLP. The Benestad (2000) SLP reconstruction utilized a technique known as optimal
interpolation (Reynolds & Smith, 1994).

Sea surface temperature reconstruction

Composites of data from sources with valid data have been synthesized at met.no, and these have
then been used in a regression analysis in order to project the eigen-patterns from the recent and
complete (no “missing data” gaps) Reynolds & Smith (1994) SST. The Reynolds & Smith (1994) SSTs are
routinely updated and are used as predictor in the DNMI-model monthly-to-seasonal forecasting system
(the same data are also available though ECMWF, and will be used in the REM-model as well). It is
therefore important to use data which are consistent with this set. Figure 0-4 shows a comparison between
the composite and reconstruction by projection, and a reasonably good match is evident. However,
subsequent attempts to merge the SST reconstructions with the continuously updated Reynolds SSTs
from the Climate Diagnostic Center (CDC)* in the USA suggest that there are differences in the two data .
sets that may cause problems and affect the updated forecasts (Figure 0-5, difference between solid and
dashed lines). The data are not without errors, partly because of errors in the observations themselves,

*URL: http://www.cdc.noaa.gov/
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SST time evolution comparison
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Figure 0-4. Comparison between the 5-source SST composite (upper) and reconstruction by eigen-pattern de-
composition (middle). The lower panel shows the same results as a vector where the difference is given in red.




8 R.E. Benestad
' PCs and reconstructed+updated PCs
S s R e e e e
s 0 :
8
(=1
AN b
: i
fu
e § N :L‘.
NI
i
H
H
i
: H
g 1. .0 :
? i
o .
D B R R IR EI I P TO S PPN
d H : : N
T T T g T Y - Y
1900 1920 ' 1940 1960 1980 2000
Time

Test for good match

Figure 0-5. An attempt to merge the historicai SST reconstruction (solid lines) with the modern Reynolds &
Smith (1994) SSTs (dashed lines) suggests that there are differences that may cause problems. The black line |
‘shows the leading PC, the red line marks the second and the third PC is shown in blue. ‘

Lon'gituﬁe ce)
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Figure 0-7. The SST (a) and SLP (b) anomalies which are most correlated and their time evolution (c). These
results are the leading patterns that emerge from a CCA.

but also due to spatial interpolation and problems associated with the merging of data from different
sources. - :

Figure 0-6 shows the geographical distribution of root-mean-square error (rmse) between the com-
posite and the reconstruction. The largest errors are found in the Labrador Sea and east of Greenland.
There have been some studies which suggest that the North European weather is sensitive to the surface
conditions in the Labrador Sea (Skeie & Kvamstg, 2000). Relatively large errors can also be seen along
the ice edge.

Sea level pressure reconstruction

The sea level pressure (SLP) data and the 2-meter temperature [T(2m)] fields are described in Benestad
(2000). These products are based on a combination of the NCEP reanalysis (Kalnay et al., 1996) and
historical data analyses (Jones, 1992; Jones et al., 1998) from University of East Anglia Climate Research
Unit (UEA CRU) and the Comprehensive Ocean Atmosphere Data Set (COADS) (Slutz et al., 1985).

Evaluation of the data quality

One way to test the reconstructed data for a signal that may be used as a precursor for month-to-seasonal
forecasting is to apply a canonical correlation analysis (CCA) to the SST and the SLP fields in order
to extract spatial patterns which are associated with one another. Results from such an analysis are
shown in Figure 0-7, where the SST and the SLP patterns are shown together with their time evolution
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Figure 0-9. Similar to Figure 0-8, but lag correlation plot between Bergen 2-meter temperature and least-squares
regression based on January SLP anomalies.

and their correlation. The patterns bear similarities to the North Atlantic Oscillation (NAO), which is
a well-known feature in the North Atlantic. The canonical correlation is 0.83, which is indicative of a
coupled signal, but still not very high.

Although these data are far from error-free, one may expect from the agreement among the different
sources and the CCA results that the reconstructed 101-year SST record (1900-2000) contains the main
climatic signals useful for month-to-seasonal forecasting.

The evaluation of the empirical models’ capability of predicting future monthly and seasonal mean
temperature and precipitation will be based on models developed using the SST reconstruction mentioned
above and updated SLP from Benestad (2000).

Least-squares fit between the 8 leading EOFs from the SST and SLP data and 2-meter temperature
from Bergen (Figures 0-8 and 0-9) have highest correlation with the observations at zero lag. This test
suggests that the time stamp of the reconstructed data is correct. These results furthermore confirm the
presence of a signal in the SST and the SLP fields that can be associated with temperature variations
in Norway. For SST, there is a significant signal at zero lag as well as at plus and minus one month,
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but also at 12-month lag. High correlation for the subsequent winter can be explained in terms of the
strong winter-time persistence in the oceanic heat anomalies* (Bhatt et al., 1998; Sutton & Allen, 1997).
Furthermore, high correlation at negative lags may be due to December-to-January persistence in the
Bergen temperature (or SST). For SLP, the one-month-lag correlation is low, whereas the minus one
lag (December temperature) is well outside than the Monte Carlo 10%-confidence intervalt. The SLP-
based lag correlation suggests that there is some persistence in the December-to-January temperature
(or possibly SLP).

Tests were conducted using zero lag (contemporary observations), and the models reproduced a
good part of the temperature and precipitation in regression analyses against station data.

The input data for the test-model

The test-model used SST, SLP, sunspot numbers and the station data itself (e.g. for the preceding
month) as input for the step-wise screening.

The input data for the DNMI-model

The DNMI-model used different predictor data than the test-model due to problems merging different
data sets. The motivation behind the DNMI-model was to set up a month-to-seasonal forecasting system
within a short period of time. In order to achieve this goal, the input data must be in a format that is
easy to incorporate into the model system, and one common data format is Unidata’s netCDF* which
can be easily read into Matlab using the tool-box mezcdff. The NCEP reanalysis data are available in
the netCDF from the CDC. The predictor data from CDC included skin temperature, sea level pressure,
soil wetness. In addition, the monthly mean sunspot number (FTP ftp.ngdc.noaa.gov) was included in
the batch of selectors in the step-wise screening process and climate station data from met.no.

The predictor data used by the DNMI-model consist of short records, and one main disadvantage
with this model is the greater uncertainty in the calibration due to data size. On the other hand, the
DNMI-model does not require the merging of different data sets.

The input data for the REM-model

Temperature and precipitation station records are from the Norwegian Meteorological Institute’s (met.no)
climate data base. These records are used both as predictors (independent variables) as well as predic-
tands (dependent variables) where a time lag has been introduced to the record. A combination of the
reconstructions described above and the analysis from ECMWF will be used as input for the REM-model.
The REM-model will also use a new approach using mixed data fields analogous “CPCA” to in Brether-
ton et al. (1992). The use of mixed data fields puts the focus onto so-called “coupled modes” involving
more than one physical quantity. The DNMI-model utilised ordinary multiple regression involving several
types of predictors, with a step-wise screening based on cross-validation to avoid over-fit.

0.2.3 Model construction: The mathematical framework

Time series representing spatial fields of geophysical data can be decomposed into left and right inverses
using a method known as singular vector decomposition (SVD)(Press et al., 1989; Strang, 1995). The
results of an SVD also include a diagonal matrix describing the power of the series, and the total
decomposition looks like:

X =UwivT (1)

The symbol X in equation (1) denotes the timeseries of data anomalies. We will use the vector notation
to represent a spatial pattern of anomalies at a given time t (£;).

*The annual cycle does not affect these results since the analysis was made between SSTs and monthly sub-sampled
temperature by selecting only one calendar month at the time (i.e. all January months).

tEstimated using random permutations of the a subsample version of of the data with zero serial correlation. The trends
are small and have not been removed.

*URL: http://www.unidata.ucar.edu/packages/netcdf/

tURL: http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF /nc4mi15.html
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The advantage of using the SVD products (principal components) is that it can be used to limit

the numbers of predictors, and when used in regression the predictors are also orthonormal. Thus, the -
use of this method greatly reduces the computational demands. The matrices in equation (1) have the
following properties: UTU =1, VTV =1, and WT = W. The SVD products can be used in empirical
models using spatial fields as predictors. A best-fit (&) to the observed climatic anomalies (£;) can be

expressed in terms of a combination of “eigen-patterns” (U):
£=Uj (2)

The coefficients 3 can be solved using an ordinary least-squares fit or solving the equation g=UTz.
The principal components (V) can be expressed in terms of the eigen-patterns and the observations:
vT = W-4UTZ. Using the best-fit combination of eigen-patterns (2) instead of the actual observations
gives:

v=wiuTuf=w#§ 3)

The eigen-patterns can be found using an SVD analysis of long historical records of data such as
sea surface temperature or sea level pressure. Updated observations can then be expressed in terms of
these patterns according to equation (2), where the weight of each eigen-pattern is contained in §.

The principal components (V) representing the predictors at time ¢ are used in the lagged regression
(lag I) employed for the empirical model development.

fopr =1 +BV] (4)
The quantities d@; and @ are model coefficients derived using a best-fit estimation such as least-squares
fit. .
The development of the month-to-seasonal forecasting included a thorough testing in order to ensure
that the codes work the way they were intended. These tests ensure that the matching procedure for
the spatial patterns work, the time stamp of the data are correct and match each other, and that the

empirical models describe the predictors. All the models used a least-squares optimisation and a step-wise
screening to reduce the risk of over-fit.

The test-model

The test-model was based on the mathematical framework outlined in section (0.2.3). The empirical
model used a lagged least-squares regression to solve for ﬂ: and then to make a prediction according to the
statistical model based on the regression coefficients in f: ¥ = XB. The predictors are selected through
a step-wise screening process where the results from a cross-validation is used to determine whether a
particular predictor should be included according to whether the correlation with independent data was
improved.

The DNMI-model

SVD was used to combine data from various sources before the use in the DNMI-model. Each grid-box
series was standardised before applying the SVD, and a weighting factor was applied to the station
observations in order to increase its importance. The leading modes responsible for 75% of the variance
(or a minimum of 5 EOFs) were included from the SLP and the SST data sets and used in the SVD
analysis. Similarly, only the principal components that describe 75% of the variance (or a minimum
of 15 EOFs) in the SVD analysis that combine the SLP, SST, and monthly mean station observations
were used in the regression analysis. A cross-validation analysis was used to determine which predictors
should be included in the model, and only those which increased the correlation score by more than 0.03
were included. The 1900-1959 period was used for model calibration whereas the independent 1960-2000
time interval was used for evaluation of the predictions.
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TABLE 2. Number of possible combinations of subsets with r elements from a population of N.

N r N,

81 30 1.4x10%2
81 40 2.1x10%
81 50 2.3x10%2
81 60 1.4x10'°
91 30 1.0x10%*
91 40 1.0x1026
91 50 1.3x10%
91 60 2.0x102%*
100 30 2.9x10%8
100 40 1.4x102%8
100 50 1.0x10%°
100 60 1.4x10%8

The REM-model

The REM-model adopts a similar mathematical framework as described in section (0.2.3). Instead of
a cross-validation procedure for selecting the predictors to be included in the model, the step-wise
regression uses the Akaike information criterion (AIC) (Wilks, 1995, 300-302). The evaluation of the
REM mode] predictive skill is, on the other hand, based on a cross-validation analysis using the data not
included in the model calibration. Recent progress in the month-to-seasonal forecasting system involves
modification to the forecasting strategy: :

i Add the long-term trend information in order to improve the skill.
i Carry out a large number of predictions based on random subsets (ensembles) of the historical data
— Random Ensemble Model (REM). :
## Improve the verification analysis: Hit-ratio table based on 5 categories [very low, low, around normal,
high, very high].

Two new features (i and 4i) have been introduced to the analysis in order to improve the forecasts
whereas a third addition (4i) provides a new tool for assessing the forecasts.

As the climate is subject to a global warming (IPCC, 2001) there is a higher probability for seeing
warmer than colder seasons in the future (see Figure 0-2(a)). This information may be utilized in the
month-to-seasonal forecasting by simply extrapolating the recent observed linear trend to the near future.

Embpirical-based prediction schemes have traditionally been deterministic in nature. One of the
disadvantages associated with single deterministic forecasts is the information on the predictability,
although some information is embedded in the goodness-of-fit (e.g. variance). Furthermore, ensemble
forecasts may provide a crude basis for probability-based forecasts.

Even though empirical models do not explore the chaotic aspects of the systems, they nevertheless
may be integrated in an ensemble type forecasts. One way to do this is to compile a forecast of many
different types of models, each with different strengths and weaknesses. It is also possible to derive a set
of different models by using different subsets (ensembles) of data. The number of different models, m,
depends on the number of possible data combinations in terms of subset size, r, and total number of
data points, N:

N!

If one calendar month is extracted from the 1900-1990 period for calibration (N = 91) and subsets
of 50 points are used for the calibration, then maximum number of combinations is 1.3x10%? (Table
2). Thus, by selecting 1000 different combinations at random, the chance of selecting two or more sim-
ilar combinations is P(z > 0) ~ 8 x 10~4! assuming a binomial distribution with p=1/m =8 x 107,
Hence, a random selection of subsets can be justified.

There are some questions which need to be resolved regarding the REM strategy. These include:
How big sub-samples? What is the optimal area for the predictor field? Which are the best predictor
variables? Furthermore, Feldstein (2000) has argued that monthly time-scales may not be optimal for
detecting teleconnections, and empirical models may be improved by using for instance 10-day or 45-day

(5)

m=NC,
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means as opposed to monthly mean. The answer to these questions may depend on the season as well as
the location. A systematic exploration of the various settings is necessary for answering these questions.

One advantage of the ensemble approach is that it may provide a remedy for certain types of
non-stationary and nonlinear relationships (e.g. brings in an aspect of so-called local regression). Bi-
modal distributions and clustering of the data (e.g. weather regimes) will become apparent in the REM
histograms. '

A commonly used measure of skill for probability type forecasts is the Brier score (BS) (Wilks, 1995,
p. 259) which is a mean-squared type measure of probability forecasts where o is 1 if an event occurs
and o, = 0 if it doesn’t occur. We let Y denote the probability (for instance taken from an e.d.f. /c.d.f.
distribution based on past error statistics) forecast. A perfect forecast gives the score BS= 0, whereas
for a worthless model BS= 1.

BS= -11; En:(f’k - Ok)2. (6)
k=1

The scores are estimated from the ensemble mean of independent (cross-validation) forecasts over the
1900-2000 period, except for the Brier-score. The Brier-score is based on all the data, including the
dependent ones, in order to derive the predicted probability distributions for each event.

Choice of predictor fields

The present REM month-to-seasonal forecast system is designed to take any relevant predictor, including
(i) North Atlantic sea surface-temperature (SST) anomalies, (ii) mixed fields of SST, SLP, and 2-meter
temperature [T(2m)], and (iii) climate station records. It is important to assess the various predictor
choices and different mixed-fields combinations, as well as predictor area, in order to obtain an optimal
forecasting model.

0.2.4 The forecasting system configuration

Updating the data -

As already stated, an operational forecasting system requires a continual updating of the predictor
data. The most flexible approach is to match new data with the old, and the system thereby does
not rely on one specific data source. The update may be done by projecting the latest data onto the
principal components* (Benestad, 1999b) of the DNMI reconstructed data.initially established for the
predictability studies. .

The predictor data (spatial fields used as input) can be updated before the end of the month by
using 10-day or 5-day forecasts. The fields updated with predictions are more uncertain than if the fields
merely consist of analysis data. A chrontab job may launch a new job periodically, and an R routine
may be used to check whether it’s the right time for starting a new forecast (e.g. the beginning of a
month). A launch-script calls for an update of the data and starts the forecast at pre-determined times
(Figure 0-10) .

The month-to-seasonal forecasts will initially use monthly mean re-analysis products from NCEP as
predictors. At a later stage, analysis data from ECMWF will also be utilized, but at present these data do
not go sufficiently far back in time. The evaluation of the month-to-seasonal forecast products involves
hindcasts for the period 1980-present. This time interval is substantially shorter than the evaluation
period 1960-2000, implying stronger sampling fluctuations in the score estimates.

The DNMI-model is run manually, and does not produce forecasts at fixed dates. One reason for
this is that the DNMI-model takes some of its input from the NOAA Climate Diagnostics Center (CDC)
in USA'. Although this data is freely available, the date at which they are posted on the Internet may
‘vary. The users of month-to-seasonal forecasts need reliable forecasts that are generated at agreed dates,
and there is a need for an automatic fully operational system that does not rely on the presence of
key people. The forecasting system should use data that always is available on the first day of each

*The principal components describe the temporal evolution of the weights for the spatial modes (EOFs).
TURL: http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml
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Updated data fields of SST, SLP, T(2m)
from ECMWFE. :

Analysis & forecast (10-day & 5-day)
Analysis only (1st day of each month).

Start new ,
-—— - .
forecast? ™| The REM forecasting | <e—— Updated observations from
system. met.no climate archive.
Merging of old & new datp
Calibration & prediction
Analysis of errors

——> Automatically generated web

pages
- Data in ASCII format (tables).

y»- Graphics

—3» Analysis of previous forecasts.
Prediction of forecast skill.

Figure 0-10. A schematic illustrating how the operational system is designed. The system consists of several modules
which can be easily swapped or replaced. This allows easy testing and upgrading or modification of the system is in
principle simple. The forecast products may include graphics, tables, statistics or web pages.

month. These points motivated the development of a completely new system which aims to achieve
higher predictive skills, be more flexible, and robust. The DNMI model was coded for Matlab, which
is an expensive software package that requires a license for the platform running the system. The new
system (REM-model), on the other hand, was developed for the free data processing language called R
(a “GNU version of S-plus”) running on a Linux platform, and does not require special licenses. The
new system will henceforth be referred to as the met.no-system, whereas the older model will be referred
to as the DNMI model.
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Figure 0-11. Hindcast for the February-March interval made during January (lag=1). The test-model. The black

lines represent the observations (thick line shows 5-year low-passed curves), the blue lines show the predictions .

made for the calibration (dependent) period, and the red lines show the predictions made for an independent

evaluation period. The green line shows the results from a benchmark model taking the mean of the previous 10
years anomalies.
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Figure 0-12. Same as Figure 0-11, but showing hindcast for the February-April season made during January
(lag=1).

0.3 The results

0.3.1 Hindcasting based on the test-model

Temperature

A test period defined as 1960-2000 was used for the inter-comparison with a benchmark method based
on the average of the previous 10 corresponding calendar months (i.e. the previous 10-year climatology).
The evaluation used anomalous correlation (Pearson): '

S D)@ ) -
N = N /. =
VEN (0 97 x SiL 0 - 9

vV Eﬁ_q (ye — 91)? @®)

rmse(§, y) = N

r(§,y) =

and rmse:
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scores as a measure of skill. The former is not sensitive to the mean value (offset) of the predictions
whereas the latter score is. Since the predictions give the variations about a mean value, a mean value
must be added to these results in order to get a useful prediction. In these tests, the mean value for the
30 years preceding the time when the hindcast was made was added to the predictions.

The scores for various models are given in tables 10-19 (in the Appendix) for lags (lead time) of 0-2
months. The tests based on the reconstructed SST, SLP, and the monthly mean station temperature
hindcast suggest modest skill during during winter and summer. These results are nevertheless not en-
tirely representative of the maximum achievable scores, partly due to the above-mentioned shortcomings
of the SST and SLP reconstruction, but also because these tests only involved SST and SLP and there
may be precursor signals in deep ocean conditions and heat transport, snow and ice cover, and soil
wetness. Hence, there may be predictors not included that may increase the skill of these models.

Table 10 gives the scores of monthly mean temperature hindcasts for Bergen as well as corresponding
scores from the benchmark model (the average of the previous 10 years anomalies). Both anomalous
correlation scores and rmse scores are presented. The entries shown in bold face have a better score
than the benchmark method. It is nevertheless important to keep in mind that the score estimates
are associated with some statistical fluctuations. Furthermore, even though the regression model yields
better scores than the benchmark model, they may both be useless if both are low (e.g. correlation score
less than 0.40). The zero-lag (contemporary) scores are shown as a check reference for the monthly mean
values, but these scores also reflect the models’ predictive skill for 2-monthly and seasonal (3-monthly)
mean values. Hence, a zero-lag prediction for seasonal mean temperature involves the prediction for two
months ahead when the present month’s temperature is known. It is for instance necessary to subtract
0.33x January value from this seasonal mean and then compute the correlation with the 2-monthly
mean February-March (FM) in order to assess the real predictability using zero-lag for more than one
month. .

The analysis of the monthly mean hindcasts gives encouraging results for the empirical monthly
prediction method. At one month’s lead time (lag=1), the model scores higher than the benchmark
model for 9 of the calendar months in terms of the anomalous correlation score and for 5 months in
terms of the rmse score. The fewer high rmse scores obtained by the test-model reflect the difference
between the two methods: whereas the benchmark method is a conservative model favouring near-normal
values, the regression model predicts larger (more realistic) amplitudes.

The correlation score of 0.50 for 1-month lead time monthly mean temperature hindcast for Bergen
starting in January is high and statistically significant at the 5% level, reflecting real predictability.
These findings are also in line with earlier analysis based on different data (Benestad, 1999a), and seem
to be a robust feature.

In Table 11 the high correlation scores (r = 0.90 in January-February) associated with the zero-lag
prediction of January-February (JF) issued in January may suggest that the February mean temperature
is highly predictive once the January value is known. The correlation score of 0.42 for one month’s lead
time is also substantially higher than the corresponding benchmark value and may furthermore be
statistically significant at the 5% level (the 5% confidence limit =~ 0.40). These results suggest a real
predictive skill for the two subsequent months.

The scores for seasonal (3-monthly) mean predictions are presented in Table 12, indicating potential
for empirical seasonal prediction of the Bergen temperature during winter. The winter-time scores are
both substantially higher than the benchmark method and just statistically significant at the 5% level.

Hindcasts based on a number of different model settings were evaluated. Tables 13 shows hindcasts
scores for monthly mean, 2-monthly mean, seasonal mean temperature in Bergen when sunspot data
(monthly mean sunspot number and 6-month low-passed sunspot value) were included as a predictor
(there is a long history for using sunspots for climate prediction (7)). In some cases the scores are
improved and in other cases deteriorated. Parts, if not all, of the variations in the prediction scores can
be accounted for by sampling fluctuations. Thus the sunspot data does apparently not make a systematic
improvement to the forecast capability. Much of the precursor signal can be seen in the station data
itself.

Table 14 shows the hindcast scores from models only utilizing the Bergen monthly mean temper-
ature. The autocorrelation can account for most of the predictive skill during winter, and the 1-month
lead for February using just observations is associated with better skill than for the models also in-
cluding SST and SLP. The reason why the “standard” (using SST, SLP, and contemporary observation
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Figure 0-13." Evaluation of the prediction of February mean temperature in Oslo.

as input/predictor) regression model yields lower scores than the model taking only the contemporary
monthly mean station observation is that some of the precursor signal in the station data is swamped
by “noise” in the SST and SLP (i.e. the method for extracting the information is not perfect as some
information tends to “leak” out). The models only trained with SLP and SST (Table 15) can also im-

~prove on-the results-from-the benchmark model,-although it is difficult to resolve the predictability due
- persistence-from-what is “caused” -by the SST-and SLP anomalies (high scores at zero-lag suggest that
there is a relationship between the contemporary large-scale SST and SLP anomalies and the station
observations).

Other locations

Analyses of hindcasted temperature for Oslo, Stockholm, Copenhagen, and Helsinki give qualitatively
-similar-results as-the above analysis for Bergen. The one:month-lead hindcast results for Oslo February
-temperature, based on SST, SLP, and past-station-values, are show in Figure 0-13. The correlation score
for the independent evaluation period (1960-2000) is 0.60. The correlation score for the February mean
temperature in Oslo is lower than for February—April. Similar analysis for two-month targets suggest
-that-the ‘models skills are not limited to monthly or ‘seasonal mean values (Figures 0-14 and 0-15). In
‘other-words, the skill-estimates seem-to be robust. Figure 0-15 'suggests that two-month spring-time
temperatures in Helsinki also may have some predictability. '

Table 16 lists the hindcast scores for the seasonal mean temperature in Oslo, suggesting good
potential for seasonal prediction during winter (lag-1 anomalous ‘correlation of 0.74). The scores for
seasonal forecasts at other locations are as high as 0.6-0.7 for one month’s lead time in winter. The
models fail to give skillful predictions for the summer temperature (e.g. Figure 0-16). '

At 2'months’ lead time, the scores are generally bad, and such forecasts are probably not useful.
Nevertheless, a month-to-seasonal forecast at 1 month’s lead time represents a prediction for the next
2-4 months. :




Month-To-Seasonal Forecasting 19

Correlation=0.70 (85% conf =0.38) Proportionat variance =52.8% mMmse=0.30
T T T T T T
Ca.llbratltm 1900 to1 959

obs (lag_1)

stockholm: M temperalure

: Benchmark: r=0.09 : , rMse=0. 2 :
—18 .» .... Target p.bdod=2.mcnths ............ HERRRARRRRERD :
1902 1918 1930 1943

Time

Figure 0-14. Evaluation of the prediction of February-March mean temperature in Stockholm.
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Figure 0-15. Evaluation of the prediction of March-April mean temperature in Helsinki.
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Figure 0-16. Evaluation of the prediction of May-July mean temperature in Copenhagen.
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Figure 0-17. . Hindcast for the Bergen February mean precipitation made during January (lag=1).
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Figure 0-18. Precipitation hindcast for the February-April interval made during January (lag=1).

Precipitation

The monthly mean hindcasts for the precipitation in Bergen suggest that the test-model in some cases has
skill better than the benchmark model and higher than the 5% confidence level. The model does, however,
not predict the recent upward trend in the winter time precipitation (Figure 0-17). The prediction of
seasonal mean values gives higher correlation score than the monthly mean amount(Figure 0-18), but
also the for seasonal mean values do the models miss the recent trend. Table 20 (in the appendix) gives
an evaluation of the hindcast for seasonal mean precipitation in Bergen (Figure 0-17), indicating best
prospects for predictability in January. One month’s lead time correlation score of 0.52 is significant at
the 5% significance level, but it is interesting to note that also the benchmark method yields high scores
in January. Much of this precipitation is related to the NAO (Benestad & Twveito, 2002). The results
suggest virtually no skill for the late spring, summer and autumn. As the precipitation is much more
localized than temperature anomalies, it is expected to see greater differences in the scores from location
to location. Table 21 presents the corresponding analysis for Oslo. The prospects for lag-1 seasonal
prediction of precipitation for Oslo appear to be greatest during summer and autumn (Table 21, Figure
0-19). Although the regression method achieves better scores than the benchmark method, both tend
to be low and the usefulness of these predictions may be questioned. Also in Stockholm (Table 22) do
the spring- and summer-time rainfall predictions obtain better scores than the benchmark model, albeit
much of these differences may be due to sampling fluctuations. The predictability for seasonal mean
rainfall over Copenhagen looks bleak according to the results in Table 23, and the situation is not much
better for Helsinki (Table 24). All this means that North Atlantic SST and SLP are not suitable as
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Figure 0-19. Hindcast for the Oslo October-December precipitation made during September (lag=1).

predictors for seasonal mean precipitation for these locations, nor is there much autocorrelation in the
precipitation series apart from in Bergen during winter. The apparent moderate scores for Oslo (Table
21) may be real, but there is no guarantee that these are not coincidental (see section (0.5)).
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Figure 0-20. (a) The model comparison obtained from NTS Horizon web site for weighted temperature over Norway,
Sweden and Finland (The weighting is done by NTS). (b) A reproduction of the forecast also showing the best forecast
(black circle).

0.4 The Forecasts

0.4.1 The DNMI-model
Evaluation of skill

The prototype month-to-seasonal forecasting system was developed in a joint research project together
with Natsource-Tullett Scandinavia* (NTS, former CBF) as a part of their Horizon project. The forecasts
from this model have been evaluated by NTS and are shown in Figure 0-20(a). Of 25 cases (June 2000-
July 2002), the DNMIt model was closest to the true value for 13 of the 25 cases, whereas MeteoConsult

*URL: http://www.cbf.no/.
t“Det Norske Meteorologiske Institutt”: The Norwegian Meteorologival Institute.
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Figure 0-21. Example of a forecast made with the DNMI model. The forecast was based on June 2002 observations and
analysis and the target month was July 2002 (lead time of 1 month). Monthly mean temperature.

TABLE 3. The actual forecasted temperature (7°) and precipitation (7r) anomalies for Oslo-Blindern based on the DNMI-
model. The Pearson correlation between the observed values and the predictions is 0.01 for temperature and -0.17 for rainfall
(the p-values are 0.98 and 0.57 respectively, indicating that these are not statistically significant from zero). It is important
to keep in mind that the number of forecasts is small and this preliminary evaluation therefore is very uncertain.
Year Month ObsT T Obsrr Date of fest

2001 6 -0.6 1.02 450 , 2067 22-Jun-2001
2001 7 1.3 0.39 82.3 13.83 18-Jul-2001
2001 8 0.6 1.84 92.8 -4.95 07-Aug-2001
2001 9 0.7 -0.62 66.9 -40.63  11-Sep-2001
2001 10 2.6 -0.90 149.3 -8.83 17-Oct-2001
2001 11 14 1.70 37.3 35.51 08-Nov-2001
2001 12 -0.3 -0.78 31.2 14.29 12-Dec-2001
2002 1 1.5 0.55 75.6 31.00 08-Jan-2002
2002 2 4.6 1.10 57.9 3.40 08-Feb-2002
2002 3 2.1 NA 324 NA NA

2002 4 2.4 -0.57 404 -1.83 12-Apr-2002
2002 5 2.1 0.32 99.2 5.01 06-May-2002
2002 6 1.4 0.65 60.5 -19.10  17-Jun-2002
2002 7 1.0 0.12 133.0 16.37 10-Jul-2002

was best in § of the cases and SMHI in 3. Four of the cases were “drawn” between the DNMI model and
one of the other models (Figure 0-20(b)). Of the 25 DNMI forecast, 14 had the right sign whereas 12
Meteo Consult and 16 of the SMHI forecast had the correct polarity. The Pearson correlation between
the DNMI forecast is 0.11 (p-value = 0.60), compared to 0.16 for Meteo Consult (p-value = 0.45) and
0.58 for SMHI (p-value = 0.00). The root-mean-squared error (rmse) is 1.81 for DNMI, 2.03 for Meteo
Consult and 1.66 for SMHI. Another way of assessing the forecast is to classify the value in a given
category, say low, normal and high (each with an equal chance of being populated, the values shown as
dotted horizontal lines in Figure 0-21(a)). /

The DNMI model did not predict any of the large anomalies. Thus, although the DNMI model
compares well with the two other models, there may be room for improving the forecast skill.

Table 3 shows an evaluation of the actual forecasts made for Oslo-Blindern in the period June 2001
— July 2002. A correlation analysis between the predicted and observed anomalies suggests that the
DNMI-model appears to be only marginally better than using the climatology as a prediction*.

" *The evaluation interval is too short to make a strong statement about this.
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Additional information derived from the analysis

There are many ways in which month-to-seasonal forecasts can be presented. A common graphical format
is a time series plot showing the past and present predictions together with the “truth”, thus facilitating
a visual evaluation of the past predictions. Figure 0-21 shows an example of such a presentation, where
the yellow area denotes a measure of uncertainty (£2x standard error of the evaluation period), black
line with circles denotes the actual monthly mean temperature, and the red line with crosses represents
the predictions. Low-passed values are also shown as thick curves, showing the tendency for the model
of over- or underestimating temperature. The thin green line shows the benchmark predictions. The
1961-1990 climatological mean temperature is marked by the middle dashed horizontal line as are the
levels (+0.430) dividing the observed distribution into 3 equal areas (upper and lower horizontal dashed
line) so that the theoretical probability! of the observed value being in either of the three categories
high, normal or low is 0.33. The most recent forecast is shown as a dark red “x” together with error
bars.

A different format is the probability distribution plots shown in Figure 0-22. Fig 0-22(a) shows
a histogram of the past prediction errors from an independent evaluation period centered around the
most recent prediction together with a best-fit Gaussian curve. Because of the short predictor data
records, the population of error estimates is small, and the histogram gives only a sketchy impression of
a Gaussian shape at best. The errors also tend to be much greater than the size of the categories “cold”,
“normal”, and “warm”. The x-axis can therefore be categorized in terms of these dashed vertical lines
as “low”, “normal”, and “high” values. Panel (b) shows the corresponding e.d.f. and c.d.f., from which
the probability of getting low, normal, and high values can be read directly. Moreover, due to the small
error sample, the distributions only give a crude and uncertain measure of probabilities.The Brier score
for both the regression and the benchmark method are shown in Fig.0-22(b).

One way of gauging the real predictive skill of a forecast model is to look at the statistics telling
how often a severe event took place and how often the model predicted such an anomaly. Figure 0-23
show hit-ratio tables which shows how often high temperature occurred in Bergen (upper row) and how
often high temperatures were predicted (left column). The blue numbers along the diagonal (lower-left-
to-upper-right) give the number of correct forecasts, whereas those boxes off this diagonal represent
misses of various degrees (red numbers show a total miss). It is apparent that the benchmark method
is a very “conservative” model giving more “normal value” predictions, and is not a very good model
despite obtaining high anomalous correlation and rmse scores.

The probability of making a correct forecast can be estimated according to:

_ N(yiow> Jlow) + N(ynorm, gnorm) + N{(ypi, Fhi)
Phiy = N : (9)
total

The hit-ratio can be defined as the sum of correct predictions over the total number of forecasts
(The sum of blue numbers in Figure 0-23). The hit-ratios computed for the DNMI model (for the whole
of Scandinavia) is 0.48, Meteo Consult 0.40, and SMHI 0.44 (expectation value of a random guess
is 0.33). It is possible to estimate confidence limits for this probability by carrying out Monte Carlo
integrations using a large number of same length data series with random Gaussian numbers. Note that
the probability scores will vary with the levels used to divide the observations into the categories [low,
normal, high]: too high levels (i.e. the “normal” bin gets too wide) will lead to inflated score (and not
very useful forecast) whereas too low levels will make the scores more sensitive to misses of near-normal
conditions. The probability scores and corresponding 5% confidence levels are shown for the hindcasts
in Fig. 0-23 both for the regression model and the benchmark.

Analysis of the range of model coefficients derived from the cross-validation analysis can also give
some indication of the robustness and uncertainty associated with the predictions. Figure 0-24 shows
the model coefficients together with error bars indicating the spread in the various estimates. When
there is a clear and strong stationary relationship between z; and yi41, then there will be small error
bars. A high level of noise and weak and uncertain relationships will tend to give greater scatter in the
coefficient estimates and hence larger error bars. In the example shown in Figure 0-24, the coefficients
are well defined.

One interesting observation that can be made from Figure 0-20 is that the anomalies are biased

¥ Assuming a normal distribution.
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TABLE 4. The climate station predictors covering 1900-1980 used for calibration and cross-validation in the examples

shown.
Bjgrnholt T(2m)
Dunderlandsdalen T§2m
Geilo T(2m
Halden T§2m;
Narndalseid T(2m
Oksgy T(2m)
Oksgy precipitation
Oksgy snow-depth
Skjak T(2m)
Sulitjelma T(2m)

TABLE 5. Locations where station records are used as predictors. (N), (DK), (FIN), (F), (S) refer to Norway, Denmark,
Finland, Faeroes, and Sweden respectively.

Kjgremsgrendi (N)  Oslo-Blindern (N) Nesbyen (N)
Bergen-Florida (N)  Vearnes/Trondheim (N)  Tromsg (N)
Karasjok (N) Vardg (N) Kgbenhavn (DK)
Helsinki (FIN) Turku (FIN) Tampere (FIN)
Jyviskyla(FIN) Kuopio (FIN) Sodankyli(FIN)
Torshavn (F) Géteborg (8S) Karlstad (S)
Uppsala (S) Stockholm (S) Stensele (S)
Abisko (S) :

towards positive values (min=-1.100, median=1.200, mean=1.416, and max=4.7 00). The reason for this
shift is the long-term changes in the temperature associated with decadal variations and long-term
warming trends.

0.4.2 The REM-model

The REM model is a kind of “brute force”-solution to the forecasting problem for which there are errors
in the predictor data. This forecasting strategy makes good use of the resources that modern computers
can offer, and a complete forecast on a double 800 MHz CPU machine running Linux takes several hours,
depending on the ensemble size, number of locations, and number of lags. The ensemble size, size of the
subset used for model calibration, lags, type of predictor, and locations are set at the beginning of each
forecast. The predictor data is pre-processed before being used in the REM model, and any type of data
can be used as inputs provided they are of correct format. The forecasting system is set up so that it
may start overnight and use computing resources when the computer otherwise is idle. The model can
be described as “generic” and can be applied to any time series. This means that the model can easily
be set up for the prediction of precipitation or other parameters as well as temperature, and it may used
for any geographical region given sensible input data.

Figure 0-25 shows some preliminary results obtained with the REM-model using climate station
values as predictor. The advantage of using climate station data (Table 4) is that only long records may
be included and there is no need for merging different data sets. The climate station data is also available
soon after the end of each month. The disadvantage with using station data only is that pre-cursory
signals may be weaker (for instance more local “noise”) or even absent in the local station records.
Hence, these forecasts may not give the correct impression about the maximum achievable skill of the
REM-model. .

Figure 0-25 shows a cross-validation analysis of 100 one-month-lag predictions for Oslo. There is a
tendency for the range of predicted values for each month to vary with time. The correlation between the
cross-validation analysis and the observed temperature record is 0.30 for the period 1900-1999 (however,
there are gaps of missing data). For a model producing random numbers, the range would be expected
to be constant and the correlation is expected to be zero. The REM-model is not perfect and predicts a
number of high temperatures in the 1910s and during the late 1990s when the observations suggest low
values. Figure 0-26(a) shows the distribution of the ensemble of forecasts by the REM model (blue) and
the errors associated with the ensemble mean values. The hit-ration (Figure 0-26(b)) for Oslo of 0.26 is
higher than what is expected for a model producing random values.
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Cumulated independent hindcasts
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Figure 0-25. Example of output from the REM-model using climate station data as input. The cross-validation
results from an ensemble of 250 forecasts.

TABLE 6. Analysis of variance (ANOVA) of the results from a regressional analysis of forecasted temperature anomaly
against geographical parameters. The columns give the estimated coefficients, error, t-value and probability associated
with the regression against distance to the coast, altitude, latitude and longitude. The residual standard error is 0.2717 on
17 degrees of freedom. The estimated multiple R? is 0.6386, and an adjusted R? 0.5536. The (-statistic is 7.511 on 4 and
17 DF, and the probability that the null-hypothesis of no geographical dependence (p-value) is 0.001123 (Signif. codes: 0
“¥EE0.001 “¥* 0.01 *7 0.05 ¢ 0.1 ¢ 1).
Fstimate Std. Error  t-value  Pr(> |t])
(Intercept)  5.2997211 1.0606950  4.996 0.000110***

dist -0.0842264  0.0745746  -1.129 0.274404
alt -0.0002072  0.0002687  -0.771 0.451374
lat -0.0680486  0.0191566  -3.552 0.002450**
lon -0.0020978  0.0123226  -0.170 0.866834

Evaluation of skill

The box-plots in Figure 0-27 show how the correlation scores vary with lag. There is a rapid drop from
zero to one-month lag, as expected. The one-month lag generally has higher correlation scores than the
2-month lag, and this suggests that there is indeed some predictive skill at lags of one month.

0.4.3 Spatial analysis of the forecasts

It is possible to use the forecasts for a number of stations in Scandinavia to infer change for other
locations in the same vicinity if the forecasted values follow geographical patterns. Table 6 gives a
summary of a regression of predicted temperature anomaly at various locations (dependent variable)
against geographical parameters. The forecasts exhibit a clear latitudinal dependence with lower values
at higher latitudes.

The results from the REM model can be used in a multiple regression against geographical parame-
tres such as the distance from the coast, altitude, latitude, and longitude. More complex models may also
include the gradient of the topography, but if the number of locations is small, then the inclusion of too
many independent variables is likely to result in an over-fit. Figure 0-28 shows a map constructed from a

T

T
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Figure 0-26. Example of output from the REM-model using climate station data as input. (a) histogram of all
 forecasts in Figure 0-25 (blue) providing a basis for a probability estimates and the error distribution (grey), and
(c) the hit-ratio-analysis based on the 250-forecast-ensemble mean.
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Figure 0-27. Preliminary correlation scores from the REM-model using station values as both input and ocutput
(Tables 4 and 5). The labels on the x-axis “lag.0”, “lag.1”, etc refer to one-month and two-months lagged
predictions.

multiple regression with only 22 different stations (Table 5) using 4 geographical parameters (Table 6).
The analysis shown here may include too few locations and the prediction from the regression analysis
may be over-fit.

The residual from this regression can be spatially interpolated through the means of a kriging
analysis if the residuals contain a spatial structure, and spatial maps can be constructed by adding the
multiple regression results and the interpolations from the kriging analysis. The map shown in Figure
0-28 did not include kriging since the residuals contained no spatial structure.

The development of the REM model has only involved temperature forecasts, but future work will

‘also include precipitation.
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*Anomalies based o
Figure 0-28. An example of how geographical information can be included in the analysis to make spatial maps
of forecasts. This figure shows the one-month lead forecast for September 2002, and is derived from a multiple

regression with 22 locations (Table 5) and 4 independent variables. The temperature anomalies have bee n
multiplied by 100 in this figure.
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TABLE 7. Probabilities of getting n cases with higher score than the benchmark if the probability of obtaining a better
score for each case is 50% (both methods are equally good) according to a binomial distribution.
n=1 n=2 1n=3 n=4 n=5 n=6
0.3 1.6 54 12.1 19.3 22.6
n=7 n=8 n=9 n=10 n=11 n=]2
193 121 54 1.6 0.3 0.0

TABLE 8. Counts (N) of superior (in terms of the anomalous correlation score) seasonal mean temperé.ture forecasts
based on SST, SLP, and past observations, and estimated significance (p in %) [N / p}.

location lag=0 lag=1 lag=2
Bergen 11703 2/16 0/0

- Oslo 12/00 2/16 0/0
Stockholm 12/00 3/54 2/16
Copenhagen- 12/0.0 2/16 2/16
Helsinki 11/03 3/54 2/16

0.5 Discussion and conclusion

One of the greatest obstacles to month-to-seasonal forecasting is the lack of long high-quality data
records for the calibration of empirical models and for validation of empirical and dynamical models.
Temperatures and SLP have traditionally been used as predictors since there are long historical record
of these parametres. It is reasonable to believe that data on oceanic heat transport, heat content, snow
and sea-ice extent may contain information that can be used to infer near-future weather statistics, but
records of these types of data tend to be too short for empirical modelling. One interesting question is
whether this obstacle can be bypassed by the use of e.g. an ocean model forced with best available wind
and temperature data to reconstruct the oceanic heat transport and heat content. Empirical models
could be tested using vertical cross-sections of the ocean as predictor data. Ocean models may be driven
with up-to-date atmospheric forcings, or past reconstructions may be merged with remote sensing data
if there is a good agreement between the simulations and the observations. Altimeter data, sea-ice, and
snow-cover from remote sensing platforms have, if at all, rarely been used in empirically based seasonal
forecasting, but it may be possible to utilise this data if they can be merged with assimilated ocean
model data in order to construct sufficiently long data records. In other words, a combination of using
dynamical and empirical models may potentially lead to improved month-to-seasonal forecasting.

The interpretation of the forecasting scores must be done with caution if many different locations
are considered. The chance of obtaining n higher scores out of N can be estimated for the null-hypothesis
that the forecast models are equally skillful as a benchmark model. The likelihood that one of equally
good models scores higher for an individual case is p = 0.5, but if the comparison is made for more than
one case, the likelihood must be estimated assuming a binomial distribution. The scores shown in the
Tables 10-24 are computed for the 12 different calendar months, so that the value for N can be taken
as 12. It is assumed for simplicity that there is no seasonal dependency in model skill.

TABLE 9. Counts (N) of superior (in terms of the anomalous correlation score) seasonal mean precipitation forecasts
based on SST, SLP, and past observations, and estimated significance (p in %) [N / p].

Jocation lag=0 lag=1  lag=2

Bergen 11703 5/193 5/193
Oslo 12/00 10/16 8/121
Stockholm 8/121 7/193 5/193
“Copenhagen 11 /03 7/193 8/121
Helsinki 11/03 87121 7/193
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N
P(X=n)= p(L-pN " (10)

n

The probability of obtaining n cases with higher score is listed in Table 7 and Tables 8 and 9
present statistics showing how many cases (out of 12) there are where the forecast model obtained
higher anomalous correlation score than the benchmark model as well as the probability of seeing the
same number of cases if the two models were equally good. For the monthly mean temperature the
results suggest that the model outperforms the benchmark model for zero lag (temperature averaged
over present month and the 2 following months, Table 8). The model is also generally better than the
benchmark model for 1-month’s lead time. For lags greater than one month, the benchmark model tends
to be superior to the forecast model, suggesting either that the forecast model predictions are worse
than a random guess at these lead times or that there is some low-frequency signal which makes the
benchmark model better than a pure guess.

The high anomalous correlation scores in January and February at 1-months lead time are significant
at the 5% level. v

When it comes to precipitation (Table 9), the forecast model is significantly better than the bench-
mark model at all locations except for Stockholm at lag 0. For 1-month lead time, the forecast model
is significantly better in Oslo than the benchmark model at the 2.7% level, but apart from this case,
the two prediction methods appear to be equally good. Precipitation is much more localized, which can
explain the regional differences in the correlation scores. _

The prediction scores for precipitation at lead times greater than one month tend to be lower than
0.40 which is approximate the 5% confidence level for the correlation (estimated using a Monte Carlo
technique). Because there are many independent score estimates, we must expect to see some cases
exceeding this value (e.g. Bergen, Jan, Table 20) if the scores are randomly distributed. The benchmark
model based on the previous 10-year climatology achieves high scores for precipitation in Bergen during
winter. There is a clear difference between the benchmark scores of Bergen and locations such as Oslo,
Stockholm, Copenhagen, and Helsinki. :

These results merely reflect the skill of simple regression type models and are not necessarily repre-
sentative of the highest practical predictability that is achievable. A combination of various models based
on different methodology is likely to improve the skill further. Hence these results are an encouraging
starting point for empirical forecasting for the temperature in northern Europe. For precipitation, on the
other hand, forecasting according to these results appears to be more tricky. The prospect of forecasting
rainfall amounts will rely on finding other predictors that have a real association with the precipitation.
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APPENDIX

0.6 Documented problems in the NCEP data

0.6.1 NCEP Reanalysis PSFC problem 1948-1967

Evaluation - Reruns for Jan, Jul 1953

By pure serendipitity, a problem has been uncovered with the encoding of surface and mean sea level
pressure* that affect the period 1948-1967. The problem originated in the erroneous conversion of a
portion of the TD13 dataset into the bufr ADPSFC type messages. Surface pressures in the past have
suffured from a "Y2K” like problem in that values were stored with 3 digits ,pp.p, and a flag that
indicated which hundreds units should be added (700,800,900,1000,etc). The discovery arose from a case
study of the Reanalysis handling of the North Sea Gale of Jan 31:Feb 2, 1953 In addition to the forecast
and verication grids, Suru made observation plots where the data rejected by the Reanl were plotted in
red. The PSFC 03Z Feb 1, 1953 revealed the problem. Most of the obs within the 1000mb contour were
rejected for being unphysically high pressure values. The increment plots revealed they were ~100 mb
too large. If one mentally replaces the leading ”10” with a ”9”, the values create a reasonable picture of
the cyclone.:

Once we saw that pattern, we told Jack Woollen what we had found, so that he could research the
origin of these reports and the decoding procedures. Jack called back the next day and said he had found
a tell-tail error in translating dataset TD13. Furthermore, it apeared that 4-6% of the surface obs in the
set were affected.

In order to assess the geographical distribution over time, I have made two sequences maps. I had
created grib files of the obs with surface pressures greater than 1050mb. I then used these in conjunction
with the files Wesley has made available for plot and for download, and computed the percentages of obs
<1050mb. This approach gives a sense of the location and volume of obs that were miscoded. I sampled
all the January files for each year 1948-1968. Dataset TD13 ended in 1967. To see that the problem
ended there see the file for Jan 1968. PLOTS of % January ADPSFC obs with psfc < 1050mb 40s Jan
1948 Jan 1949 ’50s Jan 1950 Jan 1951 Jan 1952 Jan 1953 Jan 1954 Jan 1955 Jan 1956 Jan 1957 Jan
1958 Jan 1959 ’60s Jan 1960 Jan 1961 Jan 1962 Jan 1963 Jan 1964 Jan 1965 Jan 1966 Jan 1967 Jan
1968 PLOTS of % monthly 1953 ADPSFC obs with psfc < 1050mb Jan 1953 Feb 1953 Mar 1953 Apr
1953 May 1953 Jun 1953 Jul 1953 Aug 1953 Sep 1953 Oct 1953 Nov 1953 Dec 1953

This error has good news and bad news. The good news is that the "bad data” were omitted. The
analyses are not contaminated. The error is one of omission, not comission.

The bad news is that the omission of data is correlated with Northern Hemisphere extra-tropical

. cyclones, thereby requiring the dynamics of the data assimilation process to completely determine the

details of the surface pressure without the benefit of direct measurement when the pressure lowered
below 1000 mb. In addition (and the source of the serendipity) European obs seems to bear the brunt
of the problem, unlike US obs which were unaffected.

Evaluation - Reruns for Jan, Jul 1953

A methodology to identify the miscoded sfc press and mslp obs proved more involved that I first thought.

Read all sfc obs for all synoptic times

Store sfc obs sorted by observed hour and location

. Do a time series analysis of locations that reported either pressure value over 1049.9 mb.

. Look for tendencies of adjacent times (restricted to no more than 24 hrs) of 75mb. This kept cold
Siberian highs from being viewed as mis-coded.

Flag the ”excessive” sequence.

6. When flagged mslp/ unflagged sfc press found, check the mslp d-value minus sfcp d-value difference.

P 00 0 1

o

i. Small (<25mb): flag psfc for correction

*URL http://Inx21.wwb.noaa.gov/images/psfc/psfc.html
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ii. Large (>75mb, usually ;vl(jOmb) psfc‘is ok
iii. Indeterminate (>25 and <75): flag for rejection.

7. Write a synoptically time sorted file for the assimilation bufr editor to read and apply

In order assess the impact of encoding error, a winter and summer month were rerun with corrected
values of surface pressure. We chose Jan 1953 and July 1953 arbitrarily. An assessment of the impact on
the monthly mean surface pressure fields is given here. It is my opinion that the error does not warrant

a rerun.

0.6.2 NCEP Surface temperature (air.sfc), 2 meter temperature (air.2m),
and TMAX temperature (tmax.2m). URL: Surface temperature (air.sfc),
2 meter temperature (air.2m), and TMAX temperature (tmax.2m)..

The skin temperature is determined diagnostically. It is the temperature required to balance the fluxes
at the surface.

In air, sensible heat flux, long wave radiation (up and down) depend on the skin temperature. In
the ground, the heat flux into the soil depends on the skin temperature.

The problem occurs when the winds are weak (less than 0.75 m/s), and the stability conditions are
just right. Under these conditions, the parameterization for the thermal exchange coefficient can break
down. This caused the model to blow-up (divide by zero). (After running this code for years, the bug
surfaced.) A bug fix was introduced (instead of dividing by zero, dividing by a small number). However,
the fundamental problem remained. Under light winds, the thermal exchange coefficient can be close to
zero. For argument’s sake, let’s assume that the exchange coefficient is zero. In this case, the sensible
heating is zero, and the solar heating has to be balanced by latent heat flux, the net long-wave flux and
a ground heat flux. Since the latent heat flux is not dependent on the skin temperature, the reduction of
the sensible heat flux must be balanced by an increased upward long wave flux and a downward ground
heat flux. In order to make this balance work, the skin temperature will become unreasonably hot. On
the next time step, the winds may pickup and skin temperature will return to normal (skin temperature
has no inertia). The affect on the lowest sigma level is minor as the net fluxes remain reasonable. This
phenomenon will not happen over water as the skin temperature (SST) is fixed.

TMAX and possibly TMIN are affected by this problem. TMAX is the worst possible case - it will
capture spikes that only last 1 time step

The surface temperature will be affected.

The 2m temperature is interpolated from the skin temperature and the bottom sigma-layer and
thus will be affected.

Sensible heat flux and the upward long wave radiation flux are also affected.

A suggested work around is to reject instantaneous data if the following two conditions are true:

¢ The data is over land.
e The 10 meter wind is less than .75 m/s.

This test rejects 2% of the total number of grid points. It will not work for averaged quantities
and Tmax, Tmin. In addition, this test rejects an awful amount of good data. In the monthly means
produced at NCEP this screening test will not be used because ejecting so much good data would be
worse than including a few bad points (which get smoothed out in the monthly averages).

It may also be possible to reject data greater than N standard deviations from the mean. No tests
have been conducted with this screening method.

0.6.3 Problems with aircraft data January 1976 to December 1978

The corrected data have been on-line at CDC since 14 March 1998.

Prior to March 14, 1998 the data for January 1976 to December 1978 were corrupted due to a
miscommunication among the US Air Force, NCAR and NCEP regarding a data set of aircraft reports
for this period only. Along the way the sense of E-W longitude was flipped, causing a sizable portion of
these aircraft data for these three years to be mis-positioned. ‘
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' 0.6.4 Problems with the June 1997 (CDAS) data

E The Climate Data Assimilation System (CDAS) data for the NCEP /NCAR Reanalysis project for June
1997 was recalculated after it was originally released at the beginning of July. This recalculation was

necessitated by three factors:

1. The strong El Nio.
2. Problems with the radiances coming form NOAA-12 (started 1 June).
3. The grib identification for the ingest ice anl’s were changed during the month - the original run ceased

ingesting these data as of the date of the change.

The corrected version of the June 1997 CDAS data has been on-line at CDC since 20 Oct 1997.
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0.7 The test-model: Scores

0.7.1 Temperature scores




TABLE 10.

the benchmark are shown in bold. (Monte Carlo 5% confidence estimates for correlation is around 0.40)

TABLE 11. Prediction scores (anomalous correlation / RMS error) for 2-monthly mean Bergen temperature using SLP,
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Prediction scores {(anomalous correlation / RMS error) for monthly mean Bergen temperature using SLP,
SST, and the Bergen monthly mean temperature at the time when the forecast was made as predictors. Calibration period
= 1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. Those scores which beat

start lag O lag 1 lag 2

~Jan ~0.99/0.10 0.50/70.30 -031/024
Feb 0.99 / 0.08 0.39/0.20 0.17 / 0.17
Mar 1.00 / 0.02 -0.26 /0.19 -0.38 /0.18
Apr 1.00 / 0.02 -0.21 /020 0.23 / 0.22
May 1.00 / 0.01 0.11 / 0.28 -0.19/0.23
Jun 0.99 /0.03 -0.16 /0.25 0.15 / 0.21
Jul 0.97 / 0.05 0.20 /0.21 -0.12/0.24
Aug 0.99 / 0.03 -0.07 /0.23 -0.20/0.21
Sep 0.98 /0.05 -0.11 /025 -0.11/0.28
Oct 1.00 / 0.02 -0.02 /028 -0.34/0.31
Nov 099 /0.05 0.23/0.29 0.14/0.39
Dec 0.99 /0.04 0.09/0.39 0.17/0.34
benchmark
Jan 0.35 / 0.36 0.07 / 0.34 -0.21 / 0.22
Feb 0.34 / 0.31 -0.21 / 0.22 0.05 /0.17
Mar 026 /019  0.05/0.17  0.00/0.18
Apr 043/015 000/018  -0.22/0.24
May 034 /017 -0.22 /0.24  -0.18 / 0.20
Jun 0.24 /022  -0.18/0.20 -0.18/0.22
Jul 0.23 /0.18 -0.18 /0.22 0.24 /0.21
Aug 031 /020 0.24/021  -0.18/0.21

"~ Sep 0.46 / 0.19 -0.18 /021  -0.13 / 0.28
Oct 0.22 /0.19 -0.13 / 0.28 -0.27/ 0.32
Nov 0.22 / 0.25 -0.27 / 0.32  0.06 / 0.40
Dec 0.13 / 0.29 0.06 / 0.40 0.07 / 0.34

SST, and the Bergen monthly mean temperature at the time when the forecast was made as predictors. Calibration period

= 1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part.

start lag O lag 1 lag 2

an .9 . . .21 -0. 0.1
Feb 0.90 / 0.11 0.37/0.14 -0.30 / 0.13
Mar 0.79 / 0.08 0.02/0.14 -0.23 / 0.16
Apr 0.67 / 0.09 -0.21/0.16 -0.07 / 0.18
May 0.69 / 0.12 0.07/0.15 -0.21/0.19
Jun 0.68 / 0.12 0.01// 0.19 0.02 / 0.17
Jul 0.73 / 0.11 0.12/ 0.16 -0.17 / 0.18
Aug 0.68 / 0.12 -0.07/0.15 -0.35 / 0.18
Sep 0.71 / 0.11 0.05/ 0.20 -0.21 / 0.25
Oct 0.64 / 0.13 -0.28/0.25 -0.01 / 0.29
Nov 0.68 / 0.16 -0.06 / 0.30 0.16 / 0.33
Dec 0.79 / 0.19 0.23 / 0.32 0.14 / 0.23
benchmark .
Jan 0.37 / 0.30 0.03 / 0.23 -0.02 / 0.14
Feb 033 /021 -0.02 / 0.14 -0.12 / 0.13
Mar 0.36 / 0.13 -0.12 / 0.13 -0.08'/ 0.17
Apr 0.41 / 0.12 -0.08 / 0.17 -0.19 / 0.15
May 0.30 / 0.15 -0.19 / 0.15 -0.24 / 0.17
Jun 0.26 / 0.14 -0.24 / 0.17 0.16 / 0.15
Jul 0.24 / 0.15 0.16 / 0.15 0.12 / 0.14
Aug 0.43 / 0.14 0.12 / 0.14 -0.08 / 0.18
Sep 0.38 / 0.13 -0.08 / 0.18 -0.23 / 0.24
Oct 0.24 /017 -0.23 /0.24 -0.05 / 0.31 -
Nov 0.13 / 0.22 -0.05 / 0.31 0.12 / 0.33
Dec 0.23 / 0.28 0.12 / 0.33 0.03 / 0.23
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TABLE 12. Prediction scores (anomalous correlation / RMS error) for seasonal mean Bergen temperature using SLP,
SST, and the Bergen monthly mean temperature at the time when the forecast was made as predictors. Calibration period’
= 1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5% confidence
estimates for correlation is around 0.40) '
start lag O lag 1 lag 2

Jan 0.87 / 0.14 044/ 0.16 -0.15 / 0.12
Feb 0.88 /0.09 042 /010 -0.26 /0.11
Mar 0.63/ 0.08 -0.16/0.12 0.00/0.13
Apr 0.29 / 0.11 -0.20 / 0.15 -0.06 / 0.18
May 0.57 / 0.10 -0.05/0.15 0.02 / 0.15
Jun 0.58 / 0.12 0.08 /0.16 -0.08 / 0.13
Jul 0.59 / 0.11 -0.12/0.15 -0.22 / 0.14
Aug 0.58 / 0.10 -0.12/0.15 -0.35/ 0.16
Sep 0.47 / 0.13 -0.11/0.19 -0.08 / 0.24
Oct 0.26 / 0.16 -0.37 / 0.24 0.03 / 0.28

Nov 0.47 / 0.20 0.03 /0.28 0.21 / 0.25
Dec 0.68 / 0.21 0.24 / 0.25 0.08 / 0.17

benchmark

Jan 0.35 / 0.23 0.09 / 0.17 -0.08 / 0.11
Feb 0.37 / 0.16 -0.08 / 0.11 -0.17 / 0.11
Mar 0.34 / 0.10 -0.17 / 0.11 -0.05 / 0.13
Apr 0.30 / 0.11 -0.05 / 0.13 -0.30 / 0.15
May 0.30 / 0.12 -0.30 / 0.15 0.01 /0.13

Jun 0.24 / 0.14 0.01 / 0.13 0.16 / 0.12

Jul 0.36 / 0.12 0.16 / 0.12 0.07 / 0.14

Aug 0.45 / 0.11 0.07 / 0.14 -0.18 / 0.17
Sep 0.34 / 0.12 -0.18 /0.17 -0.10 / 0.24
Oct 0.15 / 0.15 -0.10 / 0.24  0.04 /0.28

Nov 0.18 / 0.22 0.04 / 0.28 0.10 / 0.25

Dec 0.29 / 0.26 0.10 / 0.25 0.09 /017
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lag 3

lag 2

1960-2000 using SLP, SST, sunspot data, and previous

month’s temperature. (Monte Carlo 5% confidence estimates for correlation is around 0.40)

lag 1
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lag O

start

TABLE 13. Prediction anomalous correlation scores for monthly mean, 2-month mean, seasonal mean temperature in

Bergen. Calibration period = 1900-1959, evaluation interval
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1960-2000 using only SLP, and SST. (Monte Carlo 5%
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TABLE 15. Prediction anomalous correlation scores for monthly mean, 2-month mean, and seasonal mean temperature

in Bergen. Calibration period = 1900-1959, evaluation interval
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TABLE 16.

and the local monthly mean temperature at
1900-1959, evaluation interval=1960-2000. The benchmark scores are give

R.E. Benestad

Prediction scores (anomalous correlation / RMS error) for seasonal mean Oslo temperature using SLP, SST,

the time when the forecast was made as predictors. Calibration period =

n in the lower part. (Monte Carlo 5% confidence

estimates for correlation is around 0.40)

start lag O lag 1 lag 2

- Jan 0.88/0.23 0.74/ 0.23 -031/0.19
Feb 0.93 / 0.13 0.56 / 0.14 -0.07 /013
Mar 0.81 /0.10 0.20/0.11 -0.06 /0.15
Apr 0.30 / 0.13 -0.32/0.16 0.00 /0.19
May 0.52 / 0.11 -0.09 /018 -0.09 /017
Jun 0.53 /014 -011/019 -0.15 / 0.16
Jul 0.73/0.11 0.25/0.14 -0.10/0.16
Aug 0.76 / 0.10 ©0.15 /0.15 0.13 /0.21
Sep 0.41 /0.15 0.19 / 0.22 -0.14 / 0.31
Oct, 0.40 / 0.20 0.19 / 0.29 0.14 / 0.40
Nov 0.48 / 0.26 0.23 / 0.39 0.25 / 0.38
Dec 0.66 / 0.31 0.22 / 0.38 0.12 / 0.30

“benchmark
Jan 0.41 / 0.36 0.22 / 0.29 0.22 /017
Feb 0.46 / 0.26 0.22 /017 -0.06 / 0.12
Mar 045 /0.15 -0.06 /0.12 -0.08 /0.14
Apr 0.24/0.11 -0.08 /0.14  -0.16 / 0.18
May 0.26 / 0.12 -0.16 /018  -0.15 / 0.17
Jun 0.27 /0.16 -0.15 /017  -0.11/0.15
Jul 0.35/0.15 -0.11/0.15 -0.13 /0.16
Aug 0.38/0.14 -0.13 / 0.16 -0.24/ 0.23
Sep 0.38 /0.15 -0.24 / 0.23 0.04 / 0.30
Oct 0.30 / 0.20 0.04 / 0.30 0.08 / 0.41
Nov 0.30 / 0.28 0.08 / 0.41 0.17 / 0.39
Dec 0.32 / 0.37 0.17 / 0.39 0.22 / 0.29

TABLE 17. Prediction scores (anomalous correlation

/ RMS error) for seasonal mean Stockholm temperature using SLP,

SST, and the local monthly mean temperature at the time when the forecast was made as predictors. Calibration period =
1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5% confidence
estimates for correlation is around 0.40)

start lag O lag 1 lag 2

Jan 0.8 0.22 0.69 / 0.23  0.67 / 0.14
Feb 0.92 / 0.15 0.64/0.15 0.25 /0.13
Mar 0.83 / 0.11 0.34 / 0.12 0.07 / 0.18
Apr 0.37 / 0.14 -0.24 / 0.19 0.12 /0.21
May 0.56 / 0.13 -0.18 / 0.22 -0.13 / 0.23
Jun 0.46 / 0.17 0.05 / 0.21 -0.01 / 0.16
Jul 0.80 / 0.12 0.29 / 0.14 0.01 /0.15
Aug 0.70 / 0.11 0.13 / 0.15 -0.19 / 0.19
Sep 0.49/0.14 -0.25 /023 -0.37/0.32
Oct 0.29 / 0.18 -0.51 / 0.31 -0.28 / 0.42
Nov 0.32 /0.25 0.18 /0.39 0.28 / 0.40
Dec 0.66 / 0.81 0.14 / 0.41 0.17 / 0.31
benchmark

Jan 0.35 / 0.38 0.15 / 0.31 0.23 / 0.18
Feb 0.42 / 0.28 0.23 /0.18 -0.06 / 0.13
Mar 0.45 / 0.16 -0.06 / 0.13 -0.09 / 0.16
Apr 0.23 / 0.12 -0.09 / 0.16 -0.03/ 0.19
May 0.31 / 0.15 -0.03 / 0.19 0.01 / 0.20
Jun 0.34 / 0.17 0.01 / 0.20 -0.05 / 0.15
Jul 0.49 / 0.17 -0.05 / 0.15 -0.09 / 0.15
Aug 0.43 / 0.14 -0.09 / 0.15 -0.27 / 0.18
Sep 0.28 / 0.14 -0.27 / 0.18 -0.17 / 0.29
Oct 0.18 / 0.17 -0.17 / 0.29 -0.03 / 0.42
Nov 0.15 / 0.26 -0.03 / 0.42 0.07 / 0.42
Dec 0.26 / 0.38 0.07 / 0.42 0.15 / 0.31
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TABLE 18. Prediction scores (anomalous correlation / RMS error) for seasonal mean Copenhagen temperature using

SLP, SST, and the local monthly mean temperature at the time when the forecast was made as predictors. Calibration

period = 1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5%
confidence estimates for correlation is around 0.40)

start lag O lag 1 lag 2

“Jan 0.85 / 0.19 0.69 /7 0.20 0.64 /0.14
Feb 0.92 /0.13 0.70 /0.14 0.47 /0.11
Mar 0.88 / 0.10 0.26 /0.12 -0.09 / 0.15
Apr 0.44 / 0.12 -0.07 /0.15 -0.15 / 0.20
May 0.67 / 0.10 -0.08 / 0.18 -0.27 / 0.20
Jun 0.44/0.15 -0.01 / 0.18 -0.23 / 0.13
Jul 0.86 / 0.09 0.50 /0.11 -0.01/0.13
Aug 0.78 / 0.10 0.19/0.13 0.05 / 0.14
Sep 0.51 / 0.12 -0.13/ 0.18 0.12 / 0.21
Oct 0.31/0.13 -0.25 / 0.22 -0.16 / 0.32
Nov 0.25 / 0.20 0.22 /0.30 0.27 / 0.32
Dec 0.71 / 0.23 0.27 / 0.32 0.20 / 0.27
benchmark

Jan 0.37 / 0.30 0.18 / 0.26 0.23 /0.17
Feb 0.43 /0.24 0.23 / 0.17 0.02 /0.12
Mar 0.44 / 0.15 0.02 / 0.12 -0.01 / 0.15
Apr 0.26 / 0.11 -0.01 / 0.15 -0.00 / 0.17
May 0.29 /0.13 -0.00 / 0.17 0.03 /0.18
Jun 0.36 / 0.15 0.03 / 0.18 -0.07 / 0.13
Jul 0.44 /0.16 -0.07 / 0.13 0.02 / 0.11
Aug 0.45 /0.12 0.02 /0.11 -0.25 / 0.13
Sep 0.38 / 0.10 -0.25 / 0.13 -0.20 / 0.23
Oct 0.24 /0.12 -0.20 / 0.23 -0.03/ 0.32
Nov 0.13 /0.21 -0.03 / 0.32 0.09 / 0.34
Dec 0.27 / 0.29 0.09 / 0.34 0.18 / 0.26

TABLE 19. Prediction scores (anomalous correlation / RMS error) for seasonal mean Helsinki temperature using SLP,

SST, and the local monthly mean temperature at the time when the forecast was made as predictors. Calibration period =

1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5% confidence
estimates for correlation is around 0.40)

start lag O lag 1 lag 2

an 0.82 / 0.27 0.61 / 0.2 0.61 / 0.15
Feb 0.92 / 0.15  0.59 /0.16 0.37 /0.13
Mar 0.82 / 0.13 0.25./0.15 0.13 / 0.18
Apr 0.47 / 0.14 -0.04 / 0.18 0.24 /0.18
May 0.46 / 0.15 -0.21 /0.19 -0.15/0.17
Jun 0.60 / 0.14 0.07 /0.18 -0.26 / 0.17
Jul 0.68 / 0.12 -0.06 /0.17  -0.05 / 0.20
Aug 0.41/0.14 0.10 / 0.19 -0.00 / 0.22
Sep 0.51/ 0.17 0.19/0.21 0.03 / 0.34
Oct 0.30 / 0.22 -0.45 / 0.40 -0.17 / 0.50
Nov 0.13 / 0.35 0.05 / 0.47 0.25 / 0.44
Dec 0.63 / 0.36 0.32 / 0.43 0.22 / 0.32
benchmark
Jan 0.34 / 0.42 0.07 / 0.34 0.19 / 0.18
Feb 0.33 / 0.30 0.19 / 0.18 -0.07 / 0.14
Mar 0.42 / 0.16 -0.07 /014 -0.27 / 0.17
Apr 0.22 / 0.13 -0.27 /0.17  -0.22 / 0.17
May 0.23 / 0.15 -0.22 /0.17  -0.12 / 0.16
Jun 0.31 /0.15 -0.12 / 0.16 0.01 /0.16
Jul 0.44 / 0.14 0.01 /0.1 -0.07 / 0.20
Aug 0.29 /0.14 -0.07 / 0.20 -0.06 / 0.20
Sep 0.28 / 0.18 -0.06 / 0.20 -0.13 /0.34
Oct 0.27 / 0.19 -0.13 /0.34  -0.02 /047
Nov 0.19 /0.31 -0.02 / 0.47  0.04 / 0.47
Dec 0.28 / 0.43 0.04 / 0.47 0.07 / 0.34
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0.7.2 Precipitation scores
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TABLE 20. Prediction scores (anomalous- correlation / RMS error) for seasonal mean Bergen precipitation using SLP,
SST, and the local monthly mean precipitation at the time when the forecast was made as predictors. Calibration period =
1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5% confidence

estimates for correlation is around 0.40)

start lag O lag 1 lag 2

Jan 0.83 / 9.29 0.52/10.36 0.38 / 8.20
Feb 0.76 / 8.14 0.28 / 8.57 0.02 / 6.07
Mar 0.90 / 4.32 0.36 / 5.35 0.15 / 6.45
Apr 0.63 / 4.51 -0.30 / 6.48 -0.15 / 7.16
May 0.49 / 5.31 -0.06 / 7.03 0.03 / 9.15
Jun 0.37/ 6.08 -0.24 / 9.46 0.04 / 9.37
Jul 0.18 / 8.86 -0.34 / 10.70 -0.12 / 12.19
Aug 0.34 / 9.30 -0.11 / 12.34 -0.07 / 13.40
Sep 0.56 / 9.49 -0.00 / 11.83 0.10 / 12.91
Oct 0.56 / 10.02 -0.14 / 13.84 -0.02 / 14.12
Nov 0.63 / 10.12 0.15 / 13.23 0.24 / 14.07
Dec 0.72 / 10.67 0.13 / 14.19 0.20 / 11.43
benchmark

Jan 0.56 / 11.24 0.44 / 10.29 0.20 / 8.62
Feb 0.62 / 9.11 0.20 / 8.62 -0.11 / 6.03
Mar 042 / 7.83 -0.11 / 6.03 0.03 / 6.24
Apr 0.33 / 5.43 0.03 / 6.24 -0.13 / 6.84
May 0.34 / 5.68 -0.13 / 6.84 -0.10 / 9.54
Jun 0.22 / 6.38 -0.10 / 9.54 0.02 / 9.68
Jul 0.26 / 8.65 0.02 / 9.68 0.03 / 11.92
Aug 0.32 / 8.58 0.03 / 11.92 -0.02 / 12.15
Sep 0.35 / 10.47 -0.02 / 12.15 0.14 / 12.89
Oct 0.26 / 11.00 0.14 / 12.89 0.32 / 12.44
Nov 0.37 / 11.71 0.32 /12.44 0.39 / 12.57
Dec 0.53 / 11.15 0.39 / 12.57 0.44 / 10.29

TABLE 21. Prediction scores (anomalous correlation / RMS error) for seasonal mean Oslo precipitation using SLP, SST,
and the local monthly mean precipitation at the time when the forecast was made as predictors. Calibration period =
1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5% confidence

estimates for correlation is around 0.40)

start lag O lag 1 lag 2

Jan 0.74 / 2.21 0.00/2.79 -0.14 / 2.97
Feb 0.42 / 2.49 -0.03 / 2.85 0.02 / 2.46
Mar 0.50 / 2.31 0.03 / 2.37 -0.20/ 3.08
Apr 0.25 / 2.33 -0.09 / 3.05 -0.04 / 4.12
May 0.35 / 2.56 0.16 / 3.90 0.11 / 4.29
Jun 0.36 / 3.68 0.09 / 444 0.18 / 4.11
Jul 0.56 / 3.54 0.33/3.71 0.01 / 4.17
Aug 0.45 / 3.65 0.20 / 3.90 -0.05 / 4.07
Sep 0.44 / 83.59 0.29 / 8.78 -0.15/ 3.46
Oct 0.75 / 2.61 0.27 / 3.00 0.16 / 2.78
Nov 0.65 / 2.44 -0.07/3.15 -0.15/ 3.54
Dec 0.51 / 2.40 0.21 / 3.12 0.20/ 2.62
benchmark

Jan 0.31 / 2.94 0.10 / 2.65 -0.10 / 2.66
Feb 0.31/247 -0.10/266 -0.05/2.49
Mar 0.14 / 2.49 -0.05 / 2.49 -0.04 / 2.74
Apr 0.21 / 2.28 -0.04 / 2.74 -0.01 / 4.05
May 0.25 / 2.50 -0.01 / 4.05 -0.08 / 4.47
Jun 0.27 / 3.68 -0.08 / 4.47 -0.05 / 4.23
Jul 0.26 / 4.08 -0.05 / 4.23 -0.26 / 4.25
Aug 0.22 / 3.82 -0.26 / 4.25 -0.11 / 4.14
Sep 0.24 / 3.79 -0.11 / 4.14 -0.19/ 3.24
Oct 0.31 / 3.76 -0.19 /324 -0.17 /296
Nov 0.41 / 2.92 -0.17 / 2.96 0.04 / 3.20
Dec 0.30 / 2.67 0.04 / 3.20 0.10 / 2.65
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TABLE 22. Prediction scores (anomalous correlation / RMS error) for seasonal mean Stockholm precipitation using SLP,

SST, and the local monthly mean precipitation at the time when the forecast was made as predictors. Calibration period =

1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5% confidence
estimates for correlation is around 0.40) )

start lag O lag 1 lag 2

Jan 0.55 / 1.17 -0.12/1.63 -0.08 / 1.71
Feb 0.40 /1.41 -0.09 / 1.67 -0.25 / 1.94
Mar 0.51 / 1.42 0.14 / 1.79 -0.09 / 3.03
Apr 0.38 / 1.69 0.07 / 2.91 -0.18 / 3.75
May 0.28 / 2.80 -0.10/ 3.52 -0.12/3.16
Jun 0.61 / 2.59 0.36 / 2.87 -0.02/ 3.12
Jul 0.55 / 2.61 -0.18 / 3.00 -0.18 /254
Aug 0.59 / 2.38 -0.02 /243 -0.16 /2886
Sep 0.40 /2.34 -0.02 /280 ' -0.17 /219
-Oct - 077 /174 -0.15/ 218 -0.16 / 2.03
Nov 0.22 / 211 -0.33 / 2.36 -0.12 / 1.67
Dec 0.74 / 1.26  -0.29 / 1.62 0.12 / 1.54
~ benchmark

Jan 0.39 / 1.29 0.05 / 1.55 0.12 / 1.62
Feb 0.46 / 1.40 0.12 / 1.62 0.00 / 1.86
Mar 0.53 / 1.47 0.00 / 1.86 -0.21/ 3.15
Apr 042/ 1.64 -0.21 / 3.15 -0.20 / 3.59
May 0.20 / 2.82 -0.20 / 3.59 -0.10 / 3.29
Jun 0.23 / 3.16 -0.10 / 3.29 -0.21 / 3.13
Jul 0.29 / 2.92 -0.21 / 3.13 -0.30 / 2.51
Aug 0.17 / 2.89 -0.30 / 2.51 -0.04 / 2.80
Sep 0.10 / 2.34 -0.04 / 2.80 0.06 / 1.97
Oct 0.35 / 2.52 0.06 / 1.97 -0.05 / 1.93
Nov 0.40 / 1.77 -0.05 / 1.93 -0.06 / 1.45
Dec 0.29 / 1.77 -0.06 / 1.45 0.05 / 1.55

TABLE 23. Prediction scores (anomalous correlation / RMS error) for seasonal mean Copenhagen precipitation using

SLP, SST, and the local monthly mean precipitation at the time when the forecast was made as predictors. Calibration

period = 1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5%
confidence estimates for correlation is around 0.40)

start lag O lag 1 lag 2

Jan 0.75 /1.62 -0.10 /253 -0.12 / 2.70
Feb 0.46 / 2.09 -0.24 / 2.67 -0.23 / 2.86
Mar 0.52 / 2.19 -0.42/3.06 -0.05 / 2.74
Apr 0.43 / 2.32 0.20/ 2.31 -0.26 / 3.54
May 0.49 / 2.06 0.18 / 3.18 0.28 / 3.12
Jun 0.45 / 2.89 -0.08 / 3.60 -0.16 / 3.31
Jul 0.59 / 2,61 -0.34 /298 0.05 / 2.84
Aug 0.37 / 2.77 -0.11 / 2.93 0.00 / 2.58
Sep 0.68 / 2.22 0.04 / 2.51 -0.07 / 3.31
Oct 0.30/ 2.62 -0.25 / 3.51 -0.38 / 3.37
Nov 0.29 / 3.00 -0.30 / 3.27 -0.25 / 2.70
Dec 0.79 / 1.86 0.21 / 2.31 0.10 / 2.38
benchmark

Jan 0.29 / 2.24 -0.47 / 2.50 -0.41 / 2.84
Feb 0.37 / 2.22 -0.41 / 2.84 -041 / 2.92
Mar 0.10 / 2.56 -0.41 / 2.92 -0.13 / 2.60
Apr 0.01 / 2.66 -0.13 / 2.60 0.16 / 3.36
May 0.22 /232 0.16 / 3.36 0.15 / 3.38
Jun 041 /295 0.15 / 3.38 -0.03 / 3.05
Jul 042 /293 -0.03 / 3.05 -0.21 / 2.89
Aug 0.29 / 2.74 -0.21 / 2.89 -0.32 / 2.66
Sep 0.21 / 2.66 -0.32 / 2.66 -0.20 / 3.18
Oct 0.16 / 2.41 -0.20 / 3.18 -0.14 / 3.12
Nov 032/ 2.83 -0.14 / 3.12 -0.09 / 2.48
Dec 0.27 / 2.80 -0.09 / 2.48 -0.47 / 2.50
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TABLE 24. Prediction scores (anomalous correlation / RMS error) for seasonal mean Helsinki precipitation using SLP,

SST, and the local monthly mean precipitation at the time when the forecast was made as predictors. Calibration period =

1900-1959, evaluation interval=1960-2000. The benchmark scores are given in the lower part. (Monte Carlo 5% confidence
estimates for correlation is around 0.40)

start lag O lag 1 lag 2

Jan 0.48 /1.81 0.01/228  0.08/204
Feb 0.56 / 1.73 -0.06 / 2.01 -0.10 / 2.21
Mar 0.52 / 1.62 . -0.10/ 2.20 -0.08 / 2.74
‘Apr 0.35 / 1.88 -0.23 / 2.72 -0.17 / 3.44
May 0.29 / 2.56 -0.05 / 3.49 -0.07 / 2,97
Jun 0.57 /279 0.14/ 2.99 -0.15 / 3.97
“Jul 0.55 / 2.55 -0.01 /3.54 -0.02/ 8.55
Aug 0.47 / 3.17 -0.06 / 8.47 -0.39 / 3.53
Sep 0.60 / 2.72 0.06 / 3.58 -0.02 / 2.70
Oct. 0.76 / 2.29 0.13 / 2.58 0.04 / 2.68
Nov 0.49 / 2.43 -0.21 / 3.07 -0.33 / 2.56
Dec 0.56 / 2.23 -0.25 / 2.38 -0.12 / 2.28
benchmark

Jan 0.11 / 2.02 -0.27 / 2.24 -6.11 / 1.95
Feb 0.09 /204 -011/195 -0.18/212
Mar 0.28 / 1.79 -0.18 / 2.12 -0.07 / 2.85
Apr 0.20 / 1.93 -0.07 / 2.85 -0.02 / 3.60
May 0.29 / 2.52 -0.02 / 3.60 -0.05 / 3.03
Jun 0.33 /3.21 -0.05 / 3.03 -0.21 / 3.59
Jul 0.43 / 2.70 -0.21 / 3.59 -0.11 / 3.57
Aug 0.20 / 3.31 -0.11 / 3.57 -0.14 / 3.64
Sep 0.21 / 3.33 -0.14 / 3.64 -0.04 / 2.69
Oct 0.26 / 3.33 -0.04 / 2.69 -0.04 / 2.62
Nov 0.26 / 2.42 -0.04 / 2.62 -0.19 / 2.23
Dec 0.24 / 2.35 -0.19 / 2.23 -0.27 / 2.24
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