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1 Background

The main objective of this report is to make an assessment of seasonal fore-
cast prospects for Norwegian temperatures. This report will also serve as
a documentation of the pilot study on seasonal prediction carried out at
the Norwegian Meteorological Institute (DNMI), and will therefore refer to
scripts used in this study. A brief overview of different methodologies will
also be presented. A brief description and evaluation of current seasonal fore-
casting techniques for the Nordic region is also presented by Forland et al.
(1999).

Although people have made prophecies and forecasts in ancient times,
it is only relatively recently that seasonal forecasting has involved scientific
methods!. The earliest forecasts have been made with statistical models,
however, more recently state of the art weather and seasonal predictions have
been based on comprehensive and complex physical and dynamical models.
Below is an outline of commonly used forecast methodologies, ranked from
the simplest techniques to the more advanced method.

Here, we take “scientific methods” to mean methods that fulfill two criteria: i) The
experiments/results can be repeated and tested; ii) The results are derived from objective
methods.
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1.1 Hierarchy of Forecast methodology

i) Climatology, i.e. the January months are cold in Norway while the
summers are mild.

ii) Persistence. Both with and without a decay time based on the autocor-
relation. Lagged correlation. Kim & North (1998) defined an optimal
filter which provides a weighting over the predictor combination that
yields the minimum least mean-square-errors.

iii) Analogue methods and climate optimals: predictions based on a his-
torical data base (Barnston, 1995; Zorita & von Storch, 1997).

iv) Classification and cluster analysis ( Vautard et al., 1999; Zorita & von
Storch, 1997).

v) Singular Spectrum Analysis (SSA) ( Vautard et al., 1999; Ghil & Yiou,
1996; Jiang et al., 1995) and cross-spectral analysis (coherence). SSA
finds periodical oscillations and coherence can be used to find oscilla-
tions with common frequencies but at different phase. The SSA method
bears similarities to extended EOF's.

vi) Principal Oscillation Patterns (POPs): Identify cyclic patterns: p, —
pi = —p, = —p; — p, (Balmaseda et al., 1994; Hasselmann, 1988).

vii) Complex EOFs: Identify patterns with a fixed phase relationship, such
as wave propagation, and can be used to predict the trajectory of a
weather system once the initial state is given.

viti) Linear models, y;1; = tx; where the coefficients (model), 1, are esti-
mated by multivariate regression (MVR), Canonical Correlation Anal-
ysis (CCA) or Singular Vector Decomposition (SVD) (Johansson et al.,
1998; Zorita & von Storch, 1997; Barnston et al., 1994; Barnston, 1995;
Barnston & C.F.Ropelewski, 1992).

iz) Neural networks: non-linear method for prediction based on past ob-
servations (Zorita & von Storch, 1997).

z) Coupled hybrid models employing both statistical and dynamical /physical
models. Popular in El Nifio Southern Oscillation (ENSO) prediction
(Balmaseda et al., 1994).

2i) Comprehensive coupled dynamical and physical models (general cir-
culation models, or GCMs). For example ECMWF seasonal forecasts
(Stockdale et al., 1998; Anderson, 1995; Palmer & Anderson, 1994).
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In this report, seasonal hindcasts using linear statistical models, under
category wviii, will be discussed, and we have chosen to examine the CCA
technique here. Benestad (1999) demonstrated that there was insignificant
differences between predictions using a CCA and MVR models at zero lag,
and the choice of method is therefore not important. Vautard et al. (1999),
however, argued that other techniques, such as multichannel singular spec-
trum analysis (MSSA), may be superior to CCA, implying that the results
presented here may not necessarily represent the theoretically best achievable
predictions. We will, however, stress that it is important to employ a wide
range of different techniques, as the different methods may have different
shortcomings and different strengths. A suite of distinct forecast method-
ologies can therefore give a better estimate of the forecast uncertainties that
also to some degree take into account model errors.

Lorenz (1963) demonstrated that chaotic flow, such as atmospheric circu-
lation, although deterministic, may not be predictable over more than a few
cycles. For the atmosphere, the limit of predictability is generally assumed
to be about two weeks, which is shorter than seasonal time scales. It is there-
fore important to emphasis that by seasonal forecasting, we do not mean the
exact state of the atmosphere at a certain point in time and space, but rather
the weather statistics over a given period. In other words, seasonal predic-
tion assumes that certain boundary conditions, such as SST, may bias the
phase space trajectory of the climate system, so that the probabilities of the
occurrence of weather regimes are altered. It is possible that seasonal fore-
casts cannot predict the exact weather statistics over a given time, but only
the most likely statistical properties. In this case, seasonal prognoses only
have merits when given as a probability distribution, rather than just one
number. The CCA method doesn’t explicitly produce probabilistic forecasts,
and we have therefore taken the predictands directly from the model without
estimating the probability distribution for the predictions just for evaluation
purposes. It is nevertheless possible to quantify an estimate of probability
distribution functions by assuming a Gaussian, whose parameters, o and p,
can be estimated from the past prediction errors.

We will make a distinction between “forecast” and “hindcast”, by us-
ing the term forecast in conjunction with a prediction of the probability
distribution for a climate parameter for a given time for which there is no
observation when the forecast is made. Hindcast will henceforth refer to the
cross-validation ( Wilks, 1995, p.194-198) predictions according to a determin-
istic model, such as y;1; = x4, for which the real value which is predicted
is already known and subsequently used in the model validation. Cross-
validation analysis essentially means that the predicted value was not used
in the model calibration. The term “prediction” will have a more loose mean-
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ing referring to the model output, i.e. y;4; in our linear model y;4; = Y.
We will henceforth use “prediction” in the meaning forecasts, hindcasts, and
model reconstruction of data which also have been included in the calibration
analysis.

The term “lag” and “lead time” (1) will be used interchangeably, and will
have the same meaning here. The lead time refers to the time lag between
the last predictor month and the first predictand target month. For monthly
mean forecasts, this implies that a forecast with 1 month lead time makes
a prediction for the subsequent month. A seasonal forecast with 1 month
lead time makes a prediction of the mean temperature for a 3-month period
of which the first month is the month following the predictor month. For
instance, a 1-month lead time seasonal prediction starting in January gives
a prediction for the February to April (FMA) period. A zero lead time,
starting in January, gives a forecast for the January-March (JFM) season,
and can be used to estimate the best guess for the subsequent 2 months.
In this case, the January predictands may be known, and thus a seasonal
prediction with 0-month lead time can be used to predict the mean quantity
over the 2 next months. In a sense, the seasonal forecasts implicitly take
persistence into account, as past and present observations can be subtracted
from the predictands in order to produce a forecast for the remaining time.

The term “predictor” will refer to the input (starting) data for the pre-
dictive models, x, whereas “predictand’ are the predicted quantities (model
output), y.

1.2 Commonly used Predictors in Seasonal Forecast-
ing

a) Astronomical data (Sun spots). The merits of astronomically based
predictions are still questionable. These kinds of forecasts have been
around for a long time, for example H.C. Willett ( Godske, 1956, p.189)
and Sir N. Lockyer (late 19th century) have tried to base predictions
on sun spots.

b) Past temperatures and past rainfall (persistence forecasts).

¢) Sea Surface Temperatures (SSTs): Strong impact on temperature and
rainfall patterns in the tropics, but weaker influence in the mid-latitudes

(Colman & Davey, 1999).

d) Sea Level Pressure (SLP). Captures the state of North Atlantic Oscil-
lation (NAO)
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¢) Geopotential heights: Captures the state of NAO.

f) Ocean analysis (assimilation) including oceanic subsurface data for cou-
pled model initiation (in ENSO forecasts).

g) Climatic indices such as the Southern Oscillation Index (SOI) and the
North Atlantic Oscillation Index (NAOI).

1.3 Other possible Predictors for Seasonal Forecasting

1) Snow extent ( Watanabe & Nitta, 1999) and ice cover.

2) Solar activity (Length of the solar cycle).

2 Description of observational data sets

2.1 The predictors

The observations discussed in connection with model validation were taken
from the NMC (NCEP) ds195.5 data set (monthly mean sea level pressure,
SLP, 500hPa geopotential heights, ®599, and 500hPa temperatures, Tsqo,
and the GISST2.2 data sets (sea surface temperatures, SSTs). Although
the NCAR ds010.0 and UEA data sets contained longer observational SLP
records, the NMC data was preferred to the others as it had better coverage
over the Arctic. A comparison between the NCAR, UEA, and NMC SLP
suggested that the main features in the different data sets were similar ( Ben-
estad, 1998b). Jones (1987) reported a systematic bias in the Arctic SLP
before 1930. Because of lack of good observations, early Arctic SLPs have
questionable quality and may introduce errors in the analysis.

The NMC SLP and ®5q9 records spanned the 1946-1994 period and the
“bad” Arctic SLP data were not included in this analysis. The GISST2.2
data set contained SST observations for the 1903-1994 period and sea-ice
extent (1949-1994). The data sets and their time spans are listed in table 1.
Further description of the data sets is also given in Benestad (1998b).

2.2 The predictands

The historical data used as predictands were obtained from the DNMI archives.
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Table 1: Data set sizes

Data set Number of years Period

NMC ds195.5 SLP 49 1946 - 1994
NMC ds195.5 @509 49 1946 - 1994
GISST2.2 SST 92 1903 - 1994
GISST2.2 Sea Ice 46 1949 - 1994

3 Methods

3.1 Statistical predictions

Some GCMs do not capture the westward propagation of low frequency plan-
etary waves between 40 and 60°N (Doblas-Reyes et al., 1998), which may
have implications for long-range and seasonal forecasts. Statistical methods,
on the other hand, may perhaps capture some aspects of these waves (i.e.
complex EOFs), and hence utilize this information in the forecasts.

Kushnir & Held (1996) discussed atmospheric model sensitivities to North
Atlantic SST anomalies (SSTAs), arguing that the influence of SSTs on the
atmosphere is obscure. Most dynamical models suffer from incomplete knowl-
edge of the ocean-atmosphere heat fluxes, and as a results, SST impact stud-
ies with different models give conflicting results. Empirical models, on the
other hand, are less prone to model misrepresentations despite limitations
regarding the assumption that SST-atmospheric relationship is linear and
stationary. Colman & Davey (1999) reported some predictability of Euro-
pean summer temperatures due to North Atlantic SSTs.

Mullan (1998) proposed that small scale mid-latitudinal SSTAs may be
a result of atmospheric forcing rather than being an active forcing agent for
subsequent land temperatures. Johansson et al. (1998) found little extra
skill in CCA hindcasts of North European temperatures when SSTs were
included, and their optimal model was constructed with 700hPa geopotential
heights and past temperatures. Vautard et al. (1999), on the other hand,
demonstrated some predictive skills over the US for SST empirical models.

Benestad (1998a) demonstrated that it is crucial to find the optimal pre-
dictor (EOF) combination for best predictions. The predictor combinations
for the results shown here were chosen through a screening test (Benestad,
1998a; Wilks, 1995), where the contribution of each EOF was tested in a
cross-validation analysis. Only the EOFs which gave a positive contribution
towards the correlation score were included in the prediction models. Dif-
ferent EOF combinations were used for different regions and different lead
times.
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Only a small number of predictions were carried out here, as the number of
combinations of different hindcasts with different options is too large to cover
all possibilities here. For instance, predictions with only four different initial
values were examined, January, April, July and October. The exclusion of
the other months as predictors implies that the scores here represent a lower
boundary of actual maximal achievable scores. In other words, a one-month
lead time hindcast of July starting in June may give a better prediction than
a 3-month lead time forecast starting in April.

3.2 Implementation of hindcasting

The hindcast experiments were made using the Matlab codes (version 5.2),
hest.m, optmod.m, crossval2.m, crossval3.m and residuals.m, which were also
used to construct and evaluate statistical downscaling models in Benestad
(1998a), Benestad (1998c) and Benestad (1999). These Matlab programs
were developed at the Norwegian Meteorological Institute (DNMI), and were
designed as universal tools for making experimental hindcasts as well as con-
structing forecast and downscaling models. The predictors are assumed to
be in a gridded field format, read from netCDF formatted data files, and the
predictands are taken to be individual time series from a number of locations,
also assumed to be stored in the netCDF format. The codes, hest.m and opt-
modX.m, have a number of control flags which sets a number of options,
listed in table 2.

Table 2: Control flags for optmod.m

Flag Function

method | Flag: 1. CCA, 2. SVD, 3. Multivariate Regression (MVR)

lag Time lag in months.

option | Set option of: 1. ordinary, 2.use odd/even years only,

3. Exclude adjacent points from model calibration, 4. 243
prewhit | Flag=1 if pre-whitening before analysis

seasons | Flag=1 if use 3-month seasons.

plotts Flag=0: only plot the weights and map.

same flag=1 to use same predictands as last time when number > 25
fest Flag=1 for forecast mode: use the residual to determine the

probability distribution.

The hindcast tools (hest.m, optmod.m, crossval2.m and crossval3.m) have
been used to produce all the figures in this report. The Matlab routines
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mapfig.m and stationmap.m were used to plot the results and draw the maps
of the sites of the predictands.

3.2.1 How to interpret the prediction scores

All the prediction scores quoted here are taken from a cross-validation anal-
ysis, which predicts independent data not used in the model calibration.
Therefore, negative correlation scores indicate serious misses, for instance
that the model predicted warm conditions while cold anomalies occurred.
Correlation scores lower than 0.40 may not necessarily indicate real skill;
the skill score may vary randomly between zero and 0.40 (due to sampling
fluctuations). Correlation scores greater than 0.40 may, however, indicate
a connection between the large scale circulation and the local climate, and
scores greater than 0.60 will be referred as “useful” for predictions (This
threshold is arbitrarily chosen). The definition of useful skill, however, does
depend on the use of the forecasts, and these limits must not be regarded as
universally valid.

Mullan (1998) and Katz (1988) argued that autocorrelation can give non-
zero correlations at non-zero lags even if there is only a real correlation for
lag zero. The apparent correlation at non-zero lags was explained in terms of
serial correlation smearing out the signal. A pre-whitening filter was applied
to the data in some sensitivity studies in order to reduce the inflationary
effects of autocorrelation on lagged correlation analysis (Katz, 1988). The
pre-whitened analysis was included in an attempt to deduce whether there
was a real connection between the predictands and predictors at a given lag,
or whether the skills were due to the autocorrelation smearing out the signal.
The scores using pre-whitened data are not representative for the prediction
skills, as operational predictions utilizes all information that can be extracted
from persistence.

Prediction scores can be assessed in terms of pattern or spatial correla-
tion (Stephenson, 1997), however, we will only focus on individual stations
in order to evaluate the forecast skills for the respective location. Three re-
gions representing different climate types, southern Norway, western Norway
and northwestern Norway, have been selected for detailed validation. These
locations do not necessary correspond to the stations with highest skill, but
were picked partly because the climate at these places affect a large number
of people. Only stations with long complete records that include valid data
up to 1994 were chosen here.
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Figure 1: Skill scores for temperature predictions for southern Norway (Oslo,
Nesbyen, Ferder and Okspy) starting in January. The predictions were based on
NMC SLPs. The upper left panel shows scores for prediction of monthly mean
temperatures and the upper right panel shows the scores for 3-monthly (seasonal)

mean temperatures.

The lower left panel shows the prediction of pre-whitened

seasonal mean temperatures, whereas the lower right panel shows the scores of
seasonal mean temperatures predictions based on seasonal (ND.J) PCA products.

3.3 Exploring different methods

The best scores were obtained using monthly mean predictor fields to predict
seasonally mean (3-monthly) temperatures (figure 1). The persistence in the
Norwegian temperatures also indicates greater autocorrelation for the sea-
sonal mean temperatures than monthly mean temperatures, implying greater

predictability for the seasonal mean values (upper panels).
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Pre-whitened analysis suggests that there also is a correlation between
SLP and temperatures at non-zero lags, i.e. that the predictability is not
just due to serial correlation in one of the data sets (lower left).

Studies of predictions made with 3-month mean predictor fields suggested
that these did not yield much different scores to predictions based on monthly
mean predictor fields (lower right). We will therefore focus on the latter type.
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4 Temperature predictions based on CCA

Figures 2 to 4 show the locations of the climate stations included in the
analysis for southern Norway (Oslo, Nesbyen, Ferder lighthouse, and Oksgy
lighthouse), western Norway (Bergen and Ona), and northwestern Norway
(Tromsp and Bodg) respectively.

4.1 Sea level pressure hindcasts
4.1.1 Southern Norway

The prediction score based on SLP vary with the lead time and the seasons
when the prediction starts (figure 5). The seasonal prediction prospects are
good in January, but questionable during the other seasons. There seems to
be some marginal skill (correlation higher than 0.60) at seasons other than the
winter, but the value of these hindcasts will depend on their use. The peak
prediction scores appear during late winter and late summer, at the same
times when the autocorrelation in the southern Norwegian temperatures are
high (Forland & Nordli, 1993). Vautard et al. (1999), Barnston (1994), and
Johansson et al. (1998) also reported seasonal variations in the prediction
skill scores. A recovery of skill is noted for for 2-month lead hindcasts starting
in July.

The inspection of the prediction errors (residuals) after the predictions
of the south Norwegian temperatures (figure 6) indicates a less than perfect
normal distribution (middle right and lower right). A normally distributed
signal is expected to lie on a straight line in a normal distribution test (lower
right). Although the serial correlation was low (middle left), the residual of
the four sites showed a high correlation. It is assumed that the residuals at
each site are random (i.e. Gaussian white noise) and independent of each
other if the model captures all the predictable signals in the temperature
series. The residual analysis therefore suggests that there may have been a
common large scale signal not captured by the model.

The large scale circulation (upper panel) is therefore probably not respon-
sible for most of the temperature variability in southern Norway. However,
a NAO like structure was associated with all of the predictability of Nor-
wegian temperatures. The lower left panel of figure 6 shows the predicted
and observed temperatures in Oslo. A comparison between the actual tem-
peratures and the residual suggests that the residuals were of approximately
same magnitude as the predictions.
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Figure 5: Skill scores for temperature predictions for Oslo, Nesbyen, Ferder and
Okspy starting in January (upper left), April (upper right), July (lower left) and
October (lower right). The predictions were based on NMC SLPs.
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4.1.2 Western Norway
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Figure 7: Skill scores for temperature predictions for Bergen and Ona starting
in January (upper left), April (upper right), July (lower left) and October (lower
right). The predictions were based on NMC SLPs.

The prediction scores for western Norway (figure 7) were roughly similar to
those of southern Norway (figure 5), apart from lower spring scores. The
best predictions were those starting in January, and the scores for the other
seasons were questionable. The negative cross-validation scores seen for the
April predictions are indicative of model over-fit, and seasonal temperature
predictions with up to 4 months lead time were worse than predictions based
on persistence. There were also indications of “recovery of skill” for 2-month
lead hindcasts starting in July (target September). The autumn scores were
relatively insensitive to the lead time beyond 2 months, although were con-
sidered as marginally significant.
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4.1.3 Northwestern Norway
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Figure 8: Skill scores for temperature predictions for Tromsg and Bodg starting
in January (upper left), April (upper right), July (lower left) and October (lower
right). The predictions were based on NMC SLPs.

The prediction scores for northwestern Norway peak at 2-month lead times
for hindcasts starting in January and July (figure 8). The spring time pre-
dictions (upper right) were associated with poor scores whereas hindcasts
starting in October (lower right) were associated with relatively high scores
for a wide range of lead times. A slight skill recovery was seen in the Oc-
tober scores at 9-10 month lead time, however, this recovery may be due to
statistical fluctuation.

The common feature of the skillful hindcasts in all 3 climate regions was
a predictor pattern which resembled the NAO feature. This observation is
in line with results from other studies such as Watanabe & Nitta (1999) and
Benestad (1998a). The NAO therefore appears to have a great impact on
the Norwegian climate.

seasonal
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Figure 9: Skill scores for temperature predictions for Oslo, Nesbyen, Ferder and
Oksgpy starting in January (upper left), April (upper right), July (lower left) and

October (lower right). The predictions were based on GISST2.2 SSTs.

The seasonal predictions based on SSTs from the Nordic Seas (the Norwe-
gian Sea, the North Sea, the Baltic Sea, and the Barents Sea) were in general

good for all seasons, except the autumn (figure 9). The predictions starting in
January achieved similar skills scores to the corresponding SLP predictions,
however, the spring SST predictions gave substantially higher scores for lead
times longer than 2 months. The late summer (July and August) had es-
pecially high predictability. Hindcasts starting in July gave best predictions
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Figure 10: Upper left: Skill scores for temperature predictions for Oslo, Nesbyen,
Ferder and Oksgy starting in April and based on GISST2.2 SSTs from the entire
North Atlantic (upper left). Upper right: the leading CCA SST pattern associated
with the maximum scores in upper left panel. Lower: skill scores of the south
Norwegian temperatures after pre-whitening based on the Nordic Seas SST's (left)
and North Atlantic SST's (right).

for the subsequent February-April period, whereas the autumn predictions
hinted at marginal prediction scores for the following summer. Dramatic skill
recovery was seen for all hindcasts starting in all seasons but January. Skill
recovery has also been reported by Colman & Davey (1999), who explained
this recovery in terms of the eastward advection of SSTAs across the North
Atlantic basin.

The prediction shown here only used SST's from the adjacent seas, how-
ever, Benestad (1998a) demonstrated that the leading CCA pattern may be
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part of a basin scale North Atlantic SST anomaly. Figure 10 shows various
test scores from predictions based on SSTs from the entire North Atlantic,
and the results were similar to those of the Nordic Seas SST model. The
SSTA predictor pattern with the strongest influence on the Norwegian tem-
peratures was associated with strong amplitudes in the North sea (similar to
the leading CCA SST pattern shown in figure 11, upper panel). This regional
SST pattern was also consistent with those basin scale patterns identified by
Colman & Davey (1999), and is shown in the upper right panel of figure
10. The North Atlantic SST pattern is furthermore similar to the pattern
which has been associated with the NAO ( Watanabe & Nitta, 1999; Deser &
Blackmon, 1993).

The two lower panels in figure 10 also show a comparison between the
scores obtained from the Nordic and North Atlantic models. Here the data
had been pre-whitened prior to the calibration of the models in order to iden-
tify real predictive signals other than pure persistence. The two SST models
produced similar score functions, indicating that the local SSTs contained
most of the predictive signal. The pre-whitened analysis gave no dramatic
skill recovery at about 3-month lag, which may indicate that this recovery of
skill may be due to to late spring and early summer SST persistence.

The residuals from the CCA predictions were approximately normally
distributed and were associated with insignificant trend (figure 11). The
similar time evolution in the residuals between the various sites suggest that
there were predictable signals not captured by the SST models. The residuals
also had similar magnitude as the predictions, further indicating that the
SSTs can only account for some of the land temperature variability.
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Figure 11: Same as figure 6, but for the January SST CCA models.
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Figure 12: Skill scores for temperature predictions for Bergen and Ona starting
in January (upper left), April (upper right), July (lower left) and October (lower
right). The predictions were based on GISST2.2 SS'Ts.
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4.2.3 Northwestern Norway

Scores

Scores

solid=prediction
dashed=persistence

TROMSOE

:BODOE VI

Correlation

solid=prediction
dashed=persistence

ol

TROMSOE

:BODOE VI

|
|
|
i
|
|
I
-2 0

~05 I I I I I 05
4 8 10 12 -2 4 6 8 10 12
eof-Jan-Gsst0394-nsea.nc Lag (months) eof-Apr-Gsst0394-nsea.nc Lag (months)
TEMP-06.PRN.nc seasonal TEMP-06.PRN.nc seasonal
Ordinary Ordinary
Scores Scores
15 T 15 T
solid=prediction solid=prediction
dashed=persistence dashed=persistence
———— :TROMSOE ———— :TROMSOE
————  :BODOEVI ————  :BODOEVI

Correlation

L L L 05 L

-0.5

4
eof-Oct-Gsst0394-nsea.nc Lag (months)
TEMP-06.PRN.nc

Ordinary

eof-Jul-Gsst0394-nsea.nc Lag (months)
TEMP-06.PRN.nc

Ordinary

seasonal seasonal

Figure 13: Skill scores for temperature predictions for Tromsg and Bodgp starting
in January (upper left), April (upper right), July (lower left) and October (lower
right). The predictions were based on GISST2.2 SS'Ts.

The prediction scores for the west coast (figure 12) and northwestern tem-
peratures (figure 13) were similar to those of the southern part of Norway
(figure 9), suggesting that the large scale North Atlantic SST anomalies have
far reaching influence on the local climate. The fact that the temperatures
in all different climate regions indicated a skill recovery at 9-month lead time
for predictions starting in October may suggest that this peak may be real.
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Figure 14: Skill scores for temperature predictions for Oslo, Nesbyen, Ferder and
Oksgpy starting in January (upper left), April (upper right), July (lower left) and
October (lower right). The predictions were based on NMC 500hPa geopotential

heights.

Seasonal hindcasts based on 500hPa geopotential heights and that start in
January have good hindcast prospects for lead times between 0-4 months for
the southern part of Norway (figure 14). The skill scores were low for pre-
dictions starting in April, but both July and October predictions suggested
good prospects for some lead times.
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4.3.2 Western Norway
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Figure 15: Skill scores for temperature predictions for Bergen and Ona starting
in January (upper left), April (upper right), July (lower left) and October (lower
right). The predictions were based on NMC 500hPa geopotential heights.

The seasonal prediction prospects for the west coast were similar to those
for southern Norway. There was also a more prominent recovery of skill at
8-month lead time for the January prediction.
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4.3.3 Northwestern Norway
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Figure 16: Skill scores for temperature predictions for Bergen and Ona starting
in January (upper left), April (upper right), July (lower left) and October (lower
right). The predictions were based on NMC 500hPa geopotential heights.

The hindcast skill scores in northwestern Norway suggested greatest pre-
dictability for 500hPa geopotential height based hindcasts starting in July
and October (figure 16). A pronounced skill recovery was found at 10-
month lead time for the October prediction (target month: following July-

September).
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Figure 17: Skill scores for temperature predictions for Oslo, Nesbyen, Ferder and

Oksgpy starting in January (upper left), April (upper right), July (lower left) and

October (lower right). The predictions were based on GISST2.2 sea-ice.

The prediction schemes based on sea-ice alone achieved only marginal skill
scores (figure 17), with greatest predictability for the April hindcasts. The
January hindcast only yielded high scores for 0-month lead time. The July
predictions, on the other hand, indicated some skill for long lead times, and
the October hindcasts scores peaked around December-January and the sub-
sequent autumn showed some recovery of skill. How much of this skill is
true remains to be found out in future experimental forecasts projects. It is
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Figure 18: Same as figure6, but for the April sea-ice CCA models.
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possible that the forecast information in the sea-ice observations may give

additional skill for empirical models based on more than one predictor quan-

tity.

The ice predictor pattern indicates an anti-phase relationship between the
ice extent in the Labrador Sea and the Greenland-Iceland-Norwegian (GIN)
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Sea (figure 18, top). This pattern may be linked with the NAO and Deser &
Blackmon (1993) have noted a strong lagged correlation between sea ice in
the Labrador sea and North Atlantic SSTs 1-2 years later. The residuals are
of similar magnitude to the predicted values and highly correlated with each

other, suggesting that the ice models did not reproduce all of the predictable
signal. Middle right and lower right panels indicate that the residuals were

not normally distributed.

4.4.2 Western Norway
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Figure 19: Skill scores for temperature predictions for Oslo, Nesbyen, Ferder and
Okspy starting in January (upper left), April (upper right), July (lower left) and
October (lower right). The predictions were based on GISST2.2 sea-ice.
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Figure 20: Skill scores for temperature predictions for Oslo, Nesbyen, Ferder and
Okspy starting in January (upper left), April (upper right), July (lower left) and
October (lower right). The predictions were based on GISST2.2 sea-ice.

It was surprising to see similar sea-ice model prediction score for southern,

western and northern Norway.
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5 Precipitation predictions based on CCA
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Figure 21: Map of stations measuring precipitation.

Figure 21 shows the locations of the 18 precipitation stations used as pre-
dictands in the following discussion. The results shown in this section were
obtained from empirical models calibrated with all the sites shown in fig-
ure 21 (“nationwide model”), as opposed to the predictions in the previous
section where different temperature models were developed for different re-
gions (“regional models”). The need for regional models is just as great for
precipitation predictions, however, the objective of this section is merely to
indicate the potential for predictability of rainfall for the sites with highest
skill (the west coast of Norway). All the results shown in the figures are in
terms of precipitation anomalies (x107*m).

5.1 SLP predictions

Figure 22 shows January seasonal 1-month lead time (target interval: Feb-
Apr) precipitation hindcasts for Bergen (top left) and Tromsg (top right),
together with the leading CCA pattern (bottom left) and predictand weights
and scores (bottom right). Four of the stations in the southwestern part
of Norway had predictions with a high cross-correlation score, whereas the
predictions for northern and eastern Norway had poor skill. The predictor
pattern indicates that the precipitation in southwestern Norway was associ-
ated with westerly geostrophic wind, bringing in moist and mild maritime
air from the North Atlantic.

The prediction scores (left) and leading CCA pattern (right) for 1-month
lead time hindcasts starting at the spring, summer and autumn seasons are
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Figure 22: The seasonal hindcast predictions for Feb-Apr precipitation with
lead times of 1 month at Bergen (upper left) and Tromsg (upper right).
The corresponding leading CCA SLP patterns is shown in the bottom left
panel and the predictand weights and prediction scores at the bottom right.
The units are in the upper panels are 0.lmm and the quantities shown are
anomalies.

shown in figure 23. The April predictions rely to a strong degree on NAO
like SLP structure, whereas the prediction patterns for the predictions start-
ing in the summer or the autumn resemble a distorted and displaced NAO
structure. The important geostrophic wind for all seasons has a strong zonal
component, and the locations with the highest prediction scores are found
on the west coast of Norway for predictions made during spring time, in the
south Norwegian mountains (Geilo) during summer time and around Trond-
heim during the autumn season.

In April (figure 24) useful prediction skills for 2-month lead time were
found in Bergen and Lavik, both on the western coast of Norway. Table
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Figure 23: Predictand weights and scores (left) and leading SLP CCA pat-
terns for 1-month lead time seasonal precipitation predictions starting in
April (upper), July (middle), and October (bottom) using SLP as predictor.

3 shows the prediction skill for hindcasts starting at different times of the

year.

The predictions starting in April may have prospects of producing

useful seasonal mean predictions for up to 2 months in advance. In July,
marginal skill can be seen in the 2-month lead time predictions for Bergen
(table 3) while the 2-month lead time hindcasts starting in October were
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Correlation=0.62 (95% conf =0.32) Proportional variance =62.5% RMSE=88.48 lag=2 Correlation=0.63 (95% conf =0.32) Proportional variance =66.6% RMSE=101.09 lag=2
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Figure 24: The seasonal hindcast predictions for Jun-Aug precipitation with
lead times of 2 months at Bergen (upper left) and Lavik (upper right). The
corresponding leading CCA SLP patterns is shown in the bottom left panel
and the predictand weights and prediction scores at the bottom right. The
units are in the upper panels are 0.1mm and the quantities shown are anoma-
lies.
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Table 3: Hindcast cross-variance correlation scores for SLP predictions for
seasonal mean precipitation. Scores greater than 0.59 are shown in bold, and

the 95% statistical significance limit was around 0.30.

[iw [ onto | Borgon | Teomes |

January

0 (DJF) -0.07 | 0.73 | 0.52
1 (JFM) 0.18 | 0.70 | 0.22
2 (FMA) | 0.32 | 0.23 | 0.39
3 (MAM) || 0.42 | 0.16 | 0.19
April

0 (MAM) | -0.16 | 0.67 | -0.24
1 (AMJ) | -0.04 | 0.59 | -0.10
2 (MJJ) 0.24 | 0.62 | 0.04
3 (JJA) 0.13 | 0.39 | 0.45
July

0 (JJA) 0.13 | 0.39 | 0.45
1 (JAS) 0.36 | 0.14 | 0.24
2 (ASO) | -0.22 | 0.44 | -0.20
3 (SON) 0.02 | 0.30 | 0.08
October

0 (SON) 0.40 | 0.31 | 0.20
1 (OND) || 0.11 | 0.26 | 0.20
2 (NDJ) | -0.10 | -0.36 | -0.26
3 (DJF) -0.18 | 0.11 | 0.21
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5.2 SST predictions
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Figure 25: The Feb-Apr seasonal mean hindcast predictions for precipitation
with lead times of 1 month for Bergen (upper left), Tromsg (upper right),
Oslo (lower left) and Bjaen (lower right). The predictors were SST and the
quantities shown are anomalies (units=0.1mm).

Figure 25 shows the 1-month lead time predictions made for the January to
March (JFM) season at Bergen (top left), Tromsg (top right), Oslo (bottom
left) and Bjaen (bottom right) employing Nordic Seas SST anomalies. Al-
though the 1-month lead SST prediction scores were lower than those based
on SLPs, the prediction skill of seasonal hindcast at Bjaen may be considered
as useful (lower right). The leading CCA pattern (figure 26, left panel) indi-
cates that most of the predictability came from SST anomalies in the North
Sea, Skagerrak, Kattegat, and the Baltic Sea, and the predictand weights
(right panel) suggest that enhanced precipitation is associated with warmer
sea surface.
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SST: Mean Predictor CCA pattern: lag=1
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The 1st CCA predictor weights of the station data: lag=1
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Figure 26: The leading CCA SST pattern (right) and hindcast predictand

weights (left) and prediction scores for seasonal mean precipitation with lead

times of 1 month.

The correlation scores of predictions with 2-months and 3-months lead
time were all below the 95% confidence limit (table 4), contrary to the sea-
sonal temperature predictions, and the poor long lead scores were possibly

due to low persistence in the precipitation records and/or weak dependence

on the SSTs.
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Table 4: Hindcast cross-variance correlation scores for SST predictions for

seasonal mean precipitation. Scores greater than 0.59 are shown in bold, and

the 95% statistical significance limit was around 0.30.

[iw [ onto | Borgon | Teomes |

January

0 (DJF) 0.35 | 0.38 | 0.21
1 (JFM) 0.30 | 0.43 | 0.20
2 (FMA) | 0.35 | 0.16 | 0.27
3 (MAM) || 0.15 | 0.32 | -0.05
April

0 (MAM) || 0.19 | 0.53 | 0.28
1 (AMJ) 0.07 | 0.36 | 0.24
2 (MJJ) 0.08 | 0.17 | 0.12
3 (JJA) 0.05 | 0.22 | -0.06
July

0 (JJA) -0.04 | 0.42 | 0.33
1 (JAS) 0.19 | 0.21 | 0.07
2 (ASO) 0.21 | 0.10 | 0.16
3 (SON) 0.21 | 0.10 | 0.22
October

0 (SON) 0.01 | 0.19 | 0.19
1 (OND) |/ -0.08 | 0.32 | 0.27
2 (NDJ) 0.31 | 0.15 | 0.14
3 (DJF) 0.13 | -0.04 | -0.10
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5.3 500hPa geopotential height predictions

Correlation=0.68 (95% conf =0.33) Proportional variance =57.5% RMSE=81.47 lag=1

Correlation=0.37 (95% conf =0.33) Proportional variance =31.3% RMSE=46.81 lag=1
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Figure 27: The Feb-Apr seasonal precipitation hindcast predictions with
lead times of 1 month at Bergen (upper left) and Tromsg (upper right). The
corresponding leading CCA ®5qg patterns is shown in the bottom left panel
and the predictand weights and prediction scores at the bottom right.

Predictions with 1-month lead time of seasonal precipitation at Bergen (top
left) and Tromsg (top right) using 500hPa geopotential heights are shown in
figure 27. The predictor pattern (figure 27, bottom left) bears some resem-
blance to the NAO dipole structure, and the predictions at both Bergen and
Sviland had useful skill (figure 27, bottom right).

The skills (left) and predictor patterns (right) of 500hPa geopotential
heights predictions of seasonal precipitation with 1-month lead time in figure
28 indicate useful prediction scores for Sviland during autumn, but no useful
scores during the spring and summer time. The 2-month lead time skills
were lower than those of shorter lead time, indicating no re-occurrence in

skill (table 5).
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Figure 28: Predictand weights and scores (left) and leading Z500 CCA pat-
terns for 1-month lead time seasonal precipitation predictions stating in Jan-
uary (upper) April (second from the top), July (third from the top) and
October (bottom) using Z500 as predictors.
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Table 5: Hindcast cross-variance correlation scores for z500 predictions for
seasonal mean precipitation shown. Scores greater than 0.59 are shown in
bold, and the 95% statistical significance limit was around 0.30.

H Lag H Oslo ‘ Bergen ‘ Tromsg H

January
0 (DJF) | 0.02 | 0.82 | 0.67
1 (JFM) 0.34 | 0.68 | 0.37
2 (FMA) | 0.14 | 0.32 | 0.12
3 (MAM) || 0.13 | -0.05 | -0.05
April
0 (MAM) || 0.04 | 0.56 | 0.00
1 (AMJ) 0.06 | 0.19 | 0.29
2 (MJJ) 0.05 | 0.18 | 0.30
3 (JJA) -0.01 | 0.05 | 0.10
July
0 (JJA) 0.58 | 0.22 | 0.50
1 (JAS) 0.40 | 0.23 | 0.03
2 (ASO) | -0.22 | 0.08 | -0.06
3 (SON) 0.08 | 0.04 | -0.05
October
0 (SON) 0.37 | 0.44 | 0.38
1 (OND) || 0.23 | 0.56 | 0.29
2 (NDJ) | -0.01 | 0.10 | 0.10
3 (DJF) -0.33 | 0.04 | 0.02
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5.4 Sea-ice predictions

Correlation=0.55 (95% conf =0.33) Proportional variance =57.0% RMSE=98.24 lag=1

Correlation=0.73 (95% conf =0.33) Proportional variance =72.8% RMSE=45.34 lag=1
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Figure 29: The May-Jul seasonal precipitation hindcast predictions with
lead times of 1 month at Bergen (upper left) and Bjaen (upper right). The
corresponding leading CCA sea-ice patterns is shown in the bottom left panel
and the predictand weights and prediction scores at the bottom right.

Figure 29 shows May-Jul seasonal precipitation hindcasts for Bergen (top
left) and Bjaen (top right) employing April sea-ice cover, and it appears
that precipitation at Sviland and Bjaen are correlated with the expansion
of the Labrador ice sheet and the retraction of the ice edge along the east
coast of Greenland and the Polar Sea. Table 6 gives an overview of the
prediction scores for the sea-ice models, indicating that apart from the two
locations with high prediction skills for the 1-month lead time April-June
(AMJ) hindcasts, the sea-ice models were poor models in terms of precipita-
tion predictions.

It is difficult to explain how the sea-ice extension may affect the Norwe-
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Table 6: Hindcast cross-variance correlation scores for sea-ice predictions for
seasonal mean precipitation. Scores greater than 0.59 are shown in bold, and

the 95% statistical significance limit was around 0.30.

Mo [ outo | Bergen | Trome |

January

0 (DJF) -0.18 | 0.69 | 0.55
1 (JEM) | -0.21 | 0.42 | -0.20
2 (FMA) | -0.21 | 0.25 | -0.14
3 (MAM) | -0.14 | 0.44 | -0.06
April

0 (MAM) || 0.00 | 0.63 | 0.22
1 (AMJ) | -0.10 | 0.55 | -0.05
2 (MJJ) -0.34 | 0.55 | -0.25
3 (JJA) 0.07 | 0.47 | 0.25
July

0 (JJA) 0.36 | 0.28 | 0.67
1 (JAS) -0.34 | 0.39 | -0.23
2 (ASO) | -0.04 | -0.32 | -0.20
3 (SON) | -0.03 | -0.17 | -0.05
October

0 (SON) | -0.09 | -0.02 | -0.08
1 (OND) || -0.05 | 0.26 | 0.33
2 (NDJ) | -0.16 | -0.04 | 0.38
3 (DJF) 0.10 | 0.12 | -0.32

gian rainfall without more in-depth studies using numerical models, however,
it is possible that large scale signals, such as NAQ, is associated with both

the ice formation /melting as well as influencing the Norwegian precipitation.
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Table 7: Best Scores and Predictors. The number on the right hand indicated

the forecast lead time. Scores less than 0.30 are left blank.

H Month ‘ Oslo ‘ Bergen ‘ Tromsg H
Precipitation
DJF
JFM 0.34 z500 1 | 0.70 SLP 1 | 0.37 2500 1
FMA 0.35 SST 2 | 0.32 z500 2 | 0.39 SLP 2
MAM 0.42 SLP 3 | 0.44 ICE 3
AMJ 0.56 SLP 1
MJJ 0.62 SLP 2
JJA 0.47 ICE 3 | 0.45 SLP 3
JAS 0.40 z500 1 | 0.39 ICE 1
ASO 0.44 SLP 2
SON 0.30 SLP 3
OND 0.56 z500 1 | 0.33 ICE 1
NDJ 0.31 SST 2 0.38 ICE 2
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6 Discussion and conclusion

The seasonal prediction analysis gave evidence for some historical predictive
skill associated with Norwegian surface temperatures. Some of the skill is
thought to be related to the persistence of climatic anomalies, but there are
also indication of a lagged relationship between the large scale features and
the local temperatures. The potential seasonal predictability can only be
assessed further through an experimental operational forecast experiments.

Table 7 presents the best skill scores for seasonal precipitation prediction
achieved in this study. The seasonal prediction scores for precipitation did
not yield as promising results as for temperatures, however, the precipita-
tion on the west coast of Norway was nevertheless associated with at least
some predictability. The southeastern and northern Norway did not show
any significant predictability with regard to precipitation. SLP appeared to
give the highest skill scores, however, other quantities such as SST, ®5p,
and sea-ice gave sometimes better predictions than the SLP. The analysis
of the predictability of precipitation was far from exhaustive, and further
work is needed to get a more complete picture of seasonal predictability of
precipitation. The short data records examined here will furthermore im-
ply large sampling fluctuations and insufficiently long time series for model
calibration.

It is possible that the empirical models can be improved by including
more than one parameter in the predictor data set. However, the NAO ap-
pears to produce signals in all data sets that are associated with predictive
skills, and it is possible that most of the spatial patterns in the various fields
examined here contain the same signal. The different residual statistics for
the different predictor quantities suggest that the various predictor quan-
tities did not account for the same signals. There may also be room for
further improvement in model skill by employing better methods, and multi-
channel singular spectral analysis (Vautard et al., 1999) has been suggested
as a promising candidate. Refinement of the empirical models may possibly
involve the removal of linear trends in the time domain prior to the model
calibration, and the linear trend may be used as an additional predictor.
However, the analysis of residuals indicated that the residual trends were
small, suggesting that the separation of linear trends may only contribute
to marginal hindcast improvements for the cases examined here (western
Norway).

One important result from this study was that one empirical hindcast
model could not produce optimal predictions for several different climatic
regions, but each region required one empirical model which was especially
optimised for the local climate.
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