DNMI

Det norske meteorologiske institutt

REPORT No. 30/98

RegClim: Regional Climate Development
Under Global Warming

SVD applied to Statistical Downscaling
for Prediction of Monthly Mean Land
Surface Temperatures: Model
Documentation.

Rasmus E. Benestad



DN]M]: E ‘= @F.% ISBN  0805-9918
| REPORT NO.
NORWEGIAN METEOROLOGICAL INSTITUTE
P.O. BOX 43 BLINDERN, N - 0313 OSLO | 30/98 KLIMA
TELEPHONE: (+47) 22 96 30 00 DATE:
3.12.1998
TITLE:
SVD applied to Statistical Downscaling for Prediction of
Monthly Mean Land Surface Temperatures: Model
Documentation.
AUTHOR:
Rasmus E. Benestad
PROJECT CONTRACTORS:

Norwegian Research Council (Contract NRC-No 120656/720) and the Norwegian
Meteorological Institute.

SUMMARY:

Singular Vector Decomposmon (SVD) analysis is discussed as a method for
constructing linear downscaling models. A mathematical formulation of the SVD
models is derived, and an evaluation of the SVD based predictions is presented,
employing sea surface temperatures (SSTs), sea level pressure (SLP), and 500 hPa
geopotential heights and temperatures. Cross-validation analyses of the model
predictions indicate that the SVD models gave similar results as models based on the
Canonical Correlation Analysis (CCA) technique, although the SVD models did not |
obtain as high correlation scores as the CCA models. The SVD models with the
highest skill scores were based on 500 hPa temperatures, suggesting that the upper
air temperatures are promising predictor candidates for statistical downscaling.

SIGNATURES:
Tinke 9. Borlond Z
Eirik J. Ferland ’ %’ Bjorn Aune
Principal Investigator, RegClim-PT3 ead of the DNMI Climate Division




SVD applied to Statistical Downscaling for
Prediction of Monthly Mean Land Surface
Temperatures: Model Documentation.

R.E. Benestad

DNMI, December 3, 1998




DNMI Klima: Linear Statistical Downscaling Methods

Contents

1

Introduction
The SVD Technique
SST Models

SLP Models

41 The NMCdsl95.5models . . . .. . . . . v v v...
42 The UEAmodels . . . . . . . . o i i i i i ..

Geopotential Height Models
The 500hPa Temperature Models

Discussion

17
17
21

27

27

31




DNMI Klima: Linear Statistical Downscaling Methods 3
1 Introduction

The singular vector decomposition (SVD) analysis is a method for finding

coupled spatial patterns which have maximum temporal covariance. The

SVD analysis discussed in this report is implemented in the Matlab script,
empsvd.m, and employs a numerical algorithm which calculates left and right
eigenvectors (Press et al., 1989; Strang, 1995). It is important to stress
that this numerical algorithm and the coupled pattern analysis described
here are two different concepts although both are referred to as SVD. The
coupled pattern analysis SVD method (hereafter, referred to as just SVD) is
similar to the CCA (Benestad, 1998a; Wilks, 1995; Bretherton et al., 1992;
Preisendorfer, 1988), but differs from CCA by the fact that the SVD finds
spatial patterns with the maximum covariance whereas CCA finds patterns
with maximum correlation. In other words, the SVD models are less sensitive
to weak signals with high correlation than the CCA models.

The intention of this report is to provide a documentation of the statistical

models at Det Norske Meteorologiske Institutt (DNMI) based on the SVD

method, and to describe the construction and testing of these. This report

is the second part of the Linear Statistical Downscaling Methods series, and -

follows up the discussion on Canonical Correlation Analysis (CCA) models
in Benestad (1998a). We will focus on the optimal models which are calibrated
on a selection of EOFs that maximise the prediction skill. Since the SVD
technique is similar to the CCA method, we will compare the two model
classes and discuss the differences in terms of temperature predictions. The
purpose of developing these statistical models is to produce regional climate
scenarios from given global general circulation model (GCM) results, and we
will discuss the suitability of the SVD models for such applications.

In this report, we define best skill as the prediction with the highest
correlation score. When the comparing between the CCA and SVD models,
we also employ mean station scores, i.e. the average skill score of the 24
different stations. A comparison between the average scores is not necessarily
a good way of evaluating comparative prediction skill, as both model types
may produce very good predictions for a small selection of stations and obtain
mediocre and low skill scores for other locations. However, the station mean
and variance may provide the basis for a crude significance test of the model
differences. Furthermore, the comparison between mean skill scores may
* give an indication of how well the two model types can predict large scale
climate anomalies. Other skill measures include the root mean square errors
(RMSE) and proportional variance. The proportional variance score is the
ratio of the variance of the predictions to that of the observations, and is
a measure of the predicted variance but does not necessarily indicate how
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much of the observed variability that can be described by the model. For
instance, the predictions in some cases were associated with large variance
despite being uncorrelated with the observations. The variance score for a
prefect prediction, however, is var=100%.

The leading SVD predictor pattern or predictand weights will, unless oth-
erwise stated, hereafter also be referred to simply as “the predlctor pattern”
and the “predictand weights” respectively.

2 The SVD Technique
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Figure 1: Map showing the location of the the stations (predictand locations)
referred to in this report.
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The predictors, X, and predictands, Y, described in this report are the same
as those in Benestad (1998b) and Benestad (1998a), with the addition of the
500hPa temperature fields'. Figure 1 shows a map of the 24 stations which
were included in predictand data set discussed here. We used monthly mean
values of land surface temperature? from a number of stations, where only
stations with long time series were selected, shown in figure 1. 4 stations
were located in northern Norway (Vardg, Karasjok, Sihcajarvi and Tromsg),
3 sites were selected from mid Norway (Bodg, Skomveer fyr and Glomfjord),
whereas the remaining 18 time series were from the southern part of Norway.
There were 9 inland stations (Karasjok, Sihcajarvi, Rgros, Kjgremsgrendi,
Oppstryn, Lerdal, Abjgrsbraten, Flisa and Nesbyen) and 14 coastal stations.

" The period spanned by the predictands was 75 years, from 1923 to 1978. The
_ reason why predictand data more up to date were not used in this study was

that 1978 was the year that some of the stations with a long temperature
record, such as Skomveer fyr, ended. We intend to use the 1978 to 1998
period for the validation of these models later on.

The notations employed here are the same as in Benestad (1998a), and
the predictor and predictand data can be written as following:

Y = Gspd .;I;da T
X = Hsvdvvd: (1)

where U,yq and Vuq, often referred to as extension coefficients, describe
the tempora,lbevolution of the spatial patterns described by Gs.q and H,q.
The matrices U,y and V,,q contain the time series of the SVD patterns
along their columns so that the leading columns of the two matrices have
the greatest possible covariance. We will henceforth drop the subscripts, as
all the matrices discussed here are SVD products. Mathematically, the SVD
analysis can be posed as a maximization problem, which can be expressed in
the form of an eigenvalue equation in a similar fashion as for CCA (Benestad,
1998a). The covariance matrix is calculated according to:

XY = Cxy. | 2)

The mathematical solution to the max1mlsat1on problem is similar to that
of CCA, but with C replaced by Cxy:

1The Tyoonpa data were not discussed in the previous report because the Tso0npa Tecord
was too short for model calibration and the estimate of the square root covariance matrix
was complex. The square root covariance matrix is not used in the SVD method. The
500hPa temperature data spanned the period 1962-1994.

ZPrecipitation and other quantities will be discussed in later reports.
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Cxy = LMRT. ' (3)

The rotation matrices, L and R, represent the actual spatial patterns
that have maximum covariance. The expansion coefficients are given by the
matrix products (Bretherton et al., 1992):

U=1LY, (4)
V=RX. | (5)

The linear relationship between the predictors and predictands employing
SVD analysis products is given in equation 6:

Y = GCyvCiyi V7T,
X = HCxuCgiUT, - (6)

In equation 6 we have included the scaling factors CyY and Cpf so that
Y accounts for as much variance as Y. If X =Y, then G = H, V=Uand
X = HCxuCyUT = HUT, which implies® that Cxy = Cyv = Cxx. The
singular value decomposition extension coeflicients can be expressed in terms
of the spatial SVD patterns and the original data, VT = HTX, and the first
equations in 6 can therefore be expressed as:

Y =GaMCzy VT,
Y = GMC3LHTX = ¥X, (7)

where M = Cxy. The SVD time series, U and V, have similar variance
as Y and X respectively, and the singular vectors (spatial patterns) satisfy
GTG = HTH = I. The expression for ¥ can be obtained from equation 7,
where ¥ = GMCxxH*. The Matlab script cmpsvd.m estimates the SVD
products and the linear model ¥. The optimal predictor combination was
found, as in Benestad (1998a), by a screening method where only the EOFs
that increased the cross-validation correlation scores were included in the
optimal models. ' ' ‘

3XTy =Ty - X =U - XTX =UTU.
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3 SST Models

Two types of SST models will be discussed here. The first kind is a model
calibrated with regional SSTs covering the area 10°W to 40°E and 55°N to
75°N, which will be referred to as the 'Nordic Seas model’, including SSTs
from the North Sea, Barents Sea, the Norwegian Sea, Skagerrak, Kattegat,
and the Baltic Sea (figure 4). The second model type covers a larger area,
90°W to 40°E and 15°N to 80°N, and is called the 'North Atlantic model’,
although the North Sea, Mediterranean, the Black Sea, the Labrador Sea,
the Barents Sea, the Norwegian Sea, Skagerrak, Kattegat, the Baltic Sea,
and Hudson Bay also are included (figure 13).

Figures 2 and 3 show the cross-validation predictions for two SVD models
which included different EOF combinations as predictors in the model cal-
ibration and prediction. The results from the optimal SVD model, i.e. the -
SVD model based on the EOF combination which gave the maximum corre-
lation scores for the best of model prediction of the 24 stations, are shown in

figure 2. The results of an SVD model using the same optimal EOF combina-

tion as the corresponding optimal CCA model described in Benestad (1998a),
henceforth referred to as the CCASVD model, are shown in figure 3. Table 1
indicates that the predictions of the optimal SVD model included EOFs 1, 2,
5, 10, 11, 18 and 19 while the corresponding optimal CCA model was based
onEOFsl 2, 3,6, 7 and 8.

The best predlctlons of the January SVD model was found for stations
with continental climate type such as Oslo and Flisa (figures 4 and 6, left
panel) while the CCASVD and the CCA models gave best predictions for
Ferder fyr which has a coastal climate (figure 4 and 6, right panel). The
CCA technique identified the stations and SST patterns with the highest
correlation, which in this case were the SST anomalies in Skagerrak and
Kattegat and the adjacent coastal temperatures (figure 6, right panel), and
did not take into account the strength of the signal. The SVD models,
on the other hand, put more emphasis on the strong signals and was less
sensitive to weak signals with high correlation. The CCASVD model was a
hybrid between the CCA and SVD model, using the SVD technique to find
the patterns with maximum covariance, given the the optimal CCA EOF
predictor combination.

The fact that the CCASVD model produced best predictions for the
Ferder fyr and the SVD model obtained best scores for Flisa suggests that
SST anomalies in different regions were connected with the temperatures
in different parts of Norway. The difference between the leading SVD and
CCASVD predictor patterns is shown in figure 5 (bottom panel), and the
geographical shift in prediction skill appeared to be associated with small
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scale SST anomalies south of Svalbard, along the Barents Sea coast of Kola, in
the Baltic, and more extensive SST anomalies north of Scotland. The coastal
SST anomalies may have been a result of upwelling due to the local wind
direction, and the fact that these were only small scale features also suggest
that they had little significance for the Norwegian January temperatures. It
seems more likely that the extensive SST anomalies north of Scotland affected
the Norwegian temperatures. However, the question of causality can only be
resolved through numerical experlments employing physical and dynamical
models.

The January SST CCASVD model scored lower with respect to the cor-
relation skill (Ferder fyr: 0.65) than the corresponding CCA predictions for
the same location and based on the same predictor combinations (Benestad
(1998a): r=0.72). The January CCA predictions were associated with 60%
(Ferder fyr) of the total variance at Ferder fyr while the SVD predictions ’ac-
counted’ for 61% (in Oslo) and the CCASVD model described 89% (Ferder
fyr).

It is apparent from the Nordic Seas SST model results that the SVD
model gave high prediction scores for only one or two of the stations while the
CCA method produced skillful predictions for several locations (figures 6, 10
and 14). Furthermore, the ’worst’ predictions of several of the SST SVD
models were associated with negative cross-validation correlation coefficients
while only the October SST CCA models gave such bad predictions. The dif-
ference in worst correlation scores between the SVD and CCASVD models for
January temperatures was due to the different predictor combinations in the
optimal CCA and SVD models, as the CCASVD (figure 6) gave correlation
scores which all were higher than zero. ‘

A closer inspection of figures 2 and 3 shows that the January Nordic
Seas CCASVD prediction for Ferder fyr in figure 3 captured most of the cold
anomalies while the SVD model underestimated the cold event in Oslo (fig-

“ures 2). The warm months in the 1970s were well captured by the CCASVD
model for Ferder fyr but the SVD models underestimated the high temper-
atures in Oslo. The SST Nordic Seas SVD predictions for April captured
most of the cold anomaly at As, but nevertheless gave mediocre overall cor-
relation and RMSE scores (figure 7). In July, the SVD model produced best
prediction for Oppstryn, but the prediction could only ’account for’ 22% of
the temperature variability (figure 8). The October prediction for Oksgy fyr,

~ shown in figure 11, *described’ nearly 100% of the variability, although the
model did not predict the cold events at the right times and the correlation
and RMSE skill scores were low.

Although the correlation score for the best January SST SVD model pre-
diction was higher than the best CCASVD score, the mean cross-validation
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shown with the observations (black solid line).
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Figure 3: Same as figure 2, but using the same EOF combination as the
corresponding optimal CCA model. The time series represents the January
temperatures from Ferder fyr, as opposed to Oslo in figure 2.
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Figure 4: The mean leading January SVD GISST2.2SST pattern associaled
with the land surface temperature. The left panel shows the SVD pattern flor
the optimal SVD model while the right panel shows the CCASVD predictor

pattern.
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Figure 5: The difference between the two predictor patterns (The right patel
minus the left panel) in figure 4 may indicate in which locations the S8T
anomalies determine whether the models are optimised for Ferder fyr or

Oslo.
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The 1st SVD waights of the station data

The 15t SVD weights of the station data
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Figure 6: The mean January predictand weights shown in filled bars for the
land surface temperatures. The correlation results from the cross-validation
analysis are given on the right hand side. The left panel shows the results
for a model optimised for the SVD method while the right panel shows the
result for a corresponding model using CCA optimised predictor combina-

tion (Benestad, 1998a). The cross-validation correlation, proportional vari-

ance and root mean squared error scores are given for each station on the

right.
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correlation coefficient for all the January Nordic Seas SST SVD predictions
in figure 6 were marginally lower than the mean score for the CCASVD pre-
diction (Fsg = 0.36 and Trgpa = 0.37, with standard deviations of s=0.19
and s=0.14 respectively). The corresponding January mean CCA correlation
scores for the same stations was 7oy = 0.54 (Bengstad, 1998a) with a stan-
dard deviation of s=0.10, which suggests that the CCA model predictions
had substantially higher correlation skill than both the SVD and CCASVD
models. A simple Student’s T-test ( Wilks, 1995, p.123) confirmed that the
mean January CCA correlation scores were higher than the corresponding
mean SVD and CCASVD scores at a 95% confidence level (Student’s T-test
scores of z=4.8 and 4.1 respectively, where a score higher than 2.0 is the
criterion for 95% probability that the mean values are different). The same
parametric test also revealed that the mean January CCASVD model corre-
lation skill was not s1gn1ﬁcan’cly higher than the January mean SVD model
skill.

The SVD SST models gave lower correlation scores than the CCA models
in April and July (figures 7 and 8). The significance test of the station mean
correlation scores gave Student’s T-test scores of z=6.9 for April and z=5.6
for July (April: 7Topg = 0.12 and Torg = 0.45, s, = 0.16 and s..o = 0.17;
July: Tyoq = 0.06 and Togg = 0.28, Sg¢ = 0.17 and s¢e = 0.09) indicating sig-
nificantly greater CCA correlation scores. On the other hand, the statistical
significance of the difference between the mean correlation scores of the SVD
and CCA models for October did not exceed the 95% level (Tog = —0.02
and Teeq = 0.07, with standard deviations of 0.16 and 0.22 respectively, and
Student’s T-test score of z=1.6).

The January Nordic Seas CCA model ’could account’ for 43% (s=8%) of

_the station mean variance, compared to 54% (s=31%) for the SVD model and

71% (s=40%) for the CCASVD model. Although the SVD models in general
predicted more realistic mean variance for all stations, the standard devia-
tion was greater than those for the CCA predictions, making the SVD and
CCASVD prediction of the variance for single stations more uncertain than
the CCA predictions. Student’s T-test statistical significance tests revealed
that only the CCA and CCASVD January mean variance predictions were
different above the 95% significance limit (z=3.33), and that the January
mean variance difference between the SVD and CCASVD (z=1.64) was only
significant to the 89% confidence level and the SVD-CCA mean difference
(z=1.65) to the 90% limit ( Wilks, 1995, Table B.1). The same analysis for
October (figure 14, left panel) revealed 51gn1ﬁca,ntly different values for mean
variance of the CCA and SVD predictions (s2,; = 101% and sZ, = 23%,
with standard deviations of 77% and 7% respectively, and Student’s T-test

score of z=4.7). '
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Figure 7: Same as figure 2, but for the April month The time series represent

the temperatures from As
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Figure 8: Same as figure 2, but for the July month. The time series represent
the temperatures from Oppstryn.




DNMI Klima: Linear Statistical Downscaling Methods 14

SST: Mean Predictor SVD pattem SST: Mean Predictor SVO pattem

80~
l FE—-

Latitude

0 15 20 25 30 3B 40 0 15 2 25 3 35 4
Longitude Longitude

Figure 9: The mean leading April (left) and July (right) SVD GISST2.2 S4T
predictor pattern associated with the land temperatures.
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Figure 10: The mean April (left) and July (right) predictand weights shuwn
in filled bars for the land surface temperatures. The correlation results ffom
the cross-validation analysis are siven on the right hand side.
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Correlation=0.44 (95% conf =0.32) Propontional variance =107.0% RMSE=0.36
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Figure 12: Same as figure 2, but for the North Atlantic January SST model.
The time series represent the temperatures from Flisa.
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Figure 14: Same as figure 10, bui showing the results for the October Nokdic
Seas (left) and January North Atlantic (right) models.
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Figure 12 shows the prediction for Flisa using the North Atlantic January
SVD SST model, which gave slightly lower correlation skill for Flisa tempera--
tures (r=0.70) than corresponding CCA model (r=0.75). The leading North
Atlantic January SST predictor pattern is shown in figure 13 (right panel), .
and a comparison with the corresponding CCA predictor (Benestad, 1998a)
pattern revealed similar spatial structures for the two models. The SVD pre-
diction was also associated with smaller variance and higher RMS error than
the corresponding CCA prediction (SVD: r=0.70, s*=52%, RMSE=0.40°C
figure 14; The CCA correlation score was 0.75, s*=66%, RMSE=0.37°C).

In summary, SVD and CCA SST techniques revealed similar spatial struc-
tures for the leading predictor patterns, and models based on both methods
were associated with highest prediction scores in January. Neither the SVD
nor the CCA models were able to predict July and October temperatures
‘very well. The CCA models was superior to the SVD models for all seasons,
but the-CCA SST model had some skill during April when the SVD model
skill was negligible. The low prediction scores during summer and autumn
reflects the weak connection between the SSTs and the land temperatures
during these seasons. A physical explanation for a seasonally varying SST
influence on the monthly mean temperatures may be that the advection of
warm air from maritime regions is an important warming mechanism during
January with strong atmospheric circulation and that variations in local ra-
diation budget (clouds) is the dominant term during the seasons when the
atmospheric circulation is weak. It is also possible that the atmosphere-ocean
coupling is weaker during summer and autumn, however, persistence stud-
ies of air temperatures (south of Labrador Sea) suggest strongest coupling
during April, not in January (Bhatt et al., 1998). ’ ,

The smaller SVD predictand and predictor weights than the correspond-
ing CCA weights reflect the fact that in the SVD analysis the spatial patterns
are normalised and the time series account for the signal variance, while for
the CCA it is the time series which are normalised and the spatial patterns
which describe the signal variance.

4 SLP Models

4.1 - The NMC ds195.5 models

The cross-validation results for the NMC SLP SVD models are shown in
figures 15 to 23. Although the scores suggest that the SVD models were
skillful with correlation scores higher than 0.66, they were inferior to the
CCA models with respect to correlation scores and RMS errors. (Highest
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Corralation=0.75 (85% cont =0,38) Proportional variance =57.4% AMSE=0.23 " Gormelation=0.66 (95% cont =0.41) Proportional variance =53.5% RMSE=0.19
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Figure 15: Time series of predicted January (left) and April (right) temper-
atures (dashed) at Bodg (left) and As (right), employing the cross-validation
method with NMC SLPs, shown with the observations (black solid line).
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Figure 16: The mean leading January (left) and April (right) SVD NMC

SLP patterns associated with the land surface temperatures.
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Figure 17: The mean leading January (left) and April (right) weights from
‘the cross-validation analysis shown in filled bars indicate the mean SVD
predictand weights for the land surface temperatures. The empty black boxes .
show the weights from a model trained on the whole time series. The error
bars indicate the standard deviation and hence the spread in samples of
each coefficient. The correlation results from the cross-validation analysis

are given on the right hand side..
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Figure 18: Time series of predicted July temperatures at Tromsg. (left)
and October temperatures at Vardg (right), employing the cross-validation -
method with NMC SLPs. Predictions are shown as dashed lines and obser-
vations as solid line. ' '
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Figure 19: Same as figure 16, but for the July (left) and October (right)
NMC SLP models.
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Figure 20: Same as figure 17, but for the July (left) and October (right)
NMC SLP models.
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scores for January: rye = 0.75 (Bodg, figure 15, left panel), r, = 0.91
(Lista); April: rsq = 0.66 (As, figure 15, right panel), re, = 0.67 (Flisa);
July: 75q = 0.68 (Tromsg, figure 18, left panel), re, = 0.79 (Hellisgy fyr);
October: 7,4 = 0.78 (Vardg, figure 18, right panel), 7., = 0.88 (Tromsg)).
The leading January SVD SLP predictor pattern (figure 16, left panel) re-
sembled the corresponding CCA pattern, but the April SVD pattern had
much less north-south dipole character than the corresponding CCA struc-
ture (figure 16, right panel). Furthermore, the main features in the leading
SVD predictor patterns for July and October were different to their CCA
equivalents. The July CCA pattern described largest anomalies north of
Scotland when the SVD predictors indicated strongest variability over Scan-
dinavia (figure 19, left panel). In October, the primary feature in the CCA
predictor structure was the large weights over the British Channel, but the
SVD results where characterised by strongest anomalies over eastern Green-
land and Iceland (figure 19, right panel).

The different leading predictor field features may suggest that more than
one SLP pattern has a connection with the Norwegian temperatures. It was
shown in Benestad (1998a) that several SLP patterns had high correlation
with the Norwegian temperatures (at different locations). -

The January and October models gave high correlation scores for several
locations while only one station of the April and July predictions obtained a
cross-validation coefficient above 0.60 (figures 17 and 20). The worst January
CCA prediction was found at Vardg with r=0.00, while the SVD model
also made worst prediction for Vardg, but with a higher correlation score of
r=0.28. The worst SVD cross-validation correlation scores for April, July and
October, however, were lower than those of the corresponding CCA models.
The large skill score differences between the stations may indicate that the
models only were good over limited regions. In April, July and October the
CCA model predictions were less ’sensitive’ to the location and in January
more sensitive than the SVD predictions. The July SVD predictions for
Tromsg were associated with a -small leading predictand weight which was

not significantly different from zero. Both the CCA and SVD October models

gave best predlctlons in the north.

4.2 The UEA models

Figure 21 shows the predictions ﬁsing an SLP model based on the UEA |

data for January (left panel) and July (right panel). The analysis of the
cross-validation results demonstrated that UEA model had lower skill scores
than for the corresponding NMC model predictions, although the best UEA

predictions were for Nesbyen and Flisa while the best NMC predictions were v
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Correlation=0.61 (95% conf =0.35) Proportional varianca =62.4% RMSE=0.48
T T T

- Correlation=0.58 (85% conf =0.28) Proporiional variance =88.0% RMSE=0.16
T T

151— T 4— T T
3 J
10 1
8 2} ]
9
o
1 | -
g ° g
Wk ]
z & x
& * 4
z 8
2 of * 1 s of 4
3
< e
9 2
. ]
5 sl 4
[4 =
2
5
- 24 4
10} 4
3k i
.
-15 L . L L ” L L 1 n
1016 1830 1043 1957 o 1984 1916 1930 1043 1087 1071 1084
. Time : Time
eof~Jan-vea~msip.nc eof-Jul-uea-msip.nc

Figure 21: Time series of predicted January temperatures at Nesbyen

(left) and July temperatures for Flisa

(right), employing the cross-validation

method with UEA SLPs. The predictions are shown as a dashed line and

the observations as a solid line.
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Figure 22: The mean leading January SVD UEA SLP pattern associated

with the land surface temperatures.
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Figure 23: Same as ﬁgure 17, but for the January (left) and July (right) UEA
SLP models.

found at Bod¢ and Tromsg.

Both January SVD and CCA SLP predlctor pattern had strong weights
over Iceland, however, the SVD pattern also included weights with oppo-
site polarity and maximum weights over the British Channel (figure 22, left
panel). In July, the UEA SVD predictor pattern, shown in the right panel
of figure 22, described a prominent west-east dipole pattern with strongest
anomalies over Iceland while the corresponding CCA pattern indicated a

~ combination of a north-south and east-west dipoles with maximum weights
over Scandinavia. The best UEA SVD SLP model prediction scores were
systematically lower than the best scores of the corresponding CCA models
(figure 23 and table 2; ref Benestad (1998a)), and the locations with the high-
est correlation scores were different for the SVD model and the CCA model.
In July, the CCA model gave best predictions at Flisa with r=0.79 and a
variance score of 73% while the SVD model was associated with a lower
correlation score (Flisa: r=0.58) but a better description of the tempera-
ture variance (88%). The January SVD UEA SLP model, on the other hand,
only 'reproduced’ 62% of the temperature variability at Nesbyen (Glomfjord:
330%) while the CCA model could ’account for’ 86% at Glomfjord (Nesbyen:
65%).
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Figure 24: Time series of predicted January temperatures at Leerdal (left)
and April temperatures for Bergen (right), employing the cross-validation
method with NMC z(500hPa). The predictions are shown as a dashed line
and the observations as a solid line.
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Figure 25: The mean leading January (left) and April (right) SVD NMC
z(500hPa) patterns associated with the land surface temperatures.
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Figure 26: The mean leading January (left) and April (right) predictand
weights for the land surface temperatures. The empty black boxes show
the weights from a model trained on the whole time series. The error bars
indicate the standard -deviation and hence the spread in samples of each

coeflicient.

given on the right hand side.

Correlation=0.57
T

(85% cont =0.33) Proportional variance =109,9% RMSE=0.18

-3
1943

The correlation results from the cross-validation analysis are

Correlation=0.54 (95% conf =0.35) Proportional variance =265.7% RMSE=0.39
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Figure 27: Time series of predicted July temperatures at Bergen (left) and

October temperatures for Vernes (right), employing the cross-validation
method with NMC z(500hPa). The predictions are shown as a dashed line

and the observations as a solid line.
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Figure 28: The mean leading July SVD NMC z(500hPa) pattern associated
with the land surface temperatures..
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Figure 29: Same as for figure 32, but for the July (left) and October (right)
NMC 500 hPa geopotential height models.
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5 Geopotential Height Models

" The results from the cross-validation predictions using the NMC ds195.5 500

hPa geopotential height, z(500hPa), as predictors are shown in the figures 24
to 29, and it is evident that the SVD z(500hPa) models were capable of
predicting most of the temperature variability. The correlation scores were
lower than for the CCA models, and the variance of the best prediction
(Leerdal: 112%, figure 24 left panel) was slightly too high for January and
74% in Bergen for April (figure 24 right panel). The January, April, and
October leading predictor patterns (figure 25 and figure 28, right panel) were
similar to their corresponding CCA patterns ( Benestad, 1998a), but the SVD
July predictor pattern (figure 28, left panel) differed from the corresponding
CCA pattern by showing stronger weights over eastern Russia and weaker
weights over the North Atlantic.

The July SVD prediction for Bergen, shown in the left panel of figure 27,
indicates a slight overestimation of the variance while the predicted variance
for the October prediction was almost too large by a factor of 3. The cross-
validation correlation skills were systematically lower than the scores of the
corresponding CCA models (figures 26 and 29).

6 The 500hPa Temperature Models

The 500hPa temperature models were not discussed in Benestad (1998a)

because the model calibration period was too short?, as the 500hPa tem-
perature record started as late as 1962 and the calibration period stopped
in 1978 when the Skomveer fyr record ended®. The SVD models are not as
restricted by the calibration record length as the CCA models, and it was
possible to test SVD models based on the 500hPa temperature despite the
short time series. : '_

In general, the SVD T(500hPa) cross-validation prediction scores were

‘high, and the 500hPa temperature fields were promising for the use of down-

scaling although longer calibration and cross-validation periods may modify
these scores (table 3). The predictions in figures 30 and 33 demonstrate
that the SVD T(500hPa) models captured the most important surface tem-
perature anomalies, although the extreme values usually were exaggerated
or underestimated. The leading SVD predictor patterns, shown in figures 31

4The estimate of the square root of the covariance matrices become complex (Benestad,
1998a). ' '

5By only including stations with observations up to present, the calibration period for
the 500hPa temperatures may be sufficiently long for use in CCA models.
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Figure 30: Time series of predicted January temperatures at. Laerdal (left)
and April temperatures for Ona (right), employing the cross-validation
method with NMC T(500hPa). The predictions are shown as a dashed line

and the observations as a solid line.
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T(500hPa) patterns associated with the land surface temperatures.
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The 15t SVD weights of the station data
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“Figure 32: The mean leading January (left) and April (right) predictand
weights for the land surface temperatures. The empty black boxes show
the weights from a model trained on the whole time series. The error bars
indicate the standard deviation and hence the spread in samples of each
coefficient. The correlation results from the cross-validation analysis are

given on the right hand side.
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Figure 33: Time series of predicted July temperatures at Ferder fyr (left) and
October temperatures for Ferder fyr (right), employing the cross-validation
method with NMC T(500hPa). The predictions are shown as a dashed line

and the observations as a solid line.
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Figure 34: The mean leading July SVD NMC T(500hPa) pattern associated

with the land surface temperatures.
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and 34, had largest weights over Scandinavia, suggesting that the monthly
mean temperatures had a significant' “barotropic” structure below the 500
hPa level. The prediction scores for the different stations in figures 32 and 35

indicated large differences between the correlation scores of the ’best’ and .

‘worst’ station. In January, the highest correlation score was found at Leerdal
with r=0.87 and lowest correlation at Rgros with r=-0.34. The 'worst’ pre-
dictions were found at Tromsg and Skomveer fyr in April (r=-0.16), Lista fyr
in July (r=-0.29), and Utsira fyr in October (r=-0.61). It is unlikely that
the low prediction scores are a result of non-barotropic temperature struc-
tures due to local inversion. The most probable explanation for the bad
predictions for a number of locations may be that maximising the covari-
ance between temperatures of some ’privileged’ stations and the large scale
patterns causes a reduction in prediction skill of the predictands at the ’less
privileged’ stations. The SVD predictions were in other words sensitive to

the location.

7 Discussion

A number of SVD models were constructed and their prediction skill scores
were analysed. The main conclusion from the analysis was that the SVD
models in general gave similar results as the CCA models discussed in Ben-
estad (1998a). However, the CCA model cross-validation correlation scores
were systematically higher than the SVD correlation scores, which is not
surprising as the CCA models are optimised with respect to the correlation
between the predictands and predictors.

Differences in the leading SVD and CCA predictor SLP patterns suggest
that more than one SLP structure are important for the Norwegian temper-
atures. Likewise, several types of geopotential height anomalies were related
to Norwegian surface temperature anomalies.

The station mean variance of CCA predictions were usually lower than
the mean variance predicted by the SVD models which were closer to 100%,
however, the SVD predictions were associated with large uncertainties for

“the prediction of variance at single stations, especially at stations with low

cross-validation correlation scores. The SVD models may therefore only give
a good prediction of the mean temperature variance for the whole of Norway
when used for downscaling of a future global climate change scenario. The
CCA models, on the other hand, may be more appropriate for the prediction
of the variance at specific locations, but will not account for all the temper-
ature variability. It is dangerous to scale the predicted variance according to
the ratio of predicted-to-observed variance during the calibration or cross-
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Table 1: Model scores

32

Smallest correlation

EOFs Maximum correlation Minimum RMSE’
included location (independent data) (predictand) (*Worst prediction’)
Regional SST Optimal CCA predictors January CCASVD
123 FERDER FYR HELLIS@Y FYR BOD®
678 r= 0.65 r= 0.44 r= 0.04
, . rmse= 0.3 rmse= 0.2 rmse= (.4
Regional SST Optimal SVD predictors January
125 OSLO - BLINDER | HELLIS@Y FYR TROMS®
10 11 18 = 0.68 . r=0.51 r=-0.16
19 rmse= 0.29 rmse= 0.22 rmse= 0.34
Regional SST Optimal SVD predictors April
124 AS VARD® ABJ@RSBRATE
7 r= 0.47 r=0.11 r=-0.24
, rmse= 0.40 rmse= 0.24 - rmse= 0.55
Regional SST Optimal SVD predictors July .
123 OPPSTRYN SKOMVZAR FYR LISTA FYR
46 r= 0.43 r= -0.03 r= -0.39
rmse= 0.26 rmse= 0.25 rmse= 0.44
Regional SST Optimal SVD predictors October _
17 OKS@Y FYR SKOMVZAR FYR | KIOREMSGRENDI
r= 0.44 r= 0.17 r=-0.29
rmse= (.36, rmse= (.22 rmse= 0.60
Norh Atlantic SST | Optimal SVD predictors January
126 FLISA VARD® HELLISOY FYR
8911 r= 0.70 r= 0.46 r= 0.23
rmse= (.40 rmse= 0.22 rmse= (.28
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Table 2: Model scores

- 33

EOFs " Maximum correlation Minimum RMSE Smallest correlation
included location (independexit data) {predictand) ("Worst prediction’)
NCAR SLP Optimal SVD predictors J anuary :
145 OKSQOY FYR SKOMVZER FYR VARD®
789 r= 0.72 ' r= 0.63 r= 0.37
11 13 20 rmse= 0.23 rmse= 0.16 rmse= 0.21
NCAR SLP Optimal SVD predictors Apl'll :
123 ONAII ONATII UTSIRA FYR.
8910 r= 0.48 r= (.48 r=-0.13
11 rmse= 0.11 - rmse= 0.11 rmse= 0.18
NCAR SLP | Optimal SVD predictors July :
1236 ABJORSBRATE | NESBYEN - SKOG ONAII
8910 r= 0.61 r= 0.56 r= 0.06
12 13 15 rmse= 0.16 rmse= (.16 ‘rmse= 0.18
NCAR SLP Optimal SVD predictors - October
123 . ONA II ONAII NESBYEN - SKOG
456 r= 0.77 r= 0.77 r= 0.34
7819 rmse= (.12 rmse= 0.12 -rmse= (.21
NMC SLP Optimal SVD predictors January
1234 BOD® VI HELLIS@Y FYR VARD®
5678 r= 0.75 r= 0.67 r= 0.28
91719 rmse= 0.23 rmse= (.19 rmse= (.26
NMC SLP Optimal SVD predictors April
137 AS UTSIRA FYR BERGEN - FLORI
8911 r= 0.66 r= 0.21 r= -0.27
15 16 rmse= 0.19 rmse= (.17 rmse= (.27
NMC SLP Optimal SVD predictors - July
123 TROMSQ UTSIRA FYR OSLO - BLINDER
7810 r= 0.68 r= 0.41 r= 0.11
rmse= 0.25 rmse= 0.18 rmse= (.41
NMC SLP Optimal SVD predictors October ”
124 VARDQ ONA II AS
5710 r= 0.78 r= 0.64 r= 0.08
15 20 rmse= 0.17 rmse= 0.16 rmse= (.32
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Table 3: Model scores

EOFs Maximum correlation Minimum RMSE Smallest correlation
included location (independent data) (predictand) ("Worst prediction’)
UEA SLP Optimal SVD predictors J anuary
134 NESBYEN - SKOG ONAII SKOMVZAER FYR
: r=0.61 " r=0.42 r=0.03
rmse= 0.46 rmse= 0.35 rmse= 0.37
UEA SLP | Optimal SVD predictors - April -
123 ONAII ONAII UTSIRA FYR
469 r= 0.58 r= 0.58 r= -0.06
19 rmse= 0.11 rmse= 0.11 rmse= 0.17
UEA SLP | oOptimal SVD predictors July
123 FLISA "FLISA OKS@Y FYR
479 r= 0.58 r= 0.58 - r=0.14
14 rmse= 0.16 rmse= 0.16 rmse= 0.19
{ UEA SLP Optimal SVD predictors October
123 BOD@ VI OKS@Y FYR UTSIRA FYR
456 1= 0.82 r= 0.66 r= 0.39
789 rmse= 0.14 rmse= 0.12 rmse= 0.13

validation period because the variance discrepancy reflects the part of the
temperature signal which is not related to the predictor®. One possibility
~ may be to represent the predictands, Y, as the sum of the contribution from
the large scale circulation and a stochastic (first-order Markov chain) term,
n, according to Y = X + 5, and that the stochastic term accounts for the’
- remaining of the variance in the cross-validation results. It is possible that
the variance explained by the n-term may change with a global warming,
and the question whether the stochastic term is statlonary is one source of
uncertainty for this kind of modelling.

Although the October SSTs appeared to be unconnected with the Nor-
wegian temperatures, the October SVD predictions ’described’ nearly 100%
of the total variance. It is questionable whether the October SVD predic-
tions of the temperature variance are credible, and this issue ought to be
resolved before the SVD are to be used as downscaling models for future
chmate change scenarios.

6In fact, we learned from the cross-validation results that part (about a half) of the
temperature variability was unrelated to the predictands. There is no guarantee that in a
global warming situation the variance due to this unrelated part will change proportionally
to the related part.
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Table 4: Model scores
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rmse= (.16

EOFs Maximum correlation Minimum RMSE Smallest correlation
included location (indépendent data) (predictand) ("Worst prediction’)
‘NMC <I>(500hPa) Optimal SVD predictors January :
123 LARDAL - TON LISTA FYR ROROS
6 18 1= 0.72 r= 0.52 r= 0.09
rmse= 0.35 rmse= 0.35 rmse= 0.74
NMC ®(500~hPa) | Optimal SVD predictors April
124 BERGEN - FLORI ONA 11 SKOMVZAR FYR
568 r= 0.68 r= 0.53 r=0.10
91112 rmse= (.15 rmse= 0.13 rmse= 0.19
NMC <I)(500hPa) Optimal SVD predictors July
156 BERGEN - FLORI | BERGEN - FLORI VARD®
10 13 r= 0.57 r= 0.57 r=-0.22
rmse= (.18 rmse= 0.18 rmse= (.40
NMC ®(500hPa) | Optimal SVD predictors October
114 VAERNES HELLIS@®Y FYR UTSIRA FYR
r= 0.54 r= 0.17 r= -0.49
rmse= 0.39 rmse= (.23 rmse= 0.35 .
NMC T(500hPa) Optimal SVD predictors Januar :
124 LARDAL - TON LERDAL - TON ROROS
6 10 20 r= 0.87 r= 0.87 r= -0.34
rmse= (.42 rmse= 0.42 rmse= 1.48
NMC T(SOOhPa) Optimal SVD predictors Apl‘ll
136 ONA I ONA I TROMS®
89 r= (.86 r= 0.86 r=-0.16
rmse= (.22 rmse= (.22 rmse= (.32
NMC T(E)OOhP&) Optimal SVD predictors July o
123 VARD® HELLISQY FYR | LISTA FYR
r= 0.85 r= 0.20 r= -0.29
rmse= (.35 rmse= 0.25 rmse= (.43
NMC T(500hPa) | Optimal SVD predictors October :
168 FERDER FYR FERDER FYR UTSIRA FYR
10 r= (.81 r= 0.81 r= -0.61
rmse= 0.16 rmse= (.41
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Table 5: Summary of best model skills for the different models and different

| ‘seasons. The score should ‘not be directly compared as the location with
highest scores varied with model and seasons. The cross-validation period

for the NMC models was shorter than the for the other models, which may
also give misleading results in a model score comparison.

| [ Month | Local sST | NCAR sLP | NMC sLP | uBA SLP | NMC & | NMC Tsoonpa | Max/Min ||

| Jan 0.68 0.72 0.75 0.61 0.72 0.87 | 0.87/06l

‘ . Apr 0.47 0.48 0.66 0.58 0.68 0.86 0.86 / 0.47
Jul 0.43 0.61 0.68 058 | 057 0.85 0.85 / 0.43
Oct 0.44 0.77 0.78 0.82 0.54 ’ 0.81 0.82 / 0.44
avg. 0.51 0.65 0.71 0.65 0.63 0.85

Table 6: Summary of best CCA model skills for the different models and

different seasons. The score should not be directly compared as the location

with highest scores varied with model and seasons. The cross-validation

period for the sea ice models and the NMC models was shorter than the for
| the other models, which may also give misleading results in a model score
| comparison. ’ ‘

Month | Local SST | N.Atl. SST | NCAR SLP | NMC SLP | UEA SLP | NMG Z | Max/Min
| Jan 0.72 0.75 0.84 0.91 0.89 091 | 0.89/0.64
| Apr 0.65 0.66 0.66 0.67 0.60 0.81 | 0.82/0.60

Jul 0.61 0.48 0.72 ‘ 0.79 0.79 0.89 0.90 / 0.48
Oct 0.48 - 0.37 0.86 088 0.83 093 | 0.94/037
avg. 0.62 057 0.77 0.81 0.78 0.89

Table 7: Summary of 24-station mean model skills for the different models

shorter than the for the other models, which may also give misleading results
in a model score comparison.

[ Month | Local sST | NCAR SLP | NMC sLP [ UEA SLP | NMC = | NMC Tsoonpa | Max/Min

| and different seasons. The cross-validation period for the NMC models was
|
|

Jan 0.36 - 059 Q.54 0.29 0.35 0.38_ 0.59 / 0.29
Apr d.12 0.23 - 033 - 0.27 0.42 0.25 0.42 / 0.12
Jul 0.06 0.38 0.33 0.37 0.14 0.20 0.38 / 0.06
Oct -0.02 0.55 0.44 0.57 0.05 0.13 ) 0.;’;7 / -0.02
avg. 0.13 - 0.44 0.41 0.38 0.23 0.24
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Table 5 summarises the main model results, showing greatest correlation
scores for the different models and different seasons. For comparison, the
corresponding CCA results are shown in table 6. The SST, geopotential
and T(500hPa) models produced the best predictions during January. The
SLP models were the least skillful during April while the best skill scores
of the SST, z(500hPa) and T(500hPa) model dipped to a minimum during
October. A summary of the 24-station mean values is shown in figure 7.
The average scores should not be taken too literally because the stations
are distributed unevenly in space. However, a comparison between table 5
and table 7 illustrates how the maximum scores are unrelated to the average
scores. In other words, some models may give very good predictions over a
small region but nevertheless give a poor description of the climate for other
parts of Norway. This was especially the case for the NMC 500hPa height
and temperature models.

The cases where the standard deviation of the correlation scores was high,
or the difference between the best and worst skill scores was of same magni-

“tude as the best skill score, suggested that the empirical models sometimes

only were good for limited regions. Thus, the large spread in prediction skill
may be interpreted as an indication that too many stations were included in
the predictand data set, and that different models ought to be used for differ-
ent parts of Norway. A physical explanation for this is that some circulation
patterns only affect the local climate in parts of Norway. Hanssen-Bauer &
Nordli (1998) have identified 6 climatic regions with respect to temperature
in Norway, and different models may be required for each of these regions.
The SVD models were found to be inappropriate for use in seasonal fore-
casting as they did not predict the timing of the large anomalies very well.
However, they may be useful for downscaling of future climate scenarios in
the sense that they are expected to produce similar results to the CCA mod-
els, but with greater uncertainties in the prediction of the signal variance
at some stations (some predictions described variances of up to 300% of the

- observed variability). A comparison between the results from downscaling of

future climate scenarios using the two techniques can give some insight into
the uncertainties associated with the empirical predictions.
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