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preface

When a meteorologist makes a forecast, and as the weather un-
folds, it will soon enough become clear whether the forecast was
useful or not. Checking if predictions agree with new observations
is a form of verification, which is an intrinsic part of meteorology.
But how does verification fit in with the process of developing mete-
orological knowledge? Are there alternative approaches available for
developing knowledge that do not require verification? How do you
make decisions that improve your weather forecast model? Should
you include changes to the model even if they can not demonstrate
any improvements? How do you know if your model has any pre-
diction skill at all? Can you choose any verification score, or even
create your own score? What happens if you develop and tune your
meteorological model using one verification score, and later use an-
other score when you compare it to other models? The purpose of
this handbook is to focus attention on the fundamentals in the de-
velopment of meteorological models using verification, and hint at
some answers to these questions.

This handbook starts with a discussion on different approaches to
accepting and improving knowledge. A general discussion on mod-
eling and model prediction skill follows, with special focus on the
relationship between model development and verification. A short-
list of meteorological verification scores, based on a comprehensive
list maintained by the Joint Working Group on Forecast Verification
Research, is presented at the end. The handbook also provides some
instructive exercises. The answers provided are not absolute, but
rather give an impression of how a meteorologist might respond to
the questions. To encourage critical thought, one of the examples in
this document reports a wrong decimal number.
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Explanations

We use the term explanation to describe a statement that reveals a pattern
in the real world, for instance “Thunder is caused by lightning”. An ex-
planation is often a response to a question of the type “why did something
happen?”, driven by the question “what will happen in the future?”. A
prediction is a statement about the future inferred from an explanation, for
instance if you observe a lightning strike, you could use your explanation to
infer the prediction that a clap of thunder could follow shortly.

Let us assume that you have an explanation, which you can use to make
predictions that can be observed. If the new observations are in disagree-
ment with your predictions, your explanation is falsified. Otherwise they
are by definition in agreement with your prediction and your explanation
is verified. To falsify an explanation is to expose a disagreement between
predictions and new observations, while to verify is to manifest an agree-
ment. The process of making predictions and checking whether they agree
with new observations is called verification, or sometimes falsification. The
purpose of verification is always to falsify, and we use the term validation if
the purpose is to verify. A verification score is a measure of how well new
observations agree with predictions. Prediction skill is a verification score
that can be related to some practical use. We say that an explanation has
prediction skill if it yields good prediction skill scores.

An independent observation will usually not agree exactly with a predic-
tion. Instead we associate each prediction with a probability distribution,
and if the probability of making an observation is unlikely according to the
distribution, we say that the observation disagrees with the prediction.
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Your explanation is falsified if the joint probability of making the
observations is extremely unlikely according to your predictions, oth-
erwise it is verified.

A correct explanation can only be verified, and never falsified. A valid
explanation has only been verified, and never falsified. An explanation
that has been falsified, is invalid. A set of valid, consistent and unified
explanations is called knowledge. A valid explanation that is consistent and
unified with accepted knowledge is said to be coherent.

Exercise 1: The moon ring

John sees a ring around the moon and says that it will rain tomorrow.

(a) What is John’s prediction?
(b) What is John’s explanation?
(c) How may John verify his explanation?
(d) If John’s explanation is verified, does that mean that it is correct?
(e) Can the explanation still be correct if it is falsified?
(f) Can John’s explanation have prediction skill?

Answer 1: The moon ring

(a) John’s prediction is that it will rain tomorrow.
(b) John did not provide any explanation.
(c) John could wait until tomorrow to see if it rains.
(d) No, you may never know if an explanation is correct.
(e) No, a correct explanation can never be falsified.
(f) Yes, it is of practical use to know if it will rain tomorrow.
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Exercise 2: Black sheep

A tourist on a train in Scotland observes a black sheep. He has ob-
served sheep in his homeland that are black or white.
Which of the following explanations are coherent?
(a) “Most sheep in Scotland are black.”
(b) “Cows look like black sheep in Scotland.”
(c) “All sheep in Scotland are white.”
(d) “Sheep in Scotland are black or white.”
(e) “Some sheep in Scotland are black on one side.”

Answer 2: Black sheep

(a) Coherent.
(b) Not coherent. Not unified.
(c) Not coherent. Falsified.
(d) Coherent.
(e) Not coherent. Not consistent.

Exercise 3: Public satisfaction

A score measures public satisfaction with a forecasting service.

(a) Is the score a verification score?
(b) Does the score measure prediction skill?

Answer 3: Public satisfaction

(a) No, the score depends on many other factors besides how well new
observations agree with the predictions from the forecasting service.
(b) No, the score is not a verification score and it is not related to
any practical use.
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Likelihood

A joint probability of making a set of observations according to predictions,
is called likelihood. Verification scores are usually designed to compare the
underlying likelihood of different explanations.

We say that an outcome is very unlikely if the likelihood falls below
∼ 10%, and extremely unlikely if it falls below ∼ 1%.

In order to estimate the likelihood, it is necessary to know the probability
distributions of the predictions. Statistics is a useful tool to estimate such
probability distributions, if it is possible to make reasonable assumptions
on random errors and error independence.

Law of large numbers

A simple statistical theorem which is often used in meteorology, is the Law
of large numbers. The law of large numbers states that as the number of
identically distributed, randomly generated variables increases, their sample
mean (average) approaches their theoretical mean.

But note that even if the sample mean is defined, the theoretical mean
does not always exist. If the theoretical mean does not exist, the sample
mean will not approach a fixed value as the sample size increases, but rather
keep varying as increasingly extreme values appear in the sample. We say
that a distribution has large “wings” if the probability of encountering ex-
treme values is significant.

4



Example 1: Undefined mean

In the following example, the theoretical mean, E(x), is undefined, as
the probability distribution, p(x), has too large “wings”,

p(x) =
1

π (1 + x2)∫ ∞
−∞

p(x)dx =
ArcTan(x)

π

∣∣∣∣∞
−∞

= 1

E(x) =

∫ ∞
−∞

x · p(x)dx =
Log(1 + x2t )

2π

∣∣∣∣∞
−∞

= undefined.

Meteorological systems may evolve in an non-linear manner, giving large
“wings” in the derived probability distributions. It follows that in meteo-
rology, you can never safely assume that there exists a theoretical mean.

Exercise 4: large “wings”

Assume that probability distributions with “wings” that fall faster than
1
x2

as x → ∞, have defined theoretical mean. Use a “small wing”
criteria like p(100)� 0.0001.
Which probability distributions have undefined theoretical mean?

(a) p(x) ∝ e−
√
x2

(b) p(x) ∝ x2

1+x4

(c) p(x) ∝ 1√
1+x2

(d) p(x) ∝ x4e−x
2

Answer 4: Large “wings”

(a) Mean is defined.
(b) Mean is not defined.
(c) Probability function is invalid since it can not be normalized.
(d) Mean is defined.
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Central limit theorem

The central limit theorem (CLT) establishes that, in situations when inde-
pendent random variables with a theoretical mean µ and standard deviation
σ are summed up, their normalized sum tends toward a Normal distribu-
tion even if the original variables themselves are not normally distributed.
For example, if a meteorological observation is affected by a number of dif-
ferent independent error processes within the same magnitude, then the
overall error distribution will have a Normal distribution. We may write
the probability distribution of the sum, x, as

p(x) =
1

σ̃
√

2π
e−

1
2

(x−µ̃)2

σ̃2

µ̃ = µ ·N
σ̃2 = σ2 ·N

where N is the sample size. The highest probability density is located at
the mean, x = µ̃. Note that the central limit theorem does not apply if the
theoretical mean of the independent random variables does not exist.

The probability of deviating from the mean of a Normal distribution
by less than 1 · σ̃ is very likely (68%), by more than 2 · σ̃ is very
unlikely (4%) while by more than 3 · σ̃ is extremely unlikely (0.3%).

Example 2: Binary events

For a binary (0 or 1) event with probability p, we have µ = p and
σ =

√
p2 + (1− p)2. For example, if you repeatedly throw 32 coins

on the table, the number of heads (p = 0.5) on each throw will follow
an approximate Normal distribution with mean µ̃ = 0.5 · 32 = 16 and
standard deviation σ̃ =

√
0.5 ·

√
32 = 4 Most times the sum will be

between 12 and 20, and it is extremely unlikely that it is less than 2
or more than 30.

Note that if the sum is scaled by 1
N

, making it the average x̄ = x
N

,
we have that µ̄ = µ and σ̄ = σ√

N
. Taking the limit as N → ∞ makes the

variation approach zero, σ̄ → 0, implying that x̄→ µ̄ = µ, and in agreement
with the law of large numbers.
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Exercise 5: Observation system

An observation system is subject to many independent and small error
sources with similar magnitude along the range of the instrument.
Precipitation is known to add a large bias to observations.
How will the error distribution change if:
(a) The range is doubled?
(b) There is a 50% chance of precipitation?

Answer 5: Observation system

(a) µ̃ increases by 100%, σ̃ increases by 40%.
(b) splits into two equal Normal distributions, one with a large bias.

Exercise 6: Event probabilities

An explanation predicts that there is a 20% chance of an event. An-
other explanation predicts a 80% probability. A sample of independent
observations consistently indicates a 35% chance of the event. Assume
Normal error distributions.

(a) Which sample size would have given a standard deviation of 15%?
(b) What is the likelihood for the 20% explanation in this case?
(c) What is the likelihood for the 80% explanation?
(d) Are the explanations falsified?

Answer 6: Event probabilities

(a) N = 28.
(b) The likelihood of the 20% explanation is 32%.
(c) The likelihood of the 80% explanation is 0.3%.
(d) The 80% explanation is falsified.
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Exercise 7: Multiple case studies

A meteorologist performs 10 case studies comparing predictions from
two explanations, and consistently observes a hit (first explanation is
best) in 70% of the cases. Assume that both explanations have the
same quality. Use a Normal probability distribution for the number
of hits.

(a) What is the expected number of hits, µ̃, and the standard devia-
tion, σ̃, according to the assumption?
(b) Is the assumption very unlikely given the observations?
(c) How many cases are needed before the assumption is extremely
unlikely?

Answer 7: Multiple case studies

(a) µ̃ = 5 and σ̃ = 1.6.
(b) The assumption is not very unlikely.
(c) The assumption is extremely unlikely if there are 130 cases.

Exercise 8: Verification period

Consider an event where one explanation scores better than another
over a verification period of one week. This independent event repeats
itself in the next consecutive weeks. Assume that both explanations
have the same quality. Use a Normal probability distribution for the
number of events.

(a) What is µ and σ?
(b) When is the assumption very unlikely?
(c) When is the assumption extremely unlikely?

Answer 8: Verification period

(a) We have µ = 0.5 and σ = 0.7.
(b) After 8 weeks.
(c) After 18 weeks.
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Accepting explanations

A set of observations may match several patterns in the real world, and
suggest several mutually exclusive explanations. The explanation that is
accepted has a special status as it can be promoted without further support.
There are many different approaches available for accepting explanations.

An approach for accepting explanations is defined by these method-
ological questions:

1. What is the purpose of the approach?
2. Which explanations can be considered?
3. Which explanation should be accepted?
4. When is the accepted explanation replaced?

The approach used to accept explanations in modern science is called
the scientific method, and is based on the legal principles, while the precau-
tionary principle is often used for environmental protection and Murphy’s
law is often used in engineering.

The scientific method

The scientific method is the principle method for the developing science.

The scientific method provides these methodological answers:
1. The purpose is to improve prediction skill.
2. Only consider explanations that can be falsified or verified.
3. The most coherent explanation is accepted.
4. The accepted explanation is not replaced until it is falsified.

The scientific method may appear conservative, in the sense that the
accepted explanations gravitate towards knowledge already accepted by the
scientific method. However, the primary focus of the scientific method is to
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falsify the accepted explanation, so that it can be replaced by an explanation
with an even better prediction skill.

Exercise 9: The most likely explanation

New observations are 1% likely according to the predictions from the
accepted explanation, while they are 99.9% likely according to predic-
tions from a new and spectacular explanation.

(a) Is the accepted explanation falsified?
(b) Should it be replaced by the spectacular explanation?

Answer 9: The most likely explanation

(a) Yes, the accepted explanation is falsified.
(b) No, it should be replaced by the most coherent explanation.

The precautionary principle

The precautionary principle is suitable for developing explanations for com-
plex systems like environmental protection, where it may be difficult to
falsify the accepted explanation.

The precautionary principle provides these methodological answers:
1. The purpose is to remove threats.
2. Consider any explanation posing a threat.
3. The explanation posing the greatest threat is accepted.
4. The accepted explanation is never replaced.

Unlike precaution, the precautionary principle is used to remove threats
that have never been verified before. Note that the precautionary princi-
ple does not require any verification, and the kind has a long history of
promoting faulty explanations with dire consequences.
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Exercise 10: Lead poisoning

Scientists suspect that Pb pellets are poisoning sea turtles. Sea tur-
tles have low Pb levels, but it is feared that these will increase over
time. Are the sea turtles being poisoned or not? Use the precautionary
principle.

(a) Which explanation should be accepted?
(b) When is the accepted explanation replaced?

Answer 10: Lead poisoning

(a) The accepted explanation is that the turtles are being poisoned.
(b) The accepted explanation is never replaced.

Exercise 11: Stable gas discharge

There are many stable and harmless gases in the atmosphere. By
combining known processes in the atmosphere, it can be argued that
the release of a specific gas could cause an environmental disaster.
Is the release a threat to the environment, according to:
(a) the scientific method?
(b) the precautionary principle?

Answer 11: Stable gas discharge

(a) The release is not a threat according to the scientific method.
(b) The release is a threat according to the precautionary principle.

Murphy’s law

Murphy’s law states that “whatever can go wrong, will go wrong”.
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Murphy’s law provides these methodological answers:
1. The purpose is to prepare for any unfortunate outcome.
2. Only consider explanations that will be verified.
3. Accept all the explanations that may give unfortunate outcome.
4. Additional explanations can be accepted later.

Murphy’s law is usually applied while engineering in complex environ-
ments, to prepare for unfortunate outcomes.

Exercise 12: The shark dive

A tourist books a dive with endangered sharks in a remote location.
Which advice can be given based on:
(a) the scientific method?
(b) the precautionary principle?
(c) Murphy’s law?

Answer 12: The shark dive

(a) You will be fine.
(b) Cancel the dive.
(c) Bring a knife, GPS and radio.

The legal principles

The legal principles are applied to specify laws and determine if an accused
person is guilty of breaking the law. The scientific method, with it’s many
explanations, is in a sense a generalization of the legal principles where there
are only two mutually exclusive explanations, namely that “the accused is
guilty” or “the accused is innocent. Note that falsifying one explanation is
equivalent to “proving” the other, by elimination.
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The legal principles provide these methodological answers:
1. The purpose is to maintain support for the law.
2. Only make laws against crimes that can be verified.
3. Accept “accused is innocent”, unless proven guilty.
4. The accepted explanation is reconsidered if proof changes.

Exercise 13: Littering

Which laws are acceptable?

(a) It is forbidden to litter the park.
(b) It is forbidden to bring litter to the park.
(c) It is forbidden to consider littering the park.

Answer 13: Littering

(a) Acceptable. The corresponding crime can be verified.
(b) Unacceptable. To “bring litter” can not be verified?
(c) Unacceptable. Intentions can not be verified.

Exercise 14: The 3 suspects

A crime has been committed and there are only 3 possible suspects.
Suspect A has admitted the crime, but is a known liar. Suspect B may
commit a terrible crime in the future. Evidence suggests suspect C.
Who is guilty according to:
(a) the scientific method?
(b) the precautionary principle?
(c) Murphy’s law?
(d) the legal principles?

Answer 14: The 3 suspects

(a) Suspect C is guilty.
(b) Suspect B is guilty.
(c) All suspects are guilty.
(d) No suspects are guilty.
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Meteorological models

Explanations can be used to predict properties of real life systems, for in-
stance the temperature at a location. The representation of selected prop-
erties of a real life system is called a model1. A model uses explanations to
formulate processes that change the properties over time, which are them-
selves properties of the model. The purpose of a model is to describe previ-
ous, current or future properties of the real life system. In meteorology, the
purpose of a model is usually to predict the weather.

A numerical weather prediction model is typically formulated using mil-
lions of independent model variables. Each model variable has a specific
influence on the model properties, and all the model variables must be de-
termined before the model properties represent the real life system. The
complete set of model variables is called the model state. The model state
that corresponds to the state of the real life system, is called the true state
or the true values of the model variables. The true state is always un-
known, and can only be described using a probability distribution. An
earlier estimate of the model state is called the first guess and sometimes
the background. The difference between the new observations and the model
equivalent based on an earlier estimate of the model variables, is called the
innovation. The techniques used to determine the model variables, using a
combination of the innovation and a first guess, is called data assimilation.
The resulting model state is called the analysis.

A model may consist of other models. A simplified model of a process, is
called a scheme. A surface scheme is for instance a combination of simplified
surface process models. The process of developing a scheme is called cooking.
Schemes are detailed using parameters that have to be adjusted. We say

1A mock-up is a representation of an imaginary system.
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that parameters are tuned if they are adjusted during development, and
corrected if they are adjusted as part of the weather forecasting operation.
A scheme that relies heavily on parameters, is called a parameterization.

Exercise 15: Two point model

A model has two grid locations with temperatures 11.0 and 11.2 de-
grees. A new temperature observation of 10.0 degrees is made at the
center point.
What is the value of:
(a) the model variables?
(b) the model equivalent to the observation?
(c) the innovation?

Answer 15: Two point model

(a) 11.0 and 11.2 degrees.
(b) 11.1 degrees.
(c) −1.1 degrees.

Model errors

A meteorological model does not contain all the information in the real life
system, so the model representation can never exactly reconstruct the real
life system. It follows that even if the true state matches the model state,
there will still be a difference between the real life system properties and
the properties reconstructed from the model. This difference is called the
representation error.

Meteorological systems are non-linear and their current true state de-
pends on any earlier true state. Some small changes in some variables may
evolve to large changes later, while other large changes may decrease to
small changes as time passes. These obscure dependencies on the initial
state make non-linear systems unpredictable. The unpredictable property
of non-linear systems was first discovered in meteorological models, and led
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to the development of chaos theory. Some physical processes are well de-
scribed, while others are unknown or can not be accurately described using
the model variables. Parameterizations use simplified linear processes to
represent complicated non-linear processes in the real life system, making
the model less chaotic than the real life system. The effects of processes
can easily be over- or under-estimated in complex systems like the atmo-
sphere. As all variables in a complex meteorological system have some ef-
fects on some other variables, a model may easily over- or under-estimated
the effects that remotely associated model variables have on each other, for
instance the effects of clouds on surface temperatures. The error contribu-
tions to the forecasted state, originating from the simplified modelling of
physical processes, is called the physical modeling error.

Observations also have errors and so does the background, which to-
gether with the representation error and physical modeling error, contribute
indirectly to the analysis error.

Unpredictable behavior is sometimes modeled by adding a random sta-
tistical error. However, a randomness assumption needs justification, for in-
stance that underlying “error processes” are independent in time and place,
which is usually not the case in meteorology. It follows from the obscure de-
pendencies on all scales in meteorological systems, that any use of advanced
statistics is prone to obscure errors. Advanced statistical assumptions and
calculations should therefore be avoided in meteorology. Simple systematic
errors in meteorological models are usually corrected using various schemes.
There are for instance always systematic errors in the innovation. Wind ob-
servations at a location may for instance be systematically lower than the
model equivalent, due to neighboring vegetation not accounted for in the
model, and radiation measurement models will for instance not include all
atmospheric processes that affect the observations. The innovation is typ-
ically corrected using data from the previous time period, for instance to
correct the statistical dependencies on air mass and measurement geometry.

Exercise 16: The model errors

Assume that you have a numerical weather model.
Which errors are directly affected by:
(a) observation instrument degradation?
(b) increased analysis resolution?
(c) improved forecast model parameterization?
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Answer 16: The model errors

(a) The observation errors.
(b) The representation- and background-errors.
(c) The physical modeling error.

Exercise 17: A global model

A simple meteorological model of the world has only one temperature
value, T , which is 14 degrees. The temperature in Oslo varies from
−10 to 20 throughout a year and is observed to be 10, 12 and 11
degrees at noon on three consecutive days.

(a) What is the representation error in Oslo?
(b) What is the observation error?
(c) What is the physical modeling error in Oslo?

Answer 17: A global model

(a) The representation error is about 20 degrees.
(b) The observation error is unknown.
(c) The physical modeling error is about 1 degree per day.

Model properties

Assume that the optimal value for one model variable has been estimated.
This does not imply that the values of the other model variables also are
optimal. It follows that if one property of the atmosphere is well described
by the model, you can never also assume that another property automati-
cally is well described too. Even if two properties are closely related by the
same processes, you can not safely assume that quality somehow is trans-
ferred from one property to the other. If for instance a numerical weather
prediction model is skilled at forecasting temperatures on the mountains,
there is no guarantee that it will also be skilled at forecasting temperatures
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in the valleys. There could always exist some process that the model does
not represent properly, which only affects one property and not the other.

You can never know if a model has any prediction skill at forecasting
a specific property, before that property has been explicitly verified.

First principles operate on accumulated properties of a model. The mo-
tivation for using first principles appears to be that accumulated errors
somehow cancel each other out on larger scales. A first principle is of-
ten a statement about some accumulated property combined with a simple
scheme, for instance that the total amount of water in a complex system is
constant. From a meteorological perspective, first principles are just another
set of assumptions that must be verified before they can be used. Verifying
first principles is extremely difficult, for instance how do you observe the
total water content or how can you be sure that no processes modify the
water content in your system? First principles are therefore never used in
meteorology.

Exercise 18: Assumptions

A model is good at predicting the inland (2 meter) temperature.
Can you assume that the model will be good at predicting:
(a) skin temperature?
(b) cloud and precipitation?
(c) coastal temperature?
(d) maximum inland temperature?
(e) average inland temperature?

Answer 18: Assumptions

(a) No.
(b) No.
(c) No.
(d) No.
(e) No.
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Model tuning

A meteorological model will typically use several schemes. Simple schemes
often yield larger errors than the corresponding complex schemes, but they
are easier to implement. A model therefore typically starts out with simple
schemes, which are gradually improved as the model is developed. An im-
portant part of any model development is therefore to optimize the model
parameters used by the schemes, for instance the parameters used in the
parameterization of sub-model process schemes or in the bias correction
schemes. When a parameter is tuned, it is usually adjusted until it results
in the best verification score against a special dataset. The parameters are
adjusted through trial and error, while trying to avoid over fitting. Adjust-
ments that improve a verification score against a special set of observations
are kept, while the others are discarded. Note that the special dataset veri-
fication score is no longer independent of the model, and a completely new
and independent set of observations must be used when comparing it to
other models.

Improving models

The prediction skill of the meteorological models used for operational weather
forecasting, is improved using the scientific method. All experience shows
that a large arbitrary change to a well tuned weather prediction model will
make the model perform worse. The most coherent and accepted explana-
tion is therefore that your changes to a model will make it perform worse.
According to the scientific method, you have to falsify this accepted expla-
nation before you can replace it by the explanation that your changes will
improve the model.

The only way you may claim that your changes to a model does
not make it worse, is by demonstrating that your changes yield an
improvement in the prediction skill.
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According to the scientific method, the old model version can only be
replaced by a new version that verifies better. New versions of a meteoro-
logical model usually have a change that is expected to improve the model.
For instance, the increasing computational power makes it possible to bet-
ter resolve physical processes in the model. The explanation that the new
model version is best is therefore often the most “coherent” explanation.
However, the scientific method explicitly states that the accepted expla-
nation has to be falsified before it can be replaced by the most coherent
explanation available. So again, even if a version with a better formulation
is developed, it still has to be shown that the new version verifies better
than the old version, before the corresponding explanation can be accepted.

Preserving prediction skill

It could be tempting to demonstrate that the new model version has “similar
quality” to that of the old version, implying that you could choose either
without affecting the prediction skill - and then select the new version of
the model for some arbitrary reason. This approach, to preserve prediction
skill, is in direct conflict with the scientific method, whose purpose is to
improve prediction skill. But even if you ignore the difference in purpose,
it is also an open question how you could falsify the explanation that the
old model version is best, without showing that the new version is better.
And is the explanation that two different models may have the same quality
even coherent with chaos theory? It is well known that even the smallest
changes can evolve to large changes in chaotic systems, which would yield
different scores. The “similar quality” approach is therefore a completely
different approach to developing knowledge.

The scientific method blocks you from replacing the accepted explana-
tion until it is falsified, even if the new explanation has many other advan-
tages and has demonstrated “similar quality”. This stringency can appear
as a weakness in the scientific method, but it is a strength. For instance,
a meteorological forecasting system has many expensive components, and
it can be difficult to show the benefit of each component individually. A
“similar quality” criterion could easily be used to remove an expensive com-
ponent, and thus “chip away” at the prediction skill of the system, in clear
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violation of the scientific method. Accepting the pragmatic attitude that
the quality is the same for all practical purposes, is clearly not in agree-
ment with the scientific method, and may result in a drift towards worse
prediction skill. The correct decision would here be to promote the accepted
explanation, namely that any such change would degrade the system - even
if this explanation could not be demonstrated.

Climatology

The conceptual problem in numerical weather prediction, is to estimate
the probability density function (PDF) for the true state of the atmosphere
given the available information, and propagate this density function forward
in time. The probability density function can be written as, P (xt|y ∩ xb),
where xt is the true state of the atmosphere, y is the observations and xb is
the first guess. At some point into the forecast, the initial state information,
y ∩ xb, can no longer improve the forecast due to model limitations. This
is the deterministic lead time limit. At this point, the density function
should be written as P (xt), since conditioning on y ∩ xb has no effect. This
probability density function, or any property of it, is called the climatology.
Although the climatology is independent of the initial state information, it
may depend on other information, for instance location and time of year.
An example of climatology is the mean temperature in Oslo in January.
Every meteorological model has an intrinsic climatology, which either is
specified directly or indirectly through model tuning.

The model climatology is the probability distribution, or any property
of it, that a forecast model will predict as the lead time passes the
point where the initial state information is irellevant.

The model that predicts the best climatology beyond the deterministic
lead time limit, will yield the best verification score for these lead times. The
best climatology is the distribution that best matches the actual weather in
the verification period. Model climatology can be estimated using the law of
large numbers, by sampling over a sufficiently long time period, for instance
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over the last 40 years, and assuming that the future climatology will follow
that of the past. However, as the weather development involves non-linear
processes on all time scales, a theoretical climatology may not even exist and
the sampled climatology will depend on the time period chosen. Estimating
“climatological changes” on long time scales is outside the scope of this
verification handbook, since that is an environmental protection problem
which is usually solved using the precautionary principle, and therefore
does not require any verification.

Exercise 19: The raining model

A model systematically predicts rain three days into the forecast.

(a) What could be wrong with the climatology?

Answer 19: The raining model

(a) The climatology could be too cold or dry.

Estimating model variables

In meteorology, the process of estimating the model variables using new ob-
servations and a forecast of the variables from an earlier cycle, is called data
assimilation. The purpose of data assimilation is to estimate the analysis
that gives the best model prediction skill.

The analysis is a representation of the probability density function for
the true state of the atmosphere. The analysis is used as a starting
point to predict the future state of the atmosphere.

All the information used to determine the model variables has an un-
certainty. The main challenge in data assimilation is to estimate the prop-
erties of the combined probability distribution for the true values of the
model variables given all the available information. For instance, assume
that there are two independent sources of information, the first guess xb
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and the new observations y, each with their own error properties. There
are several techniques available for estimating and analyzing the combined
probability function, P (xt|y ∩ xb).

Example 3: Combined Normal probability density

If for instance you have a single observation and first guess charac-
terized by an error with unbiased Normal distribution, we may write

P (xt|y ∩ xb) = N(µ = µa, σ = σa)

µa = xb +Hσ2
b (Hσ

2
bH + σ2

y)
−1(y −Hxb)

σ2
a =

σ2
yσ

2
b

σ2
y +Hσ2

bH
.

where H is the linearized forward operator which can be multiplied
with the model state to calculate the model equivalent to the obser-
vation, σy is the observation error and σb is the background error.
Observe that the new combined Normal probability density function
has maximum value at x = µa and standard deviation σa.

Exercise 20: Highest combined probability

A simple model has one temperature variable with a first guess value
of 10.1 degrees and uncertainty σb = 2.5 degrees. An observation of
12.5 degrees is made with an uncertainty of σy = 0.5 degrees. Assume
independent and unbiased Normal error distributions with unity for-
ward operator H = 1.

(a) What is the value with highest combined probability (µa)?
(b) What is the corresponding standard deviation (σa)?

Answer 20: Data assimilation

(a) 12.4 degrees.
(b) 0.49 degrees.
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Deterministic models

In deterministic weather prediction, a single model state is estimated from
the observations and first guess. The estimated analysis can be written as
xa(y, xb). The analysis is propagated forward in time by the model to form
a forecast, written as xf (xa, t).

Deterministic weather prediction models are developed to yield as good
verification scores as possible. Another way of putting this is that the
deterministic weather prediction models are developed so that they estimate
the analysis that minimize the verification risk.

Verification risk

Let us assume that the forecast that yields the best verification score, is
based on the analysis that yields the best verification score. Further assume
that we have a dataset with combinations of observations, y, first guess, xb,
and the true state, xt. If we select the N combinations with a specific set of
values for the observations and first guess, we get a probability distribution
of the corresponding true state, which can be written as P (xt|y ∩ xb). This
implies that if we made new and accurate verification observations of all
the model variables, these observations should also follow the probability
distribution, P (xt|y∩xb). We can in principle estimate the optimal analysis
that minimizes the verification risk, by using this probability distribution.

The verification risk is defined as the expected value of a loss function.
The loss function defines the penalty associated with a possible outcome.
The analysis, xa, can be used directly in the loss function, since it is a
function of the observations, y, and first guess, xb. For instance if xa(y ∩
xb) = 10C and xt = 12C, the quadratic loss function yields l(xa, xt) =
(xa − xt)2 = 4C2. The verification risk for a given analysis, B(xa), can be
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approximated as the loss function averaged over the N combinations,

B(xa) =

∫
l(xa, xt)P (xt|y ∩ xb)dxt

∼ 1

N

∑
n

l(xa, xt).

Minimum verification risk is achieved when B(xa) is minimum, and that
value of xa depends on the definition of l(xa, xt) and the distribution of xt,
P (xt|y ∩ xb). The analysis is developed and tuned so that it minimizes the
overall verification risk. The overall risk, B, is the expected value of B(xa).

In deterministic weather prediction, the definition of loss is made by the
developers of the forecasting system.

The loss function of the verification score used in the development of
a deterministic weather prediction model, will define the property of
p(xt|y ∩ xb) that the analysis will be tuned towards.

Tuning a model using a verification score, will in other words make
the model gravitate towards the optimal analysis for the underlying loss
function of the verification score.

Mean squared error loss function

A common loss function used for continuous variables is the squared error.
When applied to the analysis l(xa, xt) = −(xa − xt)2, we have that

B(xa) = −
∫

(xa − xt)2P (xt|y ∩ xb)dxt (1)

= −E((xa − xt)s|y ∩ xb)
= −x2a + 2xaE(xt|y ∩ xb)− E(x2t |y ∩ xb)

where we have introduced the expected function, E, for instance

E(xt|y ∩ xb) =

∫
xtP (xt|y ∩ xb)dxt.
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The optimal analysis which minimizes the risk is then given by(
∂B

∂xa

)
xa

= −2 · xa + 2 · E(xt|y ∩ xb) ≡ 0

xa = E(xt|y ∩ xb).

The optimal analysis which minimizes the deterministic mean squared
error loss is given by the expected state.

Mean absolute error loss function

Another common loss function is the absolute error, l(xa, xt) = −|xa − xt|.
The mean error is then given by

B = E(xa − xt|y ∩ xb))

=

∫ xa

−∞
(xa − xt)p(xt|y ∩ xb)dxt

+

∫ ∞
xa

(xt − xa)p(xt|y ∩ xb)dxt

The optimal deterministic analysis which minimizes the mean absolute error
risk is given by

∂B

∂xa
=

∫ xa

−∞
p(xt|y ∩ xb)dxt

−
∫ ∞
xa

(xt − xa)p(xt|y ∩ xb)dxt = 0∫ xa

−∞
p(xt|y ∩ xb)dxt =

∫ ∞
xa

p(xt|y ∩ xb)dxt.

The optimal analysis is in other words the median state.

The optimal analysis which minimizes the deterministic mean absolute
error loss is given by the median state.
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Likelihood loss function

A common approach in deterministic data assimilation is to define the anal-
ysis as the state that maximizes the likelihood,

xa = arg maxx∈R(P (x = xt|y ∩ xb)).

The corresponding likelihood loss function can be written as,

l(xa, xt) = −log(P (xt = xa|y ∩ xb)).

Deterministic data assimilation seeks to maximize the analysis likeli-
hood, which corresponds to minimizing the likelihood loss function.

Event based loss function

The end user may be interested in knowing which model best forecasts an
event, for instance precipitation above a given threshold.

If the model equivalent and observation agree on the event, we have a
hit. If the model equivalent did not predict an event we have a miss. A
false alarm is when the model predicted an event that did not happen. A
correct negative is when the model and observations had no event.

An intuitive score related to the probability of making a correct forecast,
is for instance the accuracy or the probability that the event is forecasted
correct. Let us assume unity forward operator. The event that the state
is above the threshold, xc, may be written as xa > xc. If we assume a loss
function equal to -1 if we have a hit, and 0 otherwise, we get one of the two
integrals,

B(xa) = −
∫ ∞
xc

p(xt|y ∩ xb)dxt if xa > xc

B(xa) = −
∫ xc

−∞
p(xt|y ∩ xb)dxt if xa < xc.
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The lowest risk, B(xa), is achieved if xa is on the side of xc that is closest
to the median of p(xt|y ∩ xb), suggesting that the optimal analysis is given
by the median state.

The optimal analysis for event based loss functions, is suggested by
the median state.

Competing loss functions

Tuning a model towards one verification score may in theory result in the
worsening of another verification score. This could be a problem for very
non-Normal probability density functions for the true state.

A deterministic numerical weather prediction system is tuned to score
best with the verification techniques used to develop the system.

As most verification scores have the same optimal analysis when the
probability density function for the true state is Normal, and since the
Normal approximation is a common assumption, tuning towards one of
these scores is not a major issue. Just note that if the “best model” for
a specific property consistently depends on the verification technique, that
could be an indicator of a non-Normal probability density function for the
true state in the verification dataset.

Exercise 21: Optimal analysis

The probability density function of the true state given the available
information, is a Normal distribution with a mean of 12.5 degrees and
a 2.0 degree standard deviation.
What is the optimal:
(a) least squared error analysis?
(b) least absolute error analysis?
(c) maximum likelihood analysis?
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Answer 21: Optimal analysis

(a) 12.5 degrees (expected).
(b) 12.5 degrees (median).
(c) 12.5 degrees (maximum).

Exercise 22: Camel analysis

The probability function of the true state is only defined at 3 values:
20% at 10 degrees, 30% at 15 degrees and 50% at 20 degrees.
What is the optimal:
(a) least squared error analysis?
(b) least absolute error analysis?
(c) maximum likelihood analysis?
(d) threshold analysis?

Answer 22: Camel analysis

(a) 16.5 degrees (mean).
(b) 15 degrees (median).
(c) 20 degrees (maximum).
(d) 15 degrees (median).

Exercise 23: Tuning

A sub-model process makes a temperature variable change from 10
degrees to 11 degrees in 30% of the cases, and to 12 degrees in 40%
of the cases. Assume that a single optimal parameterization value is
related to the verification loss function in the same way as for the
optimal analysis.
Estimate an optimal deterministic parameterization value for the:
(a) squared error loss function?
(b) absolute error loss function?
(c) maximum likelihood loss function?
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Answer 23: Tuning

(a) 11.1 degrees (expected value).
(b) 11.0 degrees (median value).
(c) 12.0 degrees (most probable value).

Probabilistic models

Probabilistic weather prediction estimates and predicts the probability func-
tion of the true state given the observations and first guess. Ultimately, the
end user uses this probabilistic information in his own risk analysis. For in-
stance, a painter may only want to paint if there is no chance of rain, while
a commuter may drive by car instead of the bus if there is a large chance
of rain. In risk analysis the user must define his loss function depending on
the local consequences of the alternative decisions and outcomes.

In probabilistic weather prediction, the end user defines the loss.

Exercise 24: Decision theory

Opening a kiosk for a day costs $5, 000, while keeping it closed costs
$1, 000. If the kiosk opens and it does not rain it earns $10, 000 , if
it rains it earns $0. There is a 10% chance of rain.

(a) How much will the kiosk make on average if it opens?
(b) How much will it make on average if it remains closed?
(c) Should the kiosk open?
(d) At what chance of rain does it loose money?
(e) At what chance of rain should it remain closed?
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Answer 24: Decision theory

(a) $4, 000.
(b) −$1, 000.
(c) The kiosk should open.
(d) It looses money if more than 50% chance of rain.
(e) It should remain closed if more than 60% chance of rain.

Ensembles

A common approach to probabilistic weather prediction is to make a collec-
tion, or ensemble, of slightly different forecasts. Each forecast is called an
ensemble member and indexed by the ensemble number, i, which runs from
1 to N , the total number of ensemble members. Each ensemble member
forecast is made starting with a slightly different model state. The proba-
bility distribution of the true forecasted state is then represented using the
distribution of the ensemble member forecasts.

Note that there is a fundamental difference between deterministic and
ensemble models, namely that the deterministic model state represents
properties of a probability distribution, usually the expected true state of
the atmosphere, while each ensemble member represents a possible instance
of the true state. While the deterministic model simply propagates the
expected state forward in time, the ensemble model propagates a possible
instance of the true state, and should therefore be subject to much more
unpredictable behavior. It follows that if each ensemble member is verified
individually against a verification technique that is for instances optimal for
the expected state, each ensemble member will score worse than a deter-
ministic model.
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Ensemble mean

The ensemble mean of the predicted model equivalent, fi, can be calculated
using

f̄ =
1

N

n∑
i=1

fi.

As for the deterministic forecasts, the ensemble mean should be used when
the verification technique is based on the squared error loss function.

Ensemble median

The ensemble median of the predicted model equivalent to each verification
observation, is the center value which has just as many member values above
as below. As for the deterministic forecasts, the ensemble median should
be used when the verification technique is based on the mean absolute error
or threshold loss functions.
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Verification

Verification is often used synonymously with prediction skill in a meteo-
rological context. The prediction skill should reflect how well the model
predicts new observations, so that it can be used to identify the model that
makes the best predictions in accordance with the scientific method.

A good verification score should for instance:
1. reflect the likelihood of making the observations,
2. be consistent over independent sets of observations,
3. worsen if we add random noise to model predictions,
4. be simple and robust without arbitrariness,
5. be calculated in the same way for all models being compared.

Ideally the verification score should be an estimate of the probability of
having a set of new observations given the predictions. But this is difficult to
calculate without making arbitrary (un-fair) assumptions, or without being
sensitive to the weather situation.

Meteorological verification compares model predictions against the
same observations, based on the same technique and using fair as-
sumptions.

Discarding observations in a weather situation that your model was not
“designed for”, is an example of an arbitrary decision which should not
be used in a verification technique within the framework of the scientific
method.

Imagine that two models have slightly different verification scores. One
model could by random coincidence have a better score than another model.
If random coincidences in the verification dataset dominate the verification

33



score, it can not be used to identify the model that would make the best
predictions in the future, thus defeating the purpose of the verification score
within the framework of the scientific method.

An improvement in verification score must be considered against the
possibility that the improvement happened by chance.

For many complicated scores, the possibility that one model scores bet-
ter than another by chance, is often judged subjectively based on long ex-
perience with that specific score. For this reason, the scientific method
implicitly encourages a scepticism towards new verification scores.

Observations

As meteorological systems are non-linear, their error distributions often have
large “wings”. This is also the case for observation errors. For instance,
instruments may freeze up and radiation measurements could be affected
by cloud droplets. Some observations with extreme errors will eventually
make it past the basic sanity checks. Verification scores that are sensitive
to extreme errors can therefore be riddled with noise. A large dataset with
independent observations would reduce noise, but could be impractical to
accumulate. In order to make a verification score more conclusive, some
sort of observation quality control is often applied to remove outliers.

It is easy to make obscure and arbitrary quality control decisions that
favor a particular model, when processing observations for a verification
score. The resulting score could not be used to identify the model with best
prediction skill, and would therefore defeat the purpose of the scientific
method. However, the score could still be useful in alternative approaches
for accepting explanations, for instance to gain funding or support for a
narrative. It follows that the observation processing must be transparent,
so that it can be scrutinized by peers, to make sure it does not defeat the
purpose of the scientific method. Any observation quality control criterion
should be symmetric with respect to the models and the same observations
should be used in calculating the verification score for all the models. For
example, observations that deviated significantly (> 3σ) from all the models
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could be discarded and the observation locations should be defined by using
predefined lists. Model information should typically not be used in the pre-
processing of the observations.

The synoptic scale of a weather system is typically a thousand kilome-
ters, and a weather situation can typically prevail for a week. Dangerous
weather like storms are usually also the most difficult to predict, and there-
fore make large contributions on most verification scores. The verification of
a limited area model in meteorology, will typically use data for at least a four
week period, to catch several storms. As there can be seasonal variations
in the intensity, efforts are also put into looking at seasonal variations, for
instance using three months of data at a time, and comparing consecutive
or inter-annual scores.

Exercise 25: Observation quality

Observations that deviate by more than 2σ from any one of the models
are discarded.

(a) Is this observation quality control criteria symmetric?

Answer 25: Observation quality

(a) No. A model that has occasional large errors will be favored.

Exercise 26: Scatterometer winds

A scatterometer measures microwave backscatter from small waves,
and estimates two opposite wind solutions. In a post-processing step,
a global model forecast is used to select one of the solutions. The
global model wind is then verified using the post-processed scatterom-
eter observations.

(a) Would a comparison of verification score be fair to other models?
(b) Can the post-processed scatterometer observation be used to only
verify other models?

Answer 26: Observation quality

(a) No.
(b) Yes, if they are all independent of the global model.
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Persistence

Forecasting that the weather tomorrow will be the same as the weather to-
day is called persistence. In meteorology, we say that a model does not have
any prediction skill unless it out-performs persistence. The same criteria
applies for trends, i.e. your model does not have any prediction skill if it
does not clearly out-perform persistence of well known trends.

A model that does not consistently out-perform persistence has no
prediction skill and should not be promoted.

Exercise 27: Prediction skill

Three models with significant prediction skills are verified. Model A
scores 1.90, model B scores 1.80, model C scores 1.95, persistence
scores 2.50. The uncertainty in each score is ±0.1.

(a) Which of the models has best prediction skill?
(b) Which of the models has worst prediction skill?

Answer 27: Prediction skill

(a) Model B.
(b) Model A and C.

Underlying loss

Some verification scores can be associated with an underlying loss function
that has a known optimal analysis. Tuning models using such verification
scores will guide the model towards the associated optimal analysis.

It can be instructive to study the relationship between these verification
scores, the underlying loss functions and the optimal analysis. This time
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we assume that the predicted model equivalent (forecast) is short so that
the physical modeling error is negligible. The predicted model equivalent,
fi, will then correspond to the analysis, xa. It is also reasonable to expect
that the distribution of the verification observations, oi, made of the model
state, will follow P (oi = xt|y ∩ xb) = N(µ = fi, σ).

Squared error verification

Squared error verification is a special case of a score with an underlying
loss function with known optimal analysis, as it is also closely related to
the falsification likelihood for continuous variables. If we assumed that the
predicted model equivalent fi had a Normal probability distribution with
error σ, the probability density pi that we made the observation oi in the
verification, could be written as

pi ∼ e−
(oi−fi)

2

2σ2 .

A measure for the combined probability of making a set of independent
verification observations, is a strictly increasing function of the combined
probability, and could for instance be

P ∼ log
n∏
i=1

(pi)

∼ − 1

N

n∑
i=1

(oi − fi)2

where we note that σ just adds to the scaling of the probability and can be
removed when we only want to compare different models.

Observe that the squared error verification score, P , corresponds to the
(discrete) expected squared error loss, B(xa), when oi → xt and fi → xa
(Eq. 1). The optimal analysis in this case is the expected state.

The squared error verification score is a measure for the probability of
drawing the verification observations given that the predicted model
equivalent had a Normal error.
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The squared error verification score is the most popular verification score
for continuous variables where we expect Normal error distributions.

If we verify the ensemble mean with the best mean squared error score,
we may identify the ensemble model with the best ensemble mean. Note
that this score is proportional to the probability of drawing the observations
given the predictions, if we approximate the ensemble PDF using a Normal
distribution centered around the ensemble mean. Verifying the ensemble
mean using a mean squared error score is therefore a fair way of comparing
likelihood of different models.

Mean absolute error verification

The mean absolute error verification score is the mean absolute error, |oi−
fi|, given by

MAE ∼ 1

N

N∑
i=1

(|oi − fi|)

∼ E (E(xa − xt|y ∩ xb)))

which corresponds to the mean absolute loss function, when oi → y and
fi → xa. The optimal analysis in this case is the median state.

Event based verification

Event based verification checks for instance values above or below a thresh-
old. There is a hit if fi > xc and oi > xc. Adding together the accuracy
gives the event based loss function, when oi → y and fi → xa. The optimal
analysis in this case is the median state.
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Verification techniques

The purpose of the verification techniques within the framework of the sci-
entific method, is to identify the model that has the best prediction skills. A
verification technique compares the model predictions from different mod-
els, using the same observations. The purpose is to identify the model that
makes predictions that gives the observations the highest likelihood. Some
verification techniques are closely related to this likelihood, while other are
better described as sanity checks used to identify strange model behavior.
Some model properties are continuous, others are event based and some are
multi-category. There are also some properties that are only available for
probabilistic models.

In addition to objective verification scores, a meteorologist will also use
other information, for instance sanity checks and case studies. A good tool
for a sanity check is for instance scatter plots of observations vs forecasts.
A sanity check has no practical use and is therefore not a skill, and it
can often be manipulated so it is not used to compare models. In case
studies, the meteorologist studies individual weather cases, typically badly
forecasted weather. The purpose of case studies is to identify problems with
the model that can be missed by the common verification techniques.

A list of the most common verification techniques used in operational
weather forecasting is continuously updated by the Joint Working Group
on Forecast Verification Research. This verification handbook contains a
subset of these verification techniques at the time of writing, presented in a
similar format for an easy reference. Note that some comments have been
changed along with some terminology, so please consult the original source
for the official comments and terminology of the working group and for
references to the original publications.
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Continuous properties

The verification techniques for continuous properties will be demonstrated
on a sample dataset of 10 temperature observations, oi, and their forecast
equivalent, fi, taken from Stanski et al. (1989),

Day 1 2 3 4 5 6 7 8 9 10
fi (C) 5 10 9 15 22 13 17 17 19 23
oi (C) -1 8 12 13 18 10 16 19 23 24

Mean squared error

The mean squared error, MSE, measures the mean squared difference be-
tween the forecasts and observations. MSE, is defined by

MSE =
1

N

N∑
i=1

(fi − oi)2

where fi is the forecasted model equivalent to the observation, oi. The range
is [0,∞〉, a perfect score is MSE = 0 and the score unit is the square of the
observation unit.

Example 4: MSE

For the sample data we have MSE = 10C2.

If it is assumed that each forecast represents the mean of a Normal
distribution with a specific standard deviation, the MSE will have a strictly
decreasing dependence of the likelihood of making the observations given
the forecasts. The MSE is therefore suitable for comparing models of the
mean state within the framework of the scientific method. Used the other
way around, the MSE is suitable for tuning meteorological models so that
they match the mean state. If the mean squared error is used to tune
a deterministic model, it will approach the mean state. If a probabilistic
model is tuned using MSE, the mean of the probability distribution should
be used in the calculation of the verification score.
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Root mean square error

The root mean squared error, RMSE, estimates the average magnitude of
the forecasting errors, and is defined by

RMSE =
√

MSE

The range is [0,∞〉, a perfect score is RMSE = 0 and the score unit is the
the same as the observation unit.

Example 5: RMSE

For the sample data we have RMSE = 3.2C.

The root mean square error is simple and familiar, since the score unit
is the the same as the observation unit. It measures the “average” error,
weighted according to the square of the error. It does not indicate the
direction of the deviations. RMSE has a strictly growing dependence on
MSE and therefore many of the same properties.

Mean absolute error

The mean absolute error, MAE, estimates the average magnitude of the
forecast error, and is defined by

MAE =
1

N

N∑
i=1

|fi − oi|

The range is [0,∞〉, a perfect score is MAE = 0 and the score unit is the
the same as the observation unit.

Example 6: MAE

For the sample data we have MAE = 2.8C.

The mean absolute error is simple and familiar. The MAE is optimal
if the forecast represents the mean of the probability distribution of the
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true state given the available information. Use the other way around, the
ME is suitable for tuning meteorological models so that they match the
median state. If the mean absolute error is used to tune a deterministic
model, it will approach the median state. If a probabilistic model is tuned
using MAE, the median of the probability distribution should be used in
the calculation of the verification score.

Mean error

The mean error, ME, or bias, estimates the average forecast error, and is
defined by

ME =
1

N

N∑
i=1

(fi − oi)

The range is [0,∞〉, a perfect score is ME = 0 and the score unit is the the
same as the observation unit.

Example 7: ME

For the sample data we have ME = 0.8C.

The mean error is simple and familiar, also called the additive bias. It
does not measure the magnitude of errors and does not measure how well
the forecasts match the observations, i.e. it is possible to get a perfect score
for a bad forecast.

Standard deviation of error

The standard deviation of error, SDE, estimates the standard deviation of
the error deviation from mean, and is defined by

SDE =

( ∑N
i=1 fi∑N

i=1 (fi − oi −ME)2

) 1
2
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The range is [0,∞〉, a perfect score is SDE = 0 and the score unit is the
square of the observation unit.

Example 8: SDE

For the sample data we have SDE = 3.2C.

The standard deviation of error measures how well the forecasts match
the observations, while correcting for any bias. The score is complementary
to the mean error, and it is considered to be the more important and harder
to improve.

Correlation coefficient

The correlation coefficient, COR, estimates how well the forecast values
correlate with the observed values, and is defined by

COR =

∑
(fi − f̄)(oi − ō)√∑

(fi − f̄)2
√∑

(oi − ō)2

f̄ =
1

N

N∑
i=1

fi

ō =
1

N

N∑
i=1

oi

The range is [−1, 1], a perfect score is r = 1 and the score has no unit.

Example 9: COR

For the sample data we have COR = 0.914.

The correlation coefficient is a good measure of linear association or
phase error. Visually, the correlation measures how close the points of
a scatter plot are to a straight line. It does not take forecast bias into
account, and it is possible for a forecast with large errors to still have a good
correlation coefficient with the observations. The COR score is sensitive to
outliers.

43



Multiplicative bias

The multiplicative bias, MB, estimates the average forecast bias scaled by
the observation bias, and is defined by

MB =

∑N
i=1 fi∑N
i=1 oi

The range is 〈−∞,∞〉, a perfect score is MB = 1 and it has no unit.

Example 10: MB

For the sample data we have MB = 1.06C.

The multiplicative bias is best suited for quantities that have 0 as upper
or lower bound. It does not measure the magnitude of errors, and does not
measure how the forecasts match the observations, i.e. it is possible to get
a perfect score for a bad forecast.

Event based properties

A forecast may predict that an event will happen or not. Rain and fog
predictions are common examples of such event forecasts. An event may
also be a prediction above some threshold, for instance wind speed greater
than 20 m/s at a specific location. Events do not have any unit.

To verify event based properties, we start with a contingency table.

Observed
yes no total

Forecast
yes hits false alarms forecast yes
no misses correct negatives forecast no
total observed yes observed no all

where hits are “events that were forecasted and that did occur” and denoted
H, misses are “events that were not forecasted and did occur” and denoted
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M, false alarm are “events that were forecasted but did not occur” denoted
F, correct negative are “events that were not forecasted and did not occur”
denoted C. The total numbers of observed and forecast occurrences and
non-occurrences are called the marginal distributions.

The following contingency table with fabricated data is used to demon-
strate the verification measures below.

Observed
yes no total

Forecast
yes 82 38 120
no 23 222 245
total 105 260 365

Accuracy

The accuracy, ACC, or fraction of correct, estimates the fraction of forecasts
that were correct, and is defined by

ACC =
H + C

H + C + F +M

The range is [0, 1], a perfect score is 1.

Example 11: ACC

For the sample data we have ACC = 0.83 indicating the 83% of the
forecasts were correct.

Bias score

The bias score, BIAS, or frequency bias, estimates the forecast frequency of
events compared to the observed frequency of events, and is defined by

BIAS =
H + F

H +M
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The range is [0,∞〉, a perfect score is 1.

Example 12: BIAS

For the sample data we have BIAS = 1.14 indicating slightly over
forecasting of rain frequency.

The bias score indicates whether the forecast system has a tendency to
under forecast (BIAS¡1) or over forecast (BIAS¿1) events. It does not mea-
sure how well the forecast corresponds to the observations, only measures
relative frequencies.

Probability of detection

The probability of detection, POD, or hit rate, estimates the fraction of the
observed events that were correctly forecast, and is defined by

POD =
H

H +M

The range is [0, 1], a perfect score is 1.

Example 13: POD

For the sample data we have POD = 0.78, indicating that roughly
3/4 of the observed rain events were correctly predicted.

The probability of detection is sensitive to hits, but ignores false alarms.
It is very sensitive to the climatological frequency of the event, and good
for rare events. The score can be manipulated by predicting more events
to increase the number of hits. It should be used in together with the false
alarm ratio (below). POD is also an important component of the Relative
Operating Property (ROC) used widely for probabilistic forecasts.
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False alarm ratio

The false alarm ration, FAR, estimates the fraction of the predicted events
that actually did not occur, and is defined by

FAR =
F

H + F

The range is [0, 1], a perfect score is 1.

Example 14: FAR

For the sample data we have FAR = 0.32, indicating that roughly
1/3 of the forecasted rain events were not observed.

Probability of false detection

The probability of false detection, POFD, or false alarm rate, estimates the
fraction of events that were forecasted but not observed, and is defined as

POFD =
F

H + F

The range is [0, 1], a perfect score is 1.

Example 15: POFD

For the sample data we have POFD = 0.15, indicating that roughly
15% of the forecasted rain events were incorrect.

Threat score

The threat score, TS, or critical success index, estimates wow well the fore-
cast events correspond to the observed events, and is defined by

TS =
H

H +M + F
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The range is [0, 1], 0 indicates no skill and a perfect score is 1.

Example 16: TS

For the sample data we have TS = 0.575, indicating that more than
half of the rain events where correctly forecast.

The threat score can be thought of as the accuracy when correct nega-
tives have been removed from consideration, that is, TS is only concerned
with forecasts that “count”. The score is sensitive to actual hits, penalizes
both misses and false alarms and it does not distinguish source of forecast
error. The TS score depends on climatological frequency of events giving
poorer scores for rarer events since some hits can occur purely due to ran-
dom chance.

Equitable threat score

The equitable threat score, ETS, or Gilbert score, estimates how the forecast
events correspond to the observed events accounting for hits due to chance,
and is defined by

ETS =
H −R

H +M + F −R

expected random hits =
(H +M)(H + F )

H + C + F +M
= R

The range is [−1
3
, 1], 0 indicates no skill and a perfect score is 1.

Example 17: ETS

For the sample data we have ETS = 0.44. ETS gives a lower score
than ET.

The equitable threat score adjusts for random chance which could be
used to manipulate the ET score by forecasting more rain in a wet climate.
It is often used in the verification of rainfall in NWP models because its ”eq-
uitability” allows scores to be compared more fairly across different regimes.
The ETS score is Sensitive to hits because it penalizes both misses and false
alarms in the same way, it does not distinguish the source of forecast error.
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Heidke skill score

The Heidke skill score, HSS, or Cohen’s k, estimates the expected correct
forecasts for random chance, and is defined as

HSS =
H + C − E

H + C + F +M − E

expected correct =
1

N
[(H +M)(H + F ) + (C +M)(C + F )] = E(2)

The range is 〈−∞, 1], 0 indicates no skill and a perfect score is 1.

Example 18: HSS

For the sample data we have HSS = 0.61.

The Heidke skill score estimates the fraction of correct forecasts relative
to is random chance. In meteorology, random chance is usually not the best
forecast to compare to, it may be better to use persistence or some other
standard.

Hanssen and Kuipers discriminant

The Hanssen and Kuipers discriminant, HK, or true skill statistic or Peirces’s
skill score, estimates how the forecast separate the events from no events,
and is defined by

HK = POD − POFD

The range is [−1, 1], 0 indicates no skill and a perfect score is 1.

Example 19: HK

For the sample data we have HK = 0.63.

The Hanssen and Kuipers discriminant uses all elements in contingency
table. It does not depend on climatological event frequency. The Hanssen
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and Kuipers score can also be interpreted as (accuracy for events) + (ac-
curacy for non-events) - 1. For rare events HK is unduly weighted toward
the first term (same as POD), so this score may be more useful for more
frequent events. It can be expressed in a form similar to the ETS except
the hits random term is unbiased.

Odds ratio

The odds ratio, OR, estimates ratio of the odds of a forecasted event being
correct, to it being wrong, and is defined by

OR =
HC

MF
=

POD
1−POD
POFD

1−POFD

The range is [0,∞〉, 1 indicates no skill and a perfect score is ∞.

Example 20: OR

For the sample data we have OR = 20.8, indicating that the odds of
a predicted event being correct is over 20 times greater than the odds
of a predicted event being incorrect.

The logarithm of OR is often used instead of the original value. The
score takes prior probabilities into account, gives better scores for rarer
events and is less sensitive to hedging. Do not use this score if any of the
cells in the contingency table are equal to 0. The score is widely used in
medicine but not common in meteorology.

Odds ratio skill score

The odds ratio skill score, ORSS, or Yule’s Q, estimates the improvement
of the forecast over random chance, and is defined by

ORSS =
HC −MF

HC +MF
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The range is [−1, 1], 0 indicates no skill and a perfect score is 1.

Example 21: ORSS

For the sample data we have ORSS = 0.91.

The odds ration skill score is independent of the marginal distribution,
so it is difficult to hedge.

Rare event based properties

A rare event is characterized by a long time between each event.

Deterministic limit

The deterministic limit, DL, estimates the length of time into the forecast
in which the forecast is more likely to be correct than incorrect. The de-
terministic limit is defined, for categorical forecasts of a pre-defined rare
meteorological event, to simply be the point ahead of issue time at which,
across the population, the number of misses plus false alarms equals the
number of hits, i.e. threat score or critical success index =0.5. The base
rate (or event frequency) should also be disclosed. Re calibration of the
forecast is often necessary for useful deterministic limit measures to be re-
alized.

As they provide a clear measure of capability, deterministic limit values
for various parameters may in due course be used as year-on-year perfor-
mance indicators, and also to provide succinct guidelines for warning service
provision. They could also be used as the cut-off point to switch from de-
terministic to probabilistic guidance.
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Extreme dependency score

The extreme dependency score, EDS, estimates the association between
forecast and observed rare events, and is defined by

EDS =
2log

(
H+M

H+C+F+M

)
H

H+C+F+M

− 1

The range is [−1, 1], 0 indicates no skill and a perfect score is 1.
The extreme dependency score converges to 2η-1 as event frequency

approaches 0, where η is a parameter describing how fast the hit rate con-
verges to zero for rarer events. The EDS is independent of bias, so should
be presented together with the frequency bias.

Multi-category properties

Multi-category properties are events that have several discrete values, for
instance light rain and heavy rain. We denote the category count, N , by two
indexes, one for the forecasted category and one for the observed category.
For instance nij is the number of cases where the forecast predicted category
i while the observed category was j. Further we define ni∗ as the total
number of forecast cases with category i while n∗i as the total number
of observed cases with category i. We may write ni∗ =

∑
j=1Nnij and

n∗j =
∑

i=1Nnij.
The event property is a special case of a multi-category property, with

two categories, event or no event. In this case, the number of hits, H, is given
by n11, false alarms, F, is n1,2, misses, M, is n21 and correct negatives,C,
is n22. The continuous property is another special case, with an infinite
number of categories.
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Histogram

The histogram shows the probability distribution of the forecasts compared
to the observations. This sanity check shows similarity between location,
spread, and skewness of forecast and observed distributions, but does not
give information on the correspondence between the forecasts and observa-
tions. Histograms give information similar to box plots.

The histogram is simple and intuitive, although it can be misleading
since it is heavily influenced by the most common category.

Multi-category accuracy

The Multi-category accuracy, MACC, estimates the accuracy of the forecast
in predicting the correct category, relative to that of random chance, and is
defined as

MACC =
1

N

n∑
i=1

nii

The range is [0, 1], a perfect score is 1.
The score is simple and intuitive, but can be misleading since it is heavily

influenced by the most common category.

Multi-category Heidke skill score

The Multi-category Heidke skill score, MHSS, estimates the accuracy of
the forecast in predicting the correct category, relative to that of random
chance, and is defined as

MHSS =
1
N

∑N
i=1 nii −

1
N2

∑N
i=1 ni∗n∗i

1− 1
N2

∑N
i=1 ni∗n∗i
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The range is 〈−∞, 1], 0 indicates no skill and a perfect score is 1.
The multi-category Heidke skill score estimates the fraction of correct

forecasts relative to random chance. The score requires a large sample size
to make sure that the elements of the contingency table are all adequately
sampled. In meteorology, at least, random chance is usually not the best
forecast to compare to, it may be better to use persistence or some other
standard.

Multi-category Hanssen and Kuipers discriminant

The multi-category Hanssen and Kuipers discriminant, MHK, or true skill
statistic or Peirces’s skill score, estimates how the forecast separate the
events from no events, and is defined by

MHK =
1
N

∑N
i=1 nii −

1
N2

∑N
i=1 ni∗n∗i

1− 1
N2

∑N
i=1 n

2
∗i

The range is [−1, 1], 0 indicates no skill and a perfect score is 1.
The score is similar to the Heidke skill score (above), except that in the

denominator the fraction of correct forecasts due to random chance is for
an unbiased forecast.

Probable event based properties

A probable event forecast gives a probability of an event occurring, pi, with
a value between 0 and 1, where i is the observation index.
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Brier score

The Brier score, BS, estimates the magnitude of the probability forecast
errors, and is defined by

BS =
1

N

N∑
i=1

(pi − oi)2.

The range is [0, 1], a perfect score is 0.
The Brier score measures the mean squared probability error. It is

sensitive to the climatological frequency of the event, i.e. the more rare an
event, the easier it is to get a good BS without having any real skill.

Relative operating property

The relative operating property, ROC, visualizes the ability of the forecast
to discriminate between events and no events. The probability forecast is
divided into bins using probability thresholds, for instance 0.05, 0.15, 0.25.
The POD is then plotted against the POFD for each bin, and the area
under the ROC curve is frequently used as the ROC score. The range is
[0, 1], where 0.5 indicates no skill and a perfect score is 1. The perfect
ROC curve travels from bottom left to top left of diagram, then across to
top right of diagram. The diagonal line indicates no skill. The relative
operating property is not sensitive to bias in the forecast.

Ranked probability score

The ranked probability score, RPS, estimates how well the probability fore-
cast predicted the category that the observation fell into, and is defined
as

RPS =
1

M − 1

M∑
m=1

[(
m∑
k=1

pk

)
−

(
m∑
k=1

ok

)]2
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where M is the number of forecast categories, pk is the predicted proba-
bility in forecast category k, and ok is an indicator (0=no, 1=yes) for the
observation in category k. The range is [0, 1], a perfect score is 0.

The ranked probability score penalizes forecasts that are more severe
when their probabilities are further from the actual outcome. When there
are only two forecast categories, the RPS is the same as the Brier Score.

Ensemble probability distribution proper-

ties

Ensemble models that forecast a probability distribution may for instance
have their median and mean verified using techniques for continuous vari-
ables. It may also be interesting to look at a sanity check for the ensemble
distribution.

Rank histogram diagram

The rank histogram diagram, RHD, or Talagrand diagram, estimates how
well the ensemble spread of the forecast represent the spread of the obser-
vations. The rank histogram diagram is constructed using the following
procedure:

1. Rank the N ensemble members from lowest to highest.

2. Identify which bin the observation falls into at each point.

3. Tally over many observations to create a histogram of rank.

The idea is that each ensemble member represent an equally likely instance,
so the observations should spread equally between the members.

The rank histogram diagram can be interpreted using the following table:
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Shape Interpretation
Flat ensemble represents forecast uncertainty

U-shaped ensemble spread is too small
Dome-shaped ensemble spread is too large
Asymmetric ensemble contains bias
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